Properties

Label 128.2.g.a
Level $128$
Weight $2$
Character orbit 128.g
Analytic conductor $1.022$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 128.g (of order \(8\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.02208514587\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{8} - \zeta_{8}^{2} ) q^{3} + ( -1 - \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} + ( -1 + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{8} - \zeta_{8}^{2} ) q^{3} + ( -1 - \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} + ( -1 + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{9} + ( 2 - 2 \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{11} + ( 1 - \zeta_{8}^{3} ) q^{13} + ( 3 \zeta_{8} + 2 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{15} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{17} + ( 2 + 3 \zeta_{8} - 3 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{19} + ( -1 + \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{21} + ( -3 + 3 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{23} + ( 1 + 5 \zeta_{8} + \zeta_{8}^{2} ) q^{25} + ( -3 - 3 \zeta_{8} + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{27} + ( -1 + 2 \zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{29} + 4 q^{31} + ( 2 - \zeta_{8} + \zeta_{8}^{3} ) q^{33} + ( -1 + 3 \zeta_{8} + 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{35} + ( 1 + \zeta_{8} ) q^{37} + ( -1 - 2 \zeta_{8} - \zeta_{8}^{2} ) q^{39} + ( -3 + 3 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{41} + ( -4 + 4 \zeta_{8} + 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{43} + ( 2 - 3 \zeta_{8} + 3 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{45} + ( -4 \zeta_{8} - 6 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{47} -5 \zeta_{8}^{2} q^{49} + ( -2 - 2 \zeta_{8} + 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{51} + ( 1 - \zeta_{8} - 4 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{53} + ( 5 - 5 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{55} + ( -5 - 4 \zeta_{8} - 5 \zeta_{8}^{2} ) q^{57} + ( 4 + 4 \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{59} + ( 1 + \zeta_{8}^{3} ) q^{61} + ( 2 - \zeta_{8} + \zeta_{8}^{3} ) q^{63} + ( -2 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{65} + ( 2 - 3 \zeta_{8} - 3 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{67} + ( -1 - \zeta_{8} + 3 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{69} + ( 3 - 4 \zeta_{8} + 3 \zeta_{8}^{2} ) q^{71} + ( 7 - 7 \zeta_{8}^{2} ) q^{73} + ( 1 - \zeta_{8} - 6 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{75} + ( -1 + 3 \zeta_{8} - 3 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{77} + 6 \zeta_{8}^{2} q^{79} + ( 5 \zeta_{8} + 3 \zeta_{8}^{2} + 5 \zeta_{8}^{3} ) q^{81} + ( -4 + \zeta_{8} - \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{83} + ( 2 - 2 \zeta_{8} + 6 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{85} + ( 1 - \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{87} + ( 3 - 8 \zeta_{8} + 3 \zeta_{8}^{2} ) q^{89} + ( -1 - \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{91} + ( -4 \zeta_{8} - 4 \zeta_{8}^{2} ) q^{93} + ( -16 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{95} + ( -10 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{97} + ( -5 + 2 \zeta_{8} + 2 \zeta_{8}^{2} - 5 \zeta_{8}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{7} - 4 q^{9} + O(q^{10}) \) \( 4 q - 4 q^{5} - 4 q^{7} - 4 q^{9} + 8 q^{11} + 4 q^{13} + 8 q^{19} - 4 q^{21} - 12 q^{23} + 4 q^{25} - 12 q^{27} - 4 q^{29} + 16 q^{31} + 8 q^{33} - 4 q^{35} + 4 q^{37} - 4 q^{39} - 12 q^{41} - 16 q^{43} + 8 q^{45} - 8 q^{51} + 4 q^{53} + 20 q^{55} - 20 q^{57} + 16 q^{59} + 4 q^{61} + 8 q^{63} - 8 q^{65} + 8 q^{67} - 4 q^{69} + 12 q^{71} + 28 q^{73} + 4 q^{75} - 4 q^{77} - 16 q^{83} + 8 q^{85} + 4 q^{87} + 12 q^{89} - 4 q^{91} - 64 q^{95} - 40 q^{97} - 20 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/128\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(127\)
\(\chi(n)\) \(\zeta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 −0.707107 + 1.70711i 0 −3.12132 + 1.29289i 0 −1.00000 + 1.00000i 0 −0.292893 0.292893i 0
49.1 0 0.707107 0.292893i 0 1.12132 2.70711i 0 −1.00000 1.00000i 0 −1.70711 + 1.70711i 0
81.1 0 0.707107 + 0.292893i 0 1.12132 + 2.70711i 0 −1.00000 + 1.00000i 0 −1.70711 1.70711i 0
113.1 0 −0.707107 1.70711i 0 −3.12132 1.29289i 0 −1.00000 1.00000i 0 −0.292893 + 0.292893i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
32.g even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 128.2.g.a 4
3.b odd 2 1 1152.2.v.a 4
4.b odd 2 1 32.2.g.a 4
8.b even 2 1 256.2.g.a 4
8.d odd 2 1 256.2.g.b 4
12.b even 2 1 288.2.v.a 4
16.e even 4 1 512.2.g.b 4
16.e even 4 1 512.2.g.c 4
16.f odd 4 1 512.2.g.a 4
16.f odd 4 1 512.2.g.d 4
20.d odd 2 1 800.2.y.a 4
20.e even 4 1 800.2.ba.a 4
20.e even 4 1 800.2.ba.b 4
32.g even 8 1 inner 128.2.g.a 4
32.g even 8 1 256.2.g.a 4
32.g even 8 1 512.2.g.b 4
32.g even 8 1 512.2.g.c 4
32.h odd 8 1 32.2.g.a 4
32.h odd 8 1 256.2.g.b 4
32.h odd 8 1 512.2.g.a 4
32.h odd 8 1 512.2.g.d 4
64.i even 16 2 4096.2.a.f 4
64.j odd 16 2 4096.2.a.e 4
96.o even 8 1 288.2.v.a 4
96.p odd 8 1 1152.2.v.a 4
160.u even 8 1 800.2.ba.a 4
160.y odd 8 1 800.2.y.a 4
160.ba even 8 1 800.2.ba.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.2.g.a 4 4.b odd 2 1
32.2.g.a 4 32.h odd 8 1
128.2.g.a 4 1.a even 1 1 trivial
128.2.g.a 4 32.g even 8 1 inner
256.2.g.a 4 8.b even 2 1
256.2.g.a 4 32.g even 8 1
256.2.g.b 4 8.d odd 2 1
256.2.g.b 4 32.h odd 8 1
288.2.v.a 4 12.b even 2 1
288.2.v.a 4 96.o even 8 1
512.2.g.a 4 16.f odd 4 1
512.2.g.a 4 32.h odd 8 1
512.2.g.b 4 16.e even 4 1
512.2.g.b 4 32.g even 8 1
512.2.g.c 4 16.e even 4 1
512.2.g.c 4 32.g even 8 1
512.2.g.d 4 16.f odd 4 1
512.2.g.d 4 32.h odd 8 1
800.2.y.a 4 20.d odd 2 1
800.2.y.a 4 160.y odd 8 1
800.2.ba.a 4 20.e even 4 1
800.2.ba.a 4 160.u even 8 1
800.2.ba.b 4 20.e even 4 1
800.2.ba.b 4 160.ba even 8 1
1152.2.v.a 4 3.b odd 2 1
1152.2.v.a 4 96.p odd 8 1
4096.2.a.e 4 64.j odd 16 2
4096.2.a.f 4 64.i even 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2 T_{3}^{2} - 4 T_{3} + 2 \) acting on \(S_{2}^{\mathrm{new}}(128, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 2 - 4 T + 2 T^{2} + T^{4} \)
$5$ \( 98 + 28 T + 6 T^{2} + 4 T^{3} + T^{4} \)
$7$ \( ( 2 + 2 T + T^{2} )^{2} \)
$11$ \( 2 + 4 T + 18 T^{2} - 8 T^{3} + T^{4} \)
$13$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$17$ \( ( 8 + T^{2} )^{2} \)
$19$ \( 578 - 68 T + 18 T^{2} - 8 T^{3} + T^{4} \)
$23$ \( 4 + 24 T + 72 T^{2} + 12 T^{3} + T^{4} \)
$29$ \( 98 + 28 T + 6 T^{2} + 4 T^{3} + T^{4} \)
$31$ \( ( -4 + T )^{4} \)
$37$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$41$ \( 4 + 24 T + 72 T^{2} + 12 T^{3} + T^{4} \)
$43$ \( 1922 + 868 T + 162 T^{2} + 16 T^{3} + T^{4} \)
$47$ \( 16 + 136 T^{2} + T^{4} \)
$53$ \( 98 + 140 T + 54 T^{2} - 4 T^{3} + T^{4} \)
$59$ \( 1058 - 460 T + 114 T^{2} - 16 T^{3} + T^{4} \)
$61$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$67$ \( 578 - 68 T + 18 T^{2} - 8 T^{3} + T^{4} \)
$71$ \( 4 - 24 T + 72 T^{2} - 12 T^{3} + T^{4} \)
$73$ \( ( 98 - 14 T + T^{2} )^{2} \)
$79$ \( ( 36 + T^{2} )^{2} \)
$83$ \( 1058 + 460 T + 114 T^{2} + 16 T^{3} + T^{4} \)
$89$ \( 2116 + 552 T + 72 T^{2} - 12 T^{3} + T^{4} \)
$97$ \( ( 28 + 20 T + T^{2} )^{2} \)
show more
show less