Defining parameters
| Level: | \( N \) | \(=\) | \( 128 = 2^{7} \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 128.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(128\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(128, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 28 | 92 |
| Cusp forms | 104 | 28 | 76 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(128, [\chi])\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(128, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(128, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)