Properties

Label 1280.2.d.c
Level $1280$
Weight $2$
Character orbit 1280.d
Analytic conductor $10.221$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} - i q^{5} - 2 q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 i q^{3} - i q^{5} - 2 q^{7} - q^{9} - 2 i q^{13} + 2 q^{15} - 6 q^{17} + 4 i q^{19} - 4 i q^{21} - 6 q^{23} - q^{25} + 4 i q^{27} - 6 i q^{29} - 4 q^{31} + 2 i q^{35} + 2 i q^{37} + 4 q^{39} - 6 q^{41} - 10 i q^{43} + i q^{45} - 6 q^{47} - 3 q^{49} - 12 i q^{51} - 6 i q^{53} - 8 q^{57} + 12 i q^{59} - 2 i q^{61} + 2 q^{63} - 2 q^{65} - 2 i q^{67} - 12 i q^{69} + 12 q^{71} - 2 q^{73} - 2 i q^{75} + 8 q^{79} - 11 q^{81} - 6 i q^{83} + 6 i q^{85} + 12 q^{87} + 6 q^{89} + 4 i q^{91} - 8 i q^{93} + 4 q^{95} + 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{7} - 2 q^{9} + 4 q^{15} - 12 q^{17} - 12 q^{23} - 2 q^{25} - 8 q^{31} + 8 q^{39} - 12 q^{41} - 12 q^{47} - 6 q^{49} - 16 q^{57} + 4 q^{63} - 4 q^{65} + 24 q^{71} - 4 q^{73} + 16 q^{79} - 22 q^{81} + 24 q^{87} + 12 q^{89} + 8 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
641.1
1.00000i
1.00000i
0 2.00000i 0 1.00000i 0 −2.00000 0 −1.00000 0
641.2 0 2.00000i 0 1.00000i 0 −2.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.2.d.c 2
4.b odd 2 1 1280.2.d.g 2
8.b even 2 1 inner 1280.2.d.c 2
8.d odd 2 1 1280.2.d.g 2
16.e even 4 1 20.2.a.a 1
16.e even 4 1 320.2.a.f 1
16.f odd 4 1 80.2.a.b 1
16.f odd 4 1 320.2.a.a 1
48.i odd 4 1 180.2.a.a 1
48.i odd 4 1 2880.2.a.m 1
48.k even 4 1 720.2.a.h 1
48.k even 4 1 2880.2.a.f 1
80.i odd 4 1 100.2.c.a 2
80.i odd 4 1 1600.2.c.d 2
80.j even 4 1 400.2.c.b 2
80.j even 4 1 1600.2.c.e 2
80.k odd 4 1 400.2.a.c 1
80.k odd 4 1 1600.2.a.w 1
80.q even 4 1 100.2.a.a 1
80.q even 4 1 1600.2.a.c 1
80.s even 4 1 400.2.c.b 2
80.s even 4 1 1600.2.c.e 2
80.t odd 4 1 100.2.c.a 2
80.t odd 4 1 1600.2.c.d 2
112.j even 4 1 3920.2.a.h 1
112.l odd 4 1 980.2.a.h 1
112.w even 12 2 980.2.i.i 2
112.x odd 12 2 980.2.i.c 2
144.w odd 12 2 1620.2.i.b 2
144.x even 12 2 1620.2.i.h 2
176.i even 4 1 9680.2.a.ba 1
176.l odd 4 1 2420.2.a.a 1
208.m odd 4 1 3380.2.f.b 2
208.p even 4 1 3380.2.a.c 1
208.r odd 4 1 3380.2.f.b 2
240.t even 4 1 3600.2.a.be 1
240.z odd 4 1 3600.2.f.j 2
240.bb even 4 1 900.2.d.c 2
240.bd odd 4 1 3600.2.f.j 2
240.bf even 4 1 900.2.d.c 2
240.bm odd 4 1 900.2.a.b 1
272.j even 4 1 5780.2.c.a 2
272.r even 4 1 5780.2.a.f 1
272.s even 4 1 5780.2.c.a 2
304.j odd 4 1 7220.2.a.f 1
336.y even 4 1 8820.2.a.g 1
560.r even 4 1 4900.2.e.f 2
560.bf odd 4 1 4900.2.a.e 1
560.bn even 4 1 4900.2.e.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 16.e even 4 1
80.2.a.b 1 16.f odd 4 1
100.2.a.a 1 80.q even 4 1
100.2.c.a 2 80.i odd 4 1
100.2.c.a 2 80.t odd 4 1
180.2.a.a 1 48.i odd 4 1
320.2.a.a 1 16.f odd 4 1
320.2.a.f 1 16.e even 4 1
400.2.a.c 1 80.k odd 4 1
400.2.c.b 2 80.j even 4 1
400.2.c.b 2 80.s even 4 1
720.2.a.h 1 48.k even 4 1
900.2.a.b 1 240.bm odd 4 1
900.2.d.c 2 240.bb even 4 1
900.2.d.c 2 240.bf even 4 1
980.2.a.h 1 112.l odd 4 1
980.2.i.c 2 112.x odd 12 2
980.2.i.i 2 112.w even 12 2
1280.2.d.c 2 1.a even 1 1 trivial
1280.2.d.c 2 8.b even 2 1 inner
1280.2.d.g 2 4.b odd 2 1
1280.2.d.g 2 8.d odd 2 1
1600.2.a.c 1 80.q even 4 1
1600.2.a.w 1 80.k odd 4 1
1600.2.c.d 2 80.i odd 4 1
1600.2.c.d 2 80.t odd 4 1
1600.2.c.e 2 80.j even 4 1
1600.2.c.e 2 80.s even 4 1
1620.2.i.b 2 144.w odd 12 2
1620.2.i.h 2 144.x even 12 2
2420.2.a.a 1 176.l odd 4 1
2880.2.a.f 1 48.k even 4 1
2880.2.a.m 1 48.i odd 4 1
3380.2.a.c 1 208.p even 4 1
3380.2.f.b 2 208.m odd 4 1
3380.2.f.b 2 208.r odd 4 1
3600.2.a.be 1 240.t even 4 1
3600.2.f.j 2 240.z odd 4 1
3600.2.f.j 2 240.bd odd 4 1
3920.2.a.h 1 112.j even 4 1
4900.2.a.e 1 560.bf odd 4 1
4900.2.e.f 2 560.r even 4 1
4900.2.e.f 2 560.bn even 4 1
5780.2.a.f 1 272.r even 4 1
5780.2.c.a 2 272.j even 4 1
5780.2.c.a 2 272.s even 4 1
7220.2.a.f 1 304.j odd 4 1
8820.2.a.g 1 336.y even 4 1
9680.2.a.ba 1 176.i even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1280, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{31} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less