Properties

Label 1280.1.m.a
Level $1280$
Weight $1$
Character orbit 1280.m
Analytic conductor $0.639$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,1,Mod(897,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.897");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1280.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.2000.1
Artin image: $C_4\wr C_2$
Artin field: Galois closure of 8.0.2097152000.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{5} + i q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} + i q^{9} + (i - 1) q^{13} + (i - 1) q^{17} + q^{25} + (i + 1) q^{37} - i q^{45} + i q^{49} + (i - 1) q^{53} + ( - i + 1) q^{65} + ( - i - 1) q^{73} - q^{81} + ( - i + 1) q^{85} + ( - i + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 2 q^{13} - 2 q^{17} + 2 q^{25} + 2 q^{37} - 2 q^{53} + 2 q^{65} - 2 q^{73} - 2 q^{81} + 2 q^{85} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-i\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
897.1
1.00000i
1.00000i
0 0 0 −1.00000 0 0 0 1.00000i 0
1153.1 0 0 0 −1.00000 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
40.i odd 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.1.m.a 2
4.b odd 2 1 CM 1280.1.m.a 2
5.c odd 4 1 1280.1.m.b 2
8.b even 2 1 1280.1.m.b 2
8.d odd 2 1 1280.1.m.b 2
16.e even 4 1 160.1.p.a 2
16.e even 4 1 320.1.p.a 2
16.f odd 4 1 160.1.p.a 2
16.f odd 4 1 320.1.p.a 2
20.e even 4 1 1280.1.m.b 2
40.i odd 4 1 inner 1280.1.m.a 2
40.k even 4 1 inner 1280.1.m.a 2
48.i odd 4 1 1440.1.bh.b 2
48.i odd 4 1 2880.1.bh.b 2
48.k even 4 1 1440.1.bh.b 2
48.k even 4 1 2880.1.bh.b 2
80.i odd 4 1 320.1.p.a 2
80.i odd 4 1 800.1.p.b 2
80.j even 4 1 160.1.p.a 2
80.j even 4 1 1600.1.p.b 2
80.k odd 4 1 800.1.p.b 2
80.k odd 4 1 1600.1.p.b 2
80.q even 4 1 800.1.p.b 2
80.q even 4 1 1600.1.p.b 2
80.s even 4 1 320.1.p.a 2
80.s even 4 1 800.1.p.b 2
80.t odd 4 1 160.1.p.a 2
80.t odd 4 1 1600.1.p.b 2
240.z odd 4 1 2880.1.bh.b 2
240.bb even 4 1 2880.1.bh.b 2
240.bd odd 4 1 1440.1.bh.b 2
240.bf even 4 1 1440.1.bh.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.1.p.a 2 16.e even 4 1
160.1.p.a 2 16.f odd 4 1
160.1.p.a 2 80.j even 4 1
160.1.p.a 2 80.t odd 4 1
320.1.p.a 2 16.e even 4 1
320.1.p.a 2 16.f odd 4 1
320.1.p.a 2 80.i odd 4 1
320.1.p.a 2 80.s even 4 1
800.1.p.b 2 80.i odd 4 1
800.1.p.b 2 80.k odd 4 1
800.1.p.b 2 80.q even 4 1
800.1.p.b 2 80.s even 4 1
1280.1.m.a 2 1.a even 1 1 trivial
1280.1.m.a 2 4.b odd 2 1 CM
1280.1.m.a 2 40.i odd 4 1 inner
1280.1.m.a 2 40.k even 4 1 inner
1280.1.m.b 2 5.c odd 4 1
1280.1.m.b 2 8.b even 2 1
1280.1.m.b 2 8.d odd 2 1
1280.1.m.b 2 20.e even 4 1
1440.1.bh.b 2 48.i odd 4 1
1440.1.bh.b 2 48.k even 4 1
1440.1.bh.b 2 240.bd odd 4 1
1440.1.bh.b 2 240.bf even 4 1
1600.1.p.b 2 80.j even 4 1
1600.1.p.b 2 80.k odd 4 1
1600.1.p.b 2 80.q even 4 1
1600.1.p.b 2 80.t odd 4 1
2880.1.bh.b 2 48.i odd 4 1
2880.1.bh.b 2 48.k even 4 1
2880.1.bh.b 2 240.z odd 4 1
2880.1.bh.b 2 240.bb even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{2} + 2T_{13} + 2 \) acting on \(S_{1}^{\mathrm{new}}(1280, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
show more
show less