Properties

Label 1280.2.f.g
Level $1280$
Weight $2$
Character orbit 1280.f
Analytic conductor $10.221$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(129,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 1) q^{3} - \beta_{2} q^{5} + ( - \beta_{2} + 3 \beta_1) q^{7} + (2 \beta_{3} + 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} - 1) q^{3} - \beta_{2} q^{5} + ( - \beta_{2} + 3 \beta_1) q^{7} + (2 \beta_{3} + 3) q^{9} + (\beta_{2} + 5 \beta_1) q^{15} + ( - 2 \beta_{2} + 2 \beta_1) q^{21} + (3 \beta_{2} - \beta_1) q^{23} - 5 q^{25} + ( - 2 \beta_{3} - 10) q^{27} + 6 \beta_1 q^{29} + (3 \beta_{3} - 5) q^{35} + 2 \beta_{3} q^{41} + (\beta_{3} + 9) q^{43} + ( - 3 \beta_{2} - 10 \beta_1) q^{45} + ( - 3 \beta_{2} - 7 \beta_1) q^{47} + (6 \beta_{3} - 7) q^{49} - 6 \beta_{2} q^{61} + (3 \beta_{2} - \beta_1) q^{63} + ( - 5 \beta_{3} + 3) q^{67} + ( - 2 \beta_{2} - 14 \beta_1) q^{69} + (5 \beta_{3} + 5) q^{75} + (6 \beta_{3} + 11) q^{81} + (3 \beta_{3} + 11) q^{83} + ( - 6 \beta_{2} - 6 \beta_1) q^{87} + 6 q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} + 12 q^{9} - 20 q^{25} - 40 q^{27} - 20 q^{35} + 36 q^{43} - 28 q^{49} + 12 q^{67} + 20 q^{75} + 44 q^{81} + 44 q^{83} + 24 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
0.618034i
0.618034i
1.61803i
1.61803i
0 −3.23607 0 2.23607i 0 0.763932i 0 7.47214 0
129.2 0 −3.23607 0 2.23607i 0 0.763932i 0 7.47214 0
129.3 0 1.23607 0 2.23607i 0 5.23607i 0 −1.47214 0
129.4 0 1.23607 0 2.23607i 0 5.23607i 0 −1.47214 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
8.d odd 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.2.f.g 4
4.b odd 2 1 1280.2.f.h 4
5.b even 2 1 1280.2.f.h 4
8.b even 2 1 1280.2.f.h 4
8.d odd 2 1 inner 1280.2.f.g 4
16.e even 4 1 160.2.c.b 4
16.e even 4 1 320.2.c.d 4
16.f odd 4 1 160.2.c.b 4
16.f odd 4 1 320.2.c.d 4
20.d odd 2 1 CM 1280.2.f.g 4
40.e odd 2 1 1280.2.f.h 4
40.f even 2 1 inner 1280.2.f.g 4
48.i odd 4 1 1440.2.f.i 4
48.i odd 4 1 2880.2.f.w 4
48.k even 4 1 1440.2.f.i 4
48.k even 4 1 2880.2.f.w 4
80.i odd 4 1 800.2.a.n 2
80.i odd 4 1 1600.2.a.bd 2
80.j even 4 1 800.2.a.n 2
80.j even 4 1 1600.2.a.bd 2
80.k odd 4 1 160.2.c.b 4
80.k odd 4 1 320.2.c.d 4
80.q even 4 1 160.2.c.b 4
80.q even 4 1 320.2.c.d 4
80.s even 4 1 800.2.a.j 2
80.s even 4 1 1600.2.a.z 2
80.t odd 4 1 800.2.a.j 2
80.t odd 4 1 1600.2.a.z 2
240.t even 4 1 1440.2.f.i 4
240.t even 4 1 2880.2.f.w 4
240.z odd 4 1 7200.2.a.cb 2
240.bb even 4 1 7200.2.a.cr 2
240.bd odd 4 1 7200.2.a.cr 2
240.bf even 4 1 7200.2.a.cb 2
240.bm odd 4 1 1440.2.f.i 4
240.bm odd 4 1 2880.2.f.w 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.c.b 4 16.e even 4 1
160.2.c.b 4 16.f odd 4 1
160.2.c.b 4 80.k odd 4 1
160.2.c.b 4 80.q even 4 1
320.2.c.d 4 16.e even 4 1
320.2.c.d 4 16.f odd 4 1
320.2.c.d 4 80.k odd 4 1
320.2.c.d 4 80.q even 4 1
800.2.a.j 2 80.s even 4 1
800.2.a.j 2 80.t odd 4 1
800.2.a.n 2 80.i odd 4 1
800.2.a.n 2 80.j even 4 1
1280.2.f.g 4 1.a even 1 1 trivial
1280.2.f.g 4 8.d odd 2 1 inner
1280.2.f.g 4 20.d odd 2 1 CM
1280.2.f.g 4 40.f even 2 1 inner
1280.2.f.h 4 4.b odd 2 1
1280.2.f.h 4 5.b even 2 1
1280.2.f.h 4 8.b even 2 1
1280.2.f.h 4 40.e odd 2 1
1440.2.f.i 4 48.i odd 4 1
1440.2.f.i 4 48.k even 4 1
1440.2.f.i 4 240.t even 4 1
1440.2.f.i 4 240.bm odd 4 1
1600.2.a.z 2 80.s even 4 1
1600.2.a.z 2 80.t odd 4 1
1600.2.a.bd 2 80.i odd 4 1
1600.2.a.bd 2 80.j even 4 1
2880.2.f.w 4 48.i odd 4 1
2880.2.f.w 4 48.k even 4 1
2880.2.f.w 4 240.t even 4 1
2880.2.f.w 4 240.bm odd 4 1
7200.2.a.cb 2 240.z odd 4 1
7200.2.a.cb 2 240.bf even 4 1
7200.2.a.cr 2 240.bb even 4 1
7200.2.a.cr 2 240.bd odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1280, [\chi])\):

\( T_{3}^{2} + 2T_{3} - 4 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T - 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 28T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 92T^{2} + 1936 \) Copy content Toggle raw display
$29$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 18 T + 76)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 188T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 180)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T - 116)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 22 T + 76)^{2} \) Copy content Toggle raw display
$89$ \( (T - 6)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less