Properties

Label 1275.4.a.q.1.1
Level $1275$
Weight $4$
Character 1275.1
Self dual yes
Analytic conductor $75.227$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.75985\) of defining polynomial
Character \(\chi\) \(=\) 1275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.75985 q^{2} -3.00000 q^{3} +14.6562 q^{4} +14.2795 q^{6} +31.5852 q^{7} -31.6823 q^{8} +9.00000 q^{9} -7.18910 q^{11} -43.9685 q^{12} -84.3331 q^{13} -150.341 q^{14} +33.5537 q^{16} -17.0000 q^{17} -42.8386 q^{18} -37.0838 q^{19} -94.7557 q^{21} +34.2190 q^{22} -150.218 q^{23} +95.0469 q^{24} +401.413 q^{26} -27.0000 q^{27} +462.918 q^{28} -11.5846 q^{29} -53.2865 q^{31} +93.7478 q^{32} +21.5673 q^{33} +80.9174 q^{34} +131.905 q^{36} +99.2134 q^{37} +176.513 q^{38} +252.999 q^{39} +118.249 q^{41} +451.023 q^{42} +456.016 q^{43} -105.365 q^{44} +715.014 q^{46} -571.014 q^{47} -100.661 q^{48} +654.627 q^{49} +51.0000 q^{51} -1236.00 q^{52} -462.867 q^{53} +128.516 q^{54} -1000.69 q^{56} +111.251 q^{57} +55.1407 q^{58} +48.0674 q^{59} +59.5236 q^{61} +253.636 q^{62} +284.267 q^{63} -714.655 q^{64} -102.657 q^{66} +740.787 q^{67} -249.155 q^{68} +450.653 q^{69} -930.437 q^{71} -285.141 q^{72} +697.419 q^{73} -472.241 q^{74} -543.506 q^{76} -227.070 q^{77} -1204.24 q^{78} +1036.04 q^{79} +81.0000 q^{81} -562.849 q^{82} +22.2043 q^{83} -1388.75 q^{84} -2170.57 q^{86} +34.7537 q^{87} +227.767 q^{88} -369.726 q^{89} -2663.68 q^{91} -2201.62 q^{92} +159.860 q^{93} +2717.94 q^{94} -281.244 q^{96} -1139.56 q^{97} -3115.93 q^{98} -64.7019 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{2} - 9 q^{3} + 13 q^{4} + 15 q^{6} + 8 q^{7} - 33 q^{8} + 27 q^{9} + 34 q^{11} - 39 q^{12} - 36 q^{13} - 104 q^{14} - 79 q^{16} - 51 q^{17} - 45 q^{18} - 142 q^{19} - 24 q^{21} + 248 q^{22} - 110 q^{23}+ \cdots + 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.75985 −1.68286 −0.841430 0.540366i \(-0.818286\pi\)
−0.841430 + 0.540366i \(0.818286\pi\)
\(3\) −3.00000 −0.577350
\(4\) 14.6562 1.83202
\(5\) 0 0
\(6\) 14.2795 0.971600
\(7\) 31.5852 1.70544 0.852721 0.522366i \(-0.174951\pi\)
0.852721 + 0.522366i \(0.174951\pi\)
\(8\) −31.6823 −1.40017
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −7.18910 −0.197054 −0.0985271 0.995134i \(-0.531413\pi\)
−0.0985271 + 0.995134i \(0.531413\pi\)
\(12\) −43.9685 −1.05772
\(13\) −84.3331 −1.79921 −0.899607 0.436700i \(-0.856147\pi\)
−0.899607 + 0.436700i \(0.856147\pi\)
\(14\) −150.341 −2.87002
\(15\) 0 0
\(16\) 33.5537 0.524277
\(17\) −17.0000 −0.242536
\(18\) −42.8386 −0.560954
\(19\) −37.0838 −0.447769 −0.223885 0.974616i \(-0.571874\pi\)
−0.223885 + 0.974616i \(0.571874\pi\)
\(20\) 0 0
\(21\) −94.7557 −0.984638
\(22\) 34.2190 0.331615
\(23\) −150.218 −1.36185 −0.680925 0.732353i \(-0.738422\pi\)
−0.680925 + 0.732353i \(0.738422\pi\)
\(24\) 95.0469 0.808390
\(25\) 0 0
\(26\) 401.413 3.02783
\(27\) −27.0000 −0.192450
\(28\) 462.918 3.12440
\(29\) −11.5846 −0.0741792 −0.0370896 0.999312i \(-0.511809\pi\)
−0.0370896 + 0.999312i \(0.511809\pi\)
\(30\) 0 0
\(31\) −53.2865 −0.308727 −0.154364 0.988014i \(-0.549333\pi\)
−0.154364 + 0.988014i \(0.549333\pi\)
\(32\) 93.7478 0.517889
\(33\) 21.5673 0.113769
\(34\) 80.9174 0.408154
\(35\) 0 0
\(36\) 131.905 0.610673
\(37\) 99.2134 0.440827 0.220413 0.975407i \(-0.429259\pi\)
0.220413 + 0.975407i \(0.429259\pi\)
\(38\) 176.513 0.753533
\(39\) 252.999 1.03878
\(40\) 0 0
\(41\) 118.249 0.450425 0.225213 0.974310i \(-0.427692\pi\)
0.225213 + 0.974310i \(0.427692\pi\)
\(42\) 451.023 1.65701
\(43\) 456.016 1.61725 0.808626 0.588323i \(-0.200211\pi\)
0.808626 + 0.588323i \(0.200211\pi\)
\(44\) −105.365 −0.361007
\(45\) 0 0
\(46\) 715.014 2.29180
\(47\) −571.014 −1.77215 −0.886073 0.463545i \(-0.846577\pi\)
−0.886073 + 0.463545i \(0.846577\pi\)
\(48\) −100.661 −0.302691
\(49\) 654.627 1.90853
\(50\) 0 0
\(51\) 51.0000 0.140028
\(52\) −1236.00 −3.29620
\(53\) −462.867 −1.19962 −0.599809 0.800143i \(-0.704757\pi\)
−0.599809 + 0.800143i \(0.704757\pi\)
\(54\) 128.516 0.323867
\(55\) 0 0
\(56\) −1000.69 −2.38792
\(57\) 111.251 0.258520
\(58\) 55.1407 0.124833
\(59\) 48.0674 0.106065 0.0530325 0.998593i \(-0.483111\pi\)
0.0530325 + 0.998593i \(0.483111\pi\)
\(60\) 0 0
\(61\) 59.5236 0.124938 0.0624689 0.998047i \(-0.480103\pi\)
0.0624689 + 0.998047i \(0.480103\pi\)
\(62\) 253.636 0.519545
\(63\) 284.267 0.568481
\(64\) −714.655 −1.39581
\(65\) 0 0
\(66\) −102.657 −0.191458
\(67\) 740.787 1.35077 0.675384 0.737466i \(-0.263978\pi\)
0.675384 + 0.737466i \(0.263978\pi\)
\(68\) −249.155 −0.444330
\(69\) 450.653 0.786265
\(70\) 0 0
\(71\) −930.437 −1.55525 −0.777623 0.628730i \(-0.783575\pi\)
−0.777623 + 0.628730i \(0.783575\pi\)
\(72\) −285.141 −0.466724
\(73\) 697.419 1.11817 0.559087 0.829109i \(-0.311152\pi\)
0.559087 + 0.829109i \(0.311152\pi\)
\(74\) −472.241 −0.741850
\(75\) 0 0
\(76\) −543.506 −0.820322
\(77\) −227.070 −0.336065
\(78\) −1204.24 −1.74812
\(79\) 1036.04 1.47549 0.737747 0.675077i \(-0.235890\pi\)
0.737747 + 0.675077i \(0.235890\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −562.849 −0.758003
\(83\) 22.2043 0.0293643 0.0146822 0.999892i \(-0.495326\pi\)
0.0146822 + 0.999892i \(0.495326\pi\)
\(84\) −1388.75 −1.80388
\(85\) 0 0
\(86\) −2170.57 −2.72161
\(87\) 34.7537 0.0428274
\(88\) 227.767 0.275910
\(89\) −369.726 −0.440346 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(90\) 0 0
\(91\) −2663.68 −3.06846
\(92\) −2201.62 −2.49494
\(93\) 159.860 0.178244
\(94\) 2717.94 2.98228
\(95\) 0 0
\(96\) −281.244 −0.299003
\(97\) −1139.56 −1.19283 −0.596415 0.802676i \(-0.703409\pi\)
−0.596415 + 0.802676i \(0.703409\pi\)
\(98\) −3115.93 −3.21180
\(99\) −64.7019 −0.0656847
\(100\) 0 0
\(101\) 703.083 0.692667 0.346334 0.938111i \(-0.387427\pi\)
0.346334 + 0.938111i \(0.387427\pi\)
\(102\) −242.752 −0.235648
\(103\) 897.160 0.858250 0.429125 0.903245i \(-0.358822\pi\)
0.429125 + 0.903245i \(0.358822\pi\)
\(104\) 2671.87 2.51921
\(105\) 0 0
\(106\) 2203.18 2.01879
\(107\) 1901.21 1.71773 0.858864 0.512203i \(-0.171171\pi\)
0.858864 + 0.512203i \(0.171171\pi\)
\(108\) −395.716 −0.352572
\(109\) 584.555 0.513671 0.256836 0.966455i \(-0.417320\pi\)
0.256836 + 0.966455i \(0.417320\pi\)
\(110\) 0 0
\(111\) −297.640 −0.254511
\(112\) 1059.80 0.894124
\(113\) 63.4225 0.0527990 0.0263995 0.999651i \(-0.491596\pi\)
0.0263995 + 0.999651i \(0.491596\pi\)
\(114\) −529.540 −0.435052
\(115\) 0 0
\(116\) −169.785 −0.135898
\(117\) −758.998 −0.599738
\(118\) −228.793 −0.178493
\(119\) −536.949 −0.413631
\(120\) 0 0
\(121\) −1279.32 −0.961170
\(122\) −283.323 −0.210253
\(123\) −354.748 −0.260053
\(124\) −780.976 −0.565594
\(125\) 0 0
\(126\) −1353.07 −0.956674
\(127\) −175.543 −0.122653 −0.0613266 0.998118i \(-0.519533\pi\)
−0.0613266 + 0.998118i \(0.519533\pi\)
\(128\) 2651.67 1.83107
\(129\) −1368.05 −0.933721
\(130\) 0 0
\(131\) 1865.42 1.24414 0.622070 0.782961i \(-0.286292\pi\)
0.622070 + 0.782961i \(0.286292\pi\)
\(132\) 316.094 0.208428
\(133\) −1171.30 −0.763644
\(134\) −3526.03 −2.27315
\(135\) 0 0
\(136\) 538.599 0.339592
\(137\) −1057.57 −0.659519 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(138\) −2145.04 −1.32317
\(139\) 904.833 0.552136 0.276068 0.961138i \(-0.410968\pi\)
0.276068 + 0.961138i \(0.410968\pi\)
\(140\) 0 0
\(141\) 1713.04 1.02315
\(142\) 4428.74 2.61726
\(143\) 606.279 0.354543
\(144\) 301.983 0.174759
\(145\) 0 0
\(146\) −3319.61 −1.88173
\(147\) −1963.88 −1.10189
\(148\) 1454.09 0.807603
\(149\) 809.001 0.444805 0.222402 0.974955i \(-0.428610\pi\)
0.222402 + 0.974955i \(0.428610\pi\)
\(150\) 0 0
\(151\) −352.121 −0.189769 −0.0948847 0.995488i \(-0.530248\pi\)
−0.0948847 + 0.995488i \(0.530248\pi\)
\(152\) 1174.90 0.626954
\(153\) −153.000 −0.0808452
\(154\) 1080.82 0.565550
\(155\) 0 0
\(156\) 3708.00 1.90306
\(157\) −537.882 −0.273424 −0.136712 0.990611i \(-0.543654\pi\)
−0.136712 + 0.990611i \(0.543654\pi\)
\(158\) −4931.41 −2.48305
\(159\) 1388.60 0.692599
\(160\) 0 0
\(161\) −4744.66 −2.32256
\(162\) −385.548 −0.186985
\(163\) −1922.74 −0.923933 −0.461966 0.886897i \(-0.652856\pi\)
−0.461966 + 0.886897i \(0.652856\pi\)
\(164\) 1733.08 0.825188
\(165\) 0 0
\(166\) −105.689 −0.0494160
\(167\) 2971.76 1.37702 0.688509 0.725228i \(-0.258266\pi\)
0.688509 + 0.725228i \(0.258266\pi\)
\(168\) 3002.08 1.37866
\(169\) 4915.07 2.23717
\(170\) 0 0
\(171\) −333.754 −0.149256
\(172\) 6683.45 2.96284
\(173\) −988.564 −0.434446 −0.217223 0.976122i \(-0.569700\pi\)
−0.217223 + 0.976122i \(0.569700\pi\)
\(174\) −165.422 −0.0720725
\(175\) 0 0
\(176\) −241.221 −0.103311
\(177\) −144.202 −0.0612367
\(178\) 1759.84 0.741042
\(179\) −1937.65 −0.809089 −0.404545 0.914518i \(-0.632570\pi\)
−0.404545 + 0.914518i \(0.632570\pi\)
\(180\) 0 0
\(181\) −2180.07 −0.895267 −0.447634 0.894217i \(-0.647733\pi\)
−0.447634 + 0.894217i \(0.647733\pi\)
\(182\) 12678.7 5.16379
\(183\) −178.571 −0.0721329
\(184\) 4759.24 1.90683
\(185\) 0 0
\(186\) −760.907 −0.299959
\(187\) 122.215 0.0477927
\(188\) −8368.86 −3.24661
\(189\) −852.801 −0.328213
\(190\) 0 0
\(191\) 1675.78 0.634845 0.317423 0.948284i \(-0.397183\pi\)
0.317423 + 0.948284i \(0.397183\pi\)
\(192\) 2143.97 0.805872
\(193\) 257.961 0.0962094 0.0481047 0.998842i \(-0.484682\pi\)
0.0481047 + 0.998842i \(0.484682\pi\)
\(194\) 5424.12 2.00737
\(195\) 0 0
\(196\) 9594.32 3.49647
\(197\) 693.466 0.250799 0.125399 0.992106i \(-0.459979\pi\)
0.125399 + 0.992106i \(0.459979\pi\)
\(198\) 307.971 0.110538
\(199\) −240.295 −0.0855984 −0.0427992 0.999084i \(-0.513628\pi\)
−0.0427992 + 0.999084i \(0.513628\pi\)
\(200\) 0 0
\(201\) −2222.36 −0.779866
\(202\) −3346.57 −1.16566
\(203\) −365.901 −0.126508
\(204\) 747.464 0.256534
\(205\) 0 0
\(206\) −4270.34 −1.44432
\(207\) −1351.96 −0.453950
\(208\) −2829.69 −0.943287
\(209\) 266.599 0.0882348
\(210\) 0 0
\(211\) 268.114 0.0874774 0.0437387 0.999043i \(-0.486073\pi\)
0.0437387 + 0.999043i \(0.486073\pi\)
\(212\) −6783.86 −2.19772
\(213\) 2791.31 0.897922
\(214\) −9049.47 −2.89070
\(215\) 0 0
\(216\) 855.422 0.269463
\(217\) −1683.07 −0.526516
\(218\) −2782.39 −0.864437
\(219\) −2092.26 −0.645578
\(220\) 0 0
\(221\) 1433.66 0.436374
\(222\) 1416.72 0.428307
\(223\) 5524.43 1.65894 0.829468 0.558554i \(-0.188643\pi\)
0.829468 + 0.558554i \(0.188643\pi\)
\(224\) 2961.05 0.883229
\(225\) 0 0
\(226\) −301.882 −0.0888534
\(227\) 384.400 0.112394 0.0561972 0.998420i \(-0.482102\pi\)
0.0561972 + 0.998420i \(0.482102\pi\)
\(228\) 1630.52 0.473613
\(229\) 1395.48 0.402690 0.201345 0.979520i \(-0.435469\pi\)
0.201345 + 0.979520i \(0.435469\pi\)
\(230\) 0 0
\(231\) 681.209 0.194027
\(232\) 367.025 0.103864
\(233\) −3409.39 −0.958613 −0.479307 0.877648i \(-0.659112\pi\)
−0.479307 + 0.877648i \(0.659112\pi\)
\(234\) 3612.71 1.00928
\(235\) 0 0
\(236\) 704.483 0.194313
\(237\) −3108.13 −0.851877
\(238\) 2555.80 0.696083
\(239\) −1509.18 −0.408456 −0.204228 0.978923i \(-0.565468\pi\)
−0.204228 + 0.978923i \(0.565468\pi\)
\(240\) 0 0
\(241\) 3406.91 0.910615 0.455307 0.890334i \(-0.349529\pi\)
0.455307 + 0.890334i \(0.349529\pi\)
\(242\) 6089.35 1.61751
\(243\) −243.000 −0.0641500
\(244\) 872.387 0.228889
\(245\) 0 0
\(246\) 1688.55 0.437633
\(247\) 3127.39 0.805633
\(248\) 1688.24 0.432271
\(249\) −66.6129 −0.0169535
\(250\) 0 0
\(251\) 3394.43 0.853605 0.426802 0.904345i \(-0.359640\pi\)
0.426802 + 0.904345i \(0.359640\pi\)
\(252\) 4166.26 1.04147
\(253\) 1079.93 0.268358
\(254\) 835.560 0.206408
\(255\) 0 0
\(256\) −6904.30 −1.68562
\(257\) −1778.91 −0.431772 −0.215886 0.976419i \(-0.569264\pi\)
−0.215886 + 0.976419i \(0.569264\pi\)
\(258\) 6511.71 1.57132
\(259\) 3133.68 0.751804
\(260\) 0 0
\(261\) −104.261 −0.0247264
\(262\) −8879.11 −2.09372
\(263\) 4316.88 1.01213 0.506065 0.862495i \(-0.331100\pi\)
0.506065 + 0.862495i \(0.331100\pi\)
\(264\) −683.302 −0.159297
\(265\) 0 0
\(266\) 5575.22 1.28511
\(267\) 1109.18 0.254234
\(268\) 10857.1 2.47463
\(269\) 6546.31 1.48378 0.741888 0.670524i \(-0.233931\pi\)
0.741888 + 0.670524i \(0.233931\pi\)
\(270\) 0 0
\(271\) 3785.20 0.848466 0.424233 0.905553i \(-0.360544\pi\)
0.424233 + 0.905553i \(0.360544\pi\)
\(272\) −570.413 −0.127156
\(273\) 7991.04 1.77157
\(274\) 5033.86 1.10988
\(275\) 0 0
\(276\) 6604.85 1.44045
\(277\) 3521.06 0.763755 0.381878 0.924213i \(-0.375278\pi\)
0.381878 + 0.924213i \(0.375278\pi\)
\(278\) −4306.87 −0.929168
\(279\) −479.579 −0.102909
\(280\) 0 0
\(281\) −2922.30 −0.620391 −0.310195 0.950673i \(-0.600394\pi\)
−0.310195 + 0.950673i \(0.600394\pi\)
\(282\) −8153.81 −1.72182
\(283\) −735.075 −0.154402 −0.0772008 0.997016i \(-0.524598\pi\)
−0.0772008 + 0.997016i \(0.524598\pi\)
\(284\) −13636.6 −2.84924
\(285\) 0 0
\(286\) −2885.80 −0.596646
\(287\) 3734.93 0.768175
\(288\) 843.731 0.172630
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 3418.67 0.688681
\(292\) 10221.5 2.04852
\(293\) 8702.92 1.73526 0.867628 0.497213i \(-0.165643\pi\)
0.867628 + 0.497213i \(0.165643\pi\)
\(294\) 9347.78 1.85433
\(295\) 0 0
\(296\) −3143.31 −0.617234
\(297\) 194.106 0.0379231
\(298\) −3850.72 −0.748545
\(299\) 12668.3 2.45026
\(300\) 0 0
\(301\) 14403.4 2.75813
\(302\) 1676.04 0.319355
\(303\) −2109.25 −0.399912
\(304\) −1244.30 −0.234755
\(305\) 0 0
\(306\) 728.257 0.136051
\(307\) −2516.95 −0.467916 −0.233958 0.972247i \(-0.575168\pi\)
−0.233958 + 0.972247i \(0.575168\pi\)
\(308\) −3327.97 −0.615677
\(309\) −2691.48 −0.495511
\(310\) 0 0
\(311\) 6593.31 1.20216 0.601081 0.799188i \(-0.294737\pi\)
0.601081 + 0.799188i \(0.294737\pi\)
\(312\) −8015.60 −1.45447
\(313\) −4392.99 −0.793312 −0.396656 0.917967i \(-0.629829\pi\)
−0.396656 + 0.917967i \(0.629829\pi\)
\(314\) 2560.24 0.460135
\(315\) 0 0
\(316\) 15184.4 2.70314
\(317\) −2601.23 −0.460882 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(318\) −6609.54 −1.16555
\(319\) 83.2825 0.0146173
\(320\) 0 0
\(321\) −5703.63 −0.991731
\(322\) 22583.9 3.90854
\(323\) 630.425 0.108600
\(324\) 1187.15 0.203558
\(325\) 0 0
\(326\) 9151.97 1.55485
\(327\) −1753.66 −0.296568
\(328\) −3746.41 −0.630674
\(329\) −18035.6 −3.02229
\(330\) 0 0
\(331\) −4670.49 −0.775568 −0.387784 0.921750i \(-0.626759\pi\)
−0.387784 + 0.921750i \(0.626759\pi\)
\(332\) 325.430 0.0537960
\(333\) 892.921 0.146942
\(334\) −14145.1 −2.31733
\(335\) 0 0
\(336\) −3179.41 −0.516223
\(337\) −1801.67 −0.291226 −0.145613 0.989342i \(-0.546515\pi\)
−0.145613 + 0.989342i \(0.546515\pi\)
\(338\) −23395.0 −3.76485
\(339\) −190.268 −0.0304835
\(340\) 0 0
\(341\) 383.082 0.0608360
\(342\) 1588.62 0.251178
\(343\) 9842.83 1.54945
\(344\) −14447.7 −2.26443
\(345\) 0 0
\(346\) 4705.41 0.731112
\(347\) −168.340 −0.0260431 −0.0130216 0.999915i \(-0.504145\pi\)
−0.0130216 + 0.999915i \(0.504145\pi\)
\(348\) 509.355 0.0784606
\(349\) −4447.85 −0.682200 −0.341100 0.940027i \(-0.610799\pi\)
−0.341100 + 0.940027i \(0.610799\pi\)
\(350\) 0 0
\(351\) 2276.99 0.346259
\(352\) −673.963 −0.102052
\(353\) 10509.5 1.58460 0.792298 0.610135i \(-0.208885\pi\)
0.792298 + 0.610135i \(0.208885\pi\)
\(354\) 686.380 0.103053
\(355\) 0 0
\(356\) −5418.76 −0.806723
\(357\) 1610.85 0.238810
\(358\) 9222.93 1.36158
\(359\) 8342.99 1.22654 0.613268 0.789875i \(-0.289855\pi\)
0.613268 + 0.789875i \(0.289855\pi\)
\(360\) 0 0
\(361\) −5483.79 −0.799503
\(362\) 10376.8 1.50661
\(363\) 3837.95 0.554932
\(364\) −39039.3 −5.62147
\(365\) 0 0
\(366\) 849.969 0.121390
\(367\) −352.402 −0.0501232 −0.0250616 0.999686i \(-0.507978\pi\)
−0.0250616 + 0.999686i \(0.507978\pi\)
\(368\) −5040.36 −0.713987
\(369\) 1064.24 0.150142
\(370\) 0 0
\(371\) −14619.8 −2.04588
\(372\) 2342.93 0.326546
\(373\) −12563.2 −1.74397 −0.871983 0.489537i \(-0.837166\pi\)
−0.871983 + 0.489537i \(0.837166\pi\)
\(374\) −581.724 −0.0804284
\(375\) 0 0
\(376\) 18091.0 2.48131
\(377\) 976.961 0.133464
\(378\) 4059.21 0.552336
\(379\) −1770.57 −0.239969 −0.119984 0.992776i \(-0.538284\pi\)
−0.119984 + 0.992776i \(0.538284\pi\)
\(380\) 0 0
\(381\) 526.630 0.0708139
\(382\) −7976.47 −1.06836
\(383\) −4330.57 −0.577759 −0.288880 0.957365i \(-0.593283\pi\)
−0.288880 + 0.957365i \(0.593283\pi\)
\(384\) −7955.00 −1.05717
\(385\) 0 0
\(386\) −1227.85 −0.161907
\(387\) 4104.15 0.539084
\(388\) −16701.5 −2.18529
\(389\) 10295.5 1.34191 0.670957 0.741496i \(-0.265883\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(390\) 0 0
\(391\) 2553.70 0.330297
\(392\) −20740.1 −2.67228
\(393\) −5596.26 −0.718305
\(394\) −3300.79 −0.422060
\(395\) 0 0
\(396\) −948.282 −0.120336
\(397\) −93.1792 −0.0117797 −0.00588983 0.999983i \(-0.501875\pi\)
−0.00588983 + 0.999983i \(0.501875\pi\)
\(398\) 1143.77 0.144050
\(399\) 3513.90 0.440890
\(400\) 0 0
\(401\) −13320.9 −1.65889 −0.829443 0.558591i \(-0.811342\pi\)
−0.829443 + 0.558591i \(0.811342\pi\)
\(402\) 10578.1 1.31241
\(403\) 4493.82 0.555466
\(404\) 10304.5 1.26898
\(405\) 0 0
\(406\) 1741.63 0.212896
\(407\) −713.255 −0.0868667
\(408\) −1615.80 −0.196063
\(409\) 9272.21 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(410\) 0 0
\(411\) 3172.70 0.380774
\(412\) 13148.9 1.57233
\(413\) 1518.22 0.180888
\(414\) 6435.12 0.763935
\(415\) 0 0
\(416\) −7906.05 −0.931793
\(417\) −2714.50 −0.318776
\(418\) −1268.97 −0.148487
\(419\) 11325.4 1.32049 0.660244 0.751051i \(-0.270453\pi\)
0.660244 + 0.751051i \(0.270453\pi\)
\(420\) 0 0
\(421\) 6934.54 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(422\) −1276.18 −0.147212
\(423\) −5139.12 −0.590715
\(424\) 14664.7 1.67967
\(425\) 0 0
\(426\) −13286.2 −1.51108
\(427\) 1880.07 0.213074
\(428\) 27864.4 3.14691
\(429\) −1818.84 −0.204695
\(430\) 0 0
\(431\) −2776.55 −0.310306 −0.155153 0.987890i \(-0.549587\pi\)
−0.155153 + 0.987890i \(0.549587\pi\)
\(432\) −905.950 −0.100897
\(433\) 3252.22 0.360951 0.180476 0.983579i \(-0.442236\pi\)
0.180476 + 0.983579i \(0.442236\pi\)
\(434\) 8011.15 0.886054
\(435\) 0 0
\(436\) 8567.32 0.941056
\(437\) 5570.65 0.609795
\(438\) 9958.82 1.08642
\(439\) −13345.7 −1.45093 −0.725464 0.688260i \(-0.758375\pi\)
−0.725464 + 0.688260i \(0.758375\pi\)
\(440\) 0 0
\(441\) 5891.65 0.636178
\(442\) −6824.02 −0.734356
\(443\) −11639.6 −1.24834 −0.624169 0.781290i \(-0.714562\pi\)
−0.624169 + 0.781290i \(0.714562\pi\)
\(444\) −4362.26 −0.466270
\(445\) 0 0
\(446\) −26295.4 −2.79176
\(447\) −2427.00 −0.256808
\(448\) −22572.6 −2.38048
\(449\) −6937.72 −0.729201 −0.364601 0.931164i \(-0.618794\pi\)
−0.364601 + 0.931164i \(0.618794\pi\)
\(450\) 0 0
\(451\) −850.106 −0.0887582
\(452\) 929.531 0.0967289
\(453\) 1056.36 0.109563
\(454\) −1829.69 −0.189144
\(455\) 0 0
\(456\) −3524.70 −0.361972
\(457\) 10285.8 1.05284 0.526422 0.850224i \(-0.323533\pi\)
0.526422 + 0.850224i \(0.323533\pi\)
\(458\) −6642.28 −0.677671
\(459\) 459.000 0.0466760
\(460\) 0 0
\(461\) −625.833 −0.0632277 −0.0316138 0.999500i \(-0.510065\pi\)
−0.0316138 + 0.999500i \(0.510065\pi\)
\(462\) −3242.45 −0.326520
\(463\) 6055.97 0.607872 0.303936 0.952692i \(-0.401699\pi\)
0.303936 + 0.952692i \(0.401699\pi\)
\(464\) −388.705 −0.0388904
\(465\) 0 0
\(466\) 16228.2 1.61321
\(467\) 815.966 0.0808531 0.0404265 0.999183i \(-0.487128\pi\)
0.0404265 + 0.999183i \(0.487128\pi\)
\(468\) −11124.0 −1.09873
\(469\) 23397.9 2.30366
\(470\) 0 0
\(471\) 1613.65 0.157862
\(472\) −1522.88 −0.148509
\(473\) −3278.35 −0.318686
\(474\) 14794.2 1.43359
\(475\) 0 0
\(476\) −7869.61 −0.757779
\(477\) −4165.81 −0.399872
\(478\) 7183.49 0.687375
\(479\) −16219.1 −1.54712 −0.773559 0.633724i \(-0.781525\pi\)
−0.773559 + 0.633724i \(0.781525\pi\)
\(480\) 0 0
\(481\) −8366.97 −0.793142
\(482\) −16216.4 −1.53244
\(483\) 14234.0 1.34093
\(484\) −18749.9 −1.76088
\(485\) 0 0
\(486\) 1156.64 0.107956
\(487\) −2725.13 −0.253568 −0.126784 0.991930i \(-0.540465\pi\)
−0.126784 + 0.991930i \(0.540465\pi\)
\(488\) −1885.84 −0.174935
\(489\) 5768.23 0.533433
\(490\) 0 0
\(491\) −8344.13 −0.766935 −0.383468 0.923554i \(-0.625270\pi\)
−0.383468 + 0.923554i \(0.625270\pi\)
\(492\) −5199.24 −0.476423
\(493\) 196.937 0.0179911
\(494\) −14885.9 −1.35577
\(495\) 0 0
\(496\) −1787.96 −0.161858
\(497\) −29388.1 −2.65238
\(498\) 317.067 0.0285304
\(499\) 13762.0 1.23461 0.617306 0.786723i \(-0.288224\pi\)
0.617306 + 0.786723i \(0.288224\pi\)
\(500\) 0 0
\(501\) −8915.29 −0.795022
\(502\) −16157.0 −1.43650
\(503\) 11909.5 1.05570 0.527852 0.849336i \(-0.322997\pi\)
0.527852 + 0.849336i \(0.322997\pi\)
\(504\) −9006.24 −0.795972
\(505\) 0 0
\(506\) −5140.31 −0.451610
\(507\) −14745.2 −1.29163
\(508\) −2572.79 −0.224703
\(509\) 742.666 0.0646721 0.0323360 0.999477i \(-0.489705\pi\)
0.0323360 + 0.999477i \(0.489705\pi\)
\(510\) 0 0
\(511\) 22028.1 1.90698
\(512\) 11650.1 1.00560
\(513\) 1001.26 0.0861732
\(514\) 8467.35 0.726612
\(515\) 0 0
\(516\) −20050.3 −1.71060
\(517\) 4105.07 0.349209
\(518\) −14915.8 −1.26518
\(519\) 2965.69 0.250827
\(520\) 0 0
\(521\) −4815.73 −0.404953 −0.202477 0.979287i \(-0.564899\pi\)
−0.202477 + 0.979287i \(0.564899\pi\)
\(522\) 496.266 0.0416111
\(523\) 16249.5 1.35858 0.679291 0.733869i \(-0.262287\pi\)
0.679291 + 0.733869i \(0.262287\pi\)
\(524\) 27339.9 2.27929
\(525\) 0 0
\(526\) −20547.7 −1.70327
\(527\) 905.871 0.0748773
\(528\) 723.663 0.0596466
\(529\) 10398.4 0.854637
\(530\) 0 0
\(531\) 432.606 0.0353550
\(532\) −17166.8 −1.39901
\(533\) −9972.33 −0.810412
\(534\) −5279.51 −0.427841
\(535\) 0 0
\(536\) −23469.8 −1.89131
\(537\) 5812.96 0.467128
\(538\) −31159.4 −2.49699
\(539\) −4706.18 −0.376085
\(540\) 0 0
\(541\) −5458.04 −0.433751 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(542\) −18017.0 −1.42785
\(543\) 6540.21 0.516883
\(544\) −1593.71 −0.125606
\(545\) 0 0
\(546\) −38036.2 −2.98131
\(547\) −17237.0 −1.34735 −0.673677 0.739026i \(-0.735286\pi\)
−0.673677 + 0.739026i \(0.735286\pi\)
\(548\) −15499.9 −1.20825
\(549\) 535.712 0.0416460
\(550\) 0 0
\(551\) 429.600 0.0332152
\(552\) −14277.7 −1.10091
\(553\) 32723.7 2.51637
\(554\) −16759.7 −1.28529
\(555\) 0 0
\(556\) 13261.4 1.01152
\(557\) 8452.71 0.643003 0.321502 0.946909i \(-0.395812\pi\)
0.321502 + 0.946909i \(0.395812\pi\)
\(558\) 2282.72 0.173182
\(559\) −38457.3 −2.90978
\(560\) 0 0
\(561\) −366.644 −0.0275931
\(562\) 13909.7 1.04403
\(563\) 8547.32 0.639834 0.319917 0.947446i \(-0.396345\pi\)
0.319917 + 0.947446i \(0.396345\pi\)
\(564\) 25106.6 1.87443
\(565\) 0 0
\(566\) 3498.85 0.259836
\(567\) 2558.40 0.189494
\(568\) 29478.4 2.17762
\(569\) 19464.8 1.43411 0.717055 0.697017i \(-0.245490\pi\)
0.717055 + 0.697017i \(0.245490\pi\)
\(570\) 0 0
\(571\) −3839.06 −0.281366 −0.140683 0.990055i \(-0.544930\pi\)
−0.140683 + 0.990055i \(0.544930\pi\)
\(572\) 8885.72 0.649529
\(573\) −5027.35 −0.366528
\(574\) −17777.7 −1.29273
\(575\) 0 0
\(576\) −6431.90 −0.465270
\(577\) 18797.7 1.35625 0.678127 0.734945i \(-0.262792\pi\)
0.678127 + 0.734945i \(0.262792\pi\)
\(578\) −1375.60 −0.0989918
\(579\) −773.882 −0.0555465
\(580\) 0 0
\(581\) 701.328 0.0500791
\(582\) −16272.4 −1.15895
\(583\) 3327.60 0.236390
\(584\) −22095.8 −1.56564
\(585\) 0 0
\(586\) −41424.6 −2.92020
\(587\) −4217.92 −0.296580 −0.148290 0.988944i \(-0.547377\pi\)
−0.148290 + 0.988944i \(0.547377\pi\)
\(588\) −28783.0 −2.01869
\(589\) 1976.07 0.138238
\(590\) 0 0
\(591\) −2080.40 −0.144799
\(592\) 3328.98 0.231115
\(593\) 3011.92 0.208575 0.104287 0.994547i \(-0.466744\pi\)
0.104287 + 0.994547i \(0.466744\pi\)
\(594\) −923.914 −0.0638193
\(595\) 0 0
\(596\) 11856.8 0.814891
\(597\) 720.886 0.0494203
\(598\) −60299.3 −4.12345
\(599\) 15137.1 1.03253 0.516266 0.856428i \(-0.327322\pi\)
0.516266 + 0.856428i \(0.327322\pi\)
\(600\) 0 0
\(601\) −18980.1 −1.28821 −0.644104 0.764938i \(-0.722770\pi\)
−0.644104 + 0.764938i \(0.722770\pi\)
\(602\) −68558.0 −4.64155
\(603\) 6667.08 0.450256
\(604\) −5160.74 −0.347661
\(605\) 0 0
\(606\) 10039.7 0.672996
\(607\) 4593.63 0.307166 0.153583 0.988136i \(-0.450919\pi\)
0.153583 + 0.988136i \(0.450919\pi\)
\(608\) −3476.53 −0.231894
\(609\) 1097.70 0.0730397
\(610\) 0 0
\(611\) 48155.3 3.18847
\(612\) −2242.39 −0.148110
\(613\) 25654.3 1.69032 0.845160 0.534513i \(-0.179505\pi\)
0.845160 + 0.534513i \(0.179505\pi\)
\(614\) 11980.3 0.787437
\(615\) 0 0
\(616\) 7194.09 0.470549
\(617\) 7170.97 0.467897 0.233948 0.972249i \(-0.424835\pi\)
0.233948 + 0.972249i \(0.424835\pi\)
\(618\) 12811.0 0.833876
\(619\) −13560.6 −0.880525 −0.440263 0.897869i \(-0.645115\pi\)
−0.440263 + 0.897869i \(0.645115\pi\)
\(620\) 0 0
\(621\) 4055.88 0.262088
\(622\) −31383.2 −2.02307
\(623\) −11677.9 −0.750985
\(624\) 8489.07 0.544607
\(625\) 0 0
\(626\) 20910.0 1.33503
\(627\) −799.798 −0.0509424
\(628\) −7883.28 −0.500919
\(629\) −1686.63 −0.106916
\(630\) 0 0
\(631\) −1414.98 −0.0892700 −0.0446350 0.999003i \(-0.514212\pi\)
−0.0446350 + 0.999003i \(0.514212\pi\)
\(632\) −32824.3 −2.06595
\(633\) −804.342 −0.0505051
\(634\) 12381.4 0.775600
\(635\) 0 0
\(636\) 20351.6 1.26886
\(637\) −55206.7 −3.43386
\(638\) −396.412 −0.0245989
\(639\) −8373.93 −0.518416
\(640\) 0 0
\(641\) −21708.4 −1.33764 −0.668822 0.743422i \(-0.733201\pi\)
−0.668822 + 0.743422i \(0.733201\pi\)
\(642\) 27148.4 1.66895
\(643\) −7537.23 −0.462270 −0.231135 0.972922i \(-0.574244\pi\)
−0.231135 + 0.972922i \(0.574244\pi\)
\(644\) −69538.5 −4.25497
\(645\) 0 0
\(646\) −3000.73 −0.182759
\(647\) 32667.3 1.98498 0.992491 0.122316i \(-0.0390320\pi\)
0.992491 + 0.122316i \(0.0390320\pi\)
\(648\) −2566.27 −0.155575
\(649\) −345.561 −0.0209006
\(650\) 0 0
\(651\) 5049.20 0.303984
\(652\) −28180.1 −1.69266
\(653\) 25845.8 1.54889 0.774443 0.632644i \(-0.218030\pi\)
0.774443 + 0.632644i \(0.218030\pi\)
\(654\) 8347.17 0.499083
\(655\) 0 0
\(656\) 3967.70 0.236148
\(657\) 6276.77 0.372725
\(658\) 85846.7 5.08610
\(659\) −15741.2 −0.930485 −0.465243 0.885183i \(-0.654033\pi\)
−0.465243 + 0.885183i \(0.654033\pi\)
\(660\) 0 0
\(661\) 23495.2 1.38254 0.691269 0.722598i \(-0.257052\pi\)
0.691269 + 0.722598i \(0.257052\pi\)
\(662\) 22230.8 1.30517
\(663\) −4300.99 −0.251940
\(664\) −703.483 −0.0411151
\(665\) 0 0
\(666\) −4250.17 −0.247283
\(667\) 1740.21 0.101021
\(668\) 43554.7 2.52272
\(669\) −16573.3 −0.957788
\(670\) 0 0
\(671\) −427.921 −0.0246195
\(672\) −8883.15 −0.509933
\(673\) 7057.34 0.404221 0.202110 0.979363i \(-0.435220\pi\)
0.202110 + 0.979363i \(0.435220\pi\)
\(674\) 8575.67 0.490092
\(675\) 0 0
\(676\) 72036.0 4.09855
\(677\) −20756.4 −1.17833 −0.589167 0.808011i \(-0.700544\pi\)
−0.589167 + 0.808011i \(0.700544\pi\)
\(678\) 905.645 0.0512995
\(679\) −35993.2 −2.03430
\(680\) 0 0
\(681\) −1153.20 −0.0648909
\(682\) −1823.41 −0.102378
\(683\) 7013.65 0.392928 0.196464 0.980511i \(-0.437054\pi\)
0.196464 + 0.980511i \(0.437054\pi\)
\(684\) −4891.56 −0.273441
\(685\) 0 0
\(686\) −46850.4 −2.60751
\(687\) −4186.44 −0.232493
\(688\) 15301.0 0.847888
\(689\) 39035.0 2.15837
\(690\) 0 0
\(691\) −4897.47 −0.269622 −0.134811 0.990871i \(-0.543043\pi\)
−0.134811 + 0.990871i \(0.543043\pi\)
\(692\) −14488.5 −0.795913
\(693\) −2043.63 −0.112022
\(694\) 801.273 0.0438269
\(695\) 0 0
\(696\) −1101.08 −0.0599658
\(697\) −2010.24 −0.109244
\(698\) 21171.1 1.14805
\(699\) 10228.2 0.553456
\(700\) 0 0
\(701\) 17525.5 0.944264 0.472132 0.881528i \(-0.343485\pi\)
0.472132 + 0.881528i \(0.343485\pi\)
\(702\) −10838.1 −0.582706
\(703\) −3679.21 −0.197388
\(704\) 5137.73 0.275050
\(705\) 0 0
\(706\) −50023.4 −2.66665
\(707\) 22207.1 1.18130
\(708\) −2113.45 −0.112187
\(709\) 32564.3 1.72493 0.862466 0.506115i \(-0.168919\pi\)
0.862466 + 0.506115i \(0.168919\pi\)
\(710\) 0 0
\(711\) 9324.40 0.491832
\(712\) 11713.8 0.616561
\(713\) 8004.58 0.420440
\(714\) −7667.39 −0.401884
\(715\) 0 0
\(716\) −28398.5 −1.48227
\(717\) 4527.55 0.235822
\(718\) −39711.4 −2.06409
\(719\) 14498.2 0.752007 0.376004 0.926618i \(-0.377298\pi\)
0.376004 + 0.926618i \(0.377298\pi\)
\(720\) 0 0
\(721\) 28337.0 1.46370
\(722\) 26102.0 1.34545
\(723\) −10220.7 −0.525744
\(724\) −31951.5 −1.64015
\(725\) 0 0
\(726\) −18268.1 −0.933872
\(727\) 25787.6 1.31556 0.657778 0.753212i \(-0.271497\pi\)
0.657778 + 0.753212i \(0.271497\pi\)
\(728\) 84391.6 4.29637
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −7752.28 −0.392241
\(732\) −2617.16 −0.132149
\(733\) 4177.45 0.210502 0.105251 0.994446i \(-0.466435\pi\)
0.105251 + 0.994446i \(0.466435\pi\)
\(734\) 1677.38 0.0843504
\(735\) 0 0
\(736\) −14082.6 −0.705287
\(737\) −5325.59 −0.266175
\(738\) −5065.64 −0.252668
\(739\) 14115.5 0.702636 0.351318 0.936256i \(-0.385734\pi\)
0.351318 + 0.936256i \(0.385734\pi\)
\(740\) 0 0
\(741\) −9382.18 −0.465132
\(742\) 69587.9 3.44293
\(743\) −17992.0 −0.888376 −0.444188 0.895934i \(-0.646508\pi\)
−0.444188 + 0.895934i \(0.646508\pi\)
\(744\) −5064.72 −0.249572
\(745\) 0 0
\(746\) 59799.0 2.93485
\(747\) 199.839 0.00978810
\(748\) 1791.20 0.0875571
\(749\) 60050.2 2.92949
\(750\) 0 0
\(751\) 2055.99 0.0998989 0.0499495 0.998752i \(-0.484094\pi\)
0.0499495 + 0.998752i \(0.484094\pi\)
\(752\) −19159.6 −0.929095
\(753\) −10183.3 −0.492829
\(754\) −4650.19 −0.224602
\(755\) 0 0
\(756\) −12498.8 −0.601292
\(757\) −12132.4 −0.582508 −0.291254 0.956646i \(-0.594073\pi\)
−0.291254 + 0.956646i \(0.594073\pi\)
\(758\) 8427.65 0.403834
\(759\) −3239.79 −0.154937
\(760\) 0 0
\(761\) 9319.01 0.443908 0.221954 0.975057i \(-0.428757\pi\)
0.221954 + 0.975057i \(0.428757\pi\)
\(762\) −2506.68 −0.119170
\(763\) 18463.3 0.876037
\(764\) 24560.5 1.16305
\(765\) 0 0
\(766\) 20612.9 0.972288
\(767\) −4053.67 −0.190834
\(768\) 20712.9 0.973193
\(769\) 38790.8 1.81903 0.909514 0.415672i \(-0.136454\pi\)
0.909514 + 0.415672i \(0.136454\pi\)
\(770\) 0 0
\(771\) 5336.73 0.249284
\(772\) 3780.71 0.176257
\(773\) −12857.4 −0.598252 −0.299126 0.954214i \(-0.596695\pi\)
−0.299126 + 0.954214i \(0.596695\pi\)
\(774\) −19535.1 −0.907204
\(775\) 0 0
\(776\) 36103.8 1.67017
\(777\) −9401.04 −0.434054
\(778\) −49005.2 −2.25825
\(779\) −4385.14 −0.201687
\(780\) 0 0
\(781\) 6689.00 0.306468
\(782\) −12155.2 −0.555844
\(783\) 312.783 0.0142758
\(784\) 21965.2 1.00060
\(785\) 0 0
\(786\) 26637.3 1.20881
\(787\) 26862.0 1.21668 0.608339 0.793677i \(-0.291836\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(788\) 10163.5 0.459468
\(789\) −12950.6 −0.584353
\(790\) 0 0
\(791\) 2003.22 0.0900457
\(792\) 2049.91 0.0919700
\(793\) −5019.81 −0.224790
\(794\) 443.519 0.0198235
\(795\) 0 0
\(796\) −3521.81 −0.156818
\(797\) 12471.5 0.554285 0.277142 0.960829i \(-0.410613\pi\)
0.277142 + 0.960829i \(0.410613\pi\)
\(798\) −16725.7 −0.741957
\(799\) 9707.23 0.429809
\(800\) 0 0
\(801\) −3327.53 −0.146782
\(802\) 63405.4 2.79168
\(803\) −5013.82 −0.220341
\(804\) −32571.3 −1.42873
\(805\) 0 0
\(806\) −21389.9 −0.934772
\(807\) −19638.9 −0.856658
\(808\) −22275.3 −0.969854
\(809\) −24760.8 −1.07607 −0.538037 0.842921i \(-0.680834\pi\)
−0.538037 + 0.842921i \(0.680834\pi\)
\(810\) 0 0
\(811\) 11237.3 0.486556 0.243278 0.969957i \(-0.421777\pi\)
0.243278 + 0.969957i \(0.421777\pi\)
\(812\) −5362.70 −0.231766
\(813\) −11355.6 −0.489862
\(814\) 3394.99 0.146185
\(815\) 0 0
\(816\) 1711.24 0.0734134
\(817\) −16910.8 −0.724156
\(818\) −44134.3 −1.88645
\(819\) −23973.1 −1.02282
\(820\) 0 0
\(821\) 39976.4 1.69937 0.849687 0.527287i \(-0.176791\pi\)
0.849687 + 0.527287i \(0.176791\pi\)
\(822\) −15101.6 −0.640789
\(823\) −36877.0 −1.56191 −0.780955 0.624588i \(-0.785267\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(824\) −28424.1 −1.20170
\(825\) 0 0
\(826\) −7226.49 −0.304409
\(827\) 14311.9 0.601781 0.300890 0.953659i \(-0.402716\pi\)
0.300890 + 0.953659i \(0.402716\pi\)
\(828\) −19814.5 −0.831646
\(829\) −12629.7 −0.529130 −0.264565 0.964368i \(-0.585228\pi\)
−0.264565 + 0.964368i \(0.585228\pi\)
\(830\) 0 0
\(831\) −10563.2 −0.440954
\(832\) 60269.1 2.51136
\(833\) −11128.7 −0.462888
\(834\) 12920.6 0.536455
\(835\) 0 0
\(836\) 3907.32 0.161648
\(837\) 1438.74 0.0594146
\(838\) −53907.4 −2.22220
\(839\) −18683.1 −0.768786 −0.384393 0.923170i \(-0.625589\pi\)
−0.384393 + 0.923170i \(0.625589\pi\)
\(840\) 0 0
\(841\) −24254.8 −0.994497
\(842\) −33007.3 −1.35096
\(843\) 8766.90 0.358183
\(844\) 3929.52 0.160260
\(845\) 0 0
\(846\) 24461.4 0.994092
\(847\) −40407.5 −1.63922
\(848\) −15530.9 −0.628932
\(849\) 2205.22 0.0891438
\(850\) 0 0
\(851\) −14903.6 −0.600340
\(852\) 40909.9 1.64501
\(853\) 35648.7 1.43094 0.715468 0.698646i \(-0.246214\pi\)
0.715468 + 0.698646i \(0.246214\pi\)
\(854\) −8948.83 −0.358575
\(855\) 0 0
\(856\) −60234.7 −2.40512
\(857\) 49860.8 1.98741 0.993707 0.112010i \(-0.0357290\pi\)
0.993707 + 0.112010i \(0.0357290\pi\)
\(858\) 8657.39 0.344474
\(859\) 21487.0 0.853466 0.426733 0.904378i \(-0.359664\pi\)
0.426733 + 0.904378i \(0.359664\pi\)
\(860\) 0 0
\(861\) −11204.8 −0.443506
\(862\) 13216.0 0.522201
\(863\) 15067.6 0.594330 0.297165 0.954826i \(-0.403959\pi\)
0.297165 + 0.954826i \(0.403959\pi\)
\(864\) −2531.19 −0.0996677
\(865\) 0 0
\(866\) −15480.1 −0.607431
\(867\) −867.000 −0.0339618
\(868\) −24667.3 −0.964588
\(869\) −7448.23 −0.290752
\(870\) 0 0
\(871\) −62472.8 −2.43032
\(872\) −18520.0 −0.719229
\(873\) −10256.0 −0.397610
\(874\) −26515.4 −1.02620
\(875\) 0 0
\(876\) −30664.4 −1.18271
\(877\) 24852.6 0.956912 0.478456 0.878111i \(-0.341197\pi\)
0.478456 + 0.878111i \(0.341197\pi\)
\(878\) 63523.7 2.44171
\(879\) −26108.8 −1.00185
\(880\) 0 0
\(881\) 1840.51 0.0703842 0.0351921 0.999381i \(-0.488796\pi\)
0.0351921 + 0.999381i \(0.488796\pi\)
\(882\) −28043.3 −1.07060
\(883\) −49803.7 −1.89811 −0.949054 0.315115i \(-0.897957\pi\)
−0.949054 + 0.315115i \(0.897957\pi\)
\(884\) 21012.0 0.799445
\(885\) 0 0
\(886\) 55402.7 2.10078
\(887\) −36314.7 −1.37467 −0.687333 0.726342i \(-0.741219\pi\)
−0.687333 + 0.726342i \(0.741219\pi\)
\(888\) 9429.93 0.356360
\(889\) −5544.58 −0.209178
\(890\) 0 0
\(891\) −582.317 −0.0218949
\(892\) 80966.9 3.03921
\(893\) 21175.4 0.793512
\(894\) 11552.2 0.432172
\(895\) 0 0
\(896\) 83753.6 3.12278
\(897\) −38005.0 −1.41466
\(898\) 33022.5 1.22714
\(899\) 617.300 0.0229011
\(900\) 0 0
\(901\) 7868.75 0.290950
\(902\) 4046.38 0.149368
\(903\) −43210.2 −1.59241
\(904\) −2009.37 −0.0739278
\(905\) 0 0
\(906\) −5028.12 −0.184380
\(907\) −33679.5 −1.23297 −0.616487 0.787365i \(-0.711445\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(908\) 5633.83 0.205909
\(909\) 6327.75 0.230889
\(910\) 0 0
\(911\) 32437.2 1.17968 0.589841 0.807519i \(-0.299190\pi\)
0.589841 + 0.807519i \(0.299190\pi\)
\(912\) 3732.90 0.135536
\(913\) −159.629 −0.00578636
\(914\) −48958.8 −1.77179
\(915\) 0 0
\(916\) 20452.4 0.737736
\(917\) 58919.7 2.12181
\(918\) −2184.77 −0.0785492
\(919\) −3511.45 −0.126042 −0.0630208 0.998012i \(-0.520073\pi\)
−0.0630208 + 0.998012i \(0.520073\pi\)
\(920\) 0 0
\(921\) 7550.86 0.270151
\(922\) 2978.87 0.106403
\(923\) 78466.6 2.79822
\(924\) 9983.90 0.355461
\(925\) 0 0
\(926\) −28825.5 −1.02296
\(927\) 8074.44 0.286083
\(928\) −1086.03 −0.0384166
\(929\) 13527.2 0.477733 0.238866 0.971052i \(-0.423224\pi\)
0.238866 + 0.971052i \(0.423224\pi\)
\(930\) 0 0
\(931\) −24276.1 −0.854583
\(932\) −49968.6 −1.75620
\(933\) −19779.9 −0.694069
\(934\) −3883.87 −0.136064
\(935\) 0 0
\(936\) 24046.8 0.839737
\(937\) 8862.80 0.309002 0.154501 0.987993i \(-0.450623\pi\)
0.154501 + 0.987993i \(0.450623\pi\)
\(938\) −111371. −3.87674
\(939\) 13179.0 0.458019
\(940\) 0 0
\(941\) 22824.0 0.790693 0.395346 0.918532i \(-0.370625\pi\)
0.395346 + 0.918532i \(0.370625\pi\)
\(942\) −7680.71 −0.265659
\(943\) −17763.1 −0.613412
\(944\) 1612.84 0.0556074
\(945\) 0 0
\(946\) 15604.4 0.536305
\(947\) 26308.4 0.902754 0.451377 0.892333i \(-0.350933\pi\)
0.451377 + 0.892333i \(0.350933\pi\)
\(948\) −45553.3 −1.56066
\(949\) −58815.5 −2.01184
\(950\) 0 0
\(951\) 7803.68 0.266090
\(952\) 17011.8 0.579155
\(953\) −11947.5 −0.406106 −0.203053 0.979168i \(-0.565086\pi\)
−0.203053 + 0.979168i \(0.565086\pi\)
\(954\) 19828.6 0.672930
\(955\) 0 0
\(956\) −22118.9 −0.748300
\(957\) −249.848 −0.00843932
\(958\) 77200.5 2.60358
\(959\) −33403.5 −1.12477
\(960\) 0 0
\(961\) −26951.5 −0.904688
\(962\) 39825.5 1.33475
\(963\) 17110.9 0.572576
\(964\) 49932.2 1.66826
\(965\) 0 0
\(966\) −67751.6 −2.25660
\(967\) −21505.3 −0.715163 −0.357581 0.933882i \(-0.616399\pi\)
−0.357581 + 0.933882i \(0.616399\pi\)
\(968\) 40531.7 1.34580
\(969\) −1891.27 −0.0627002
\(970\) 0 0
\(971\) 45685.3 1.50990 0.754950 0.655783i \(-0.227661\pi\)
0.754950 + 0.655783i \(0.227661\pi\)
\(972\) −3561.45 −0.117524
\(973\) 28579.4 0.941636
\(974\) 12971.2 0.426719
\(975\) 0 0
\(976\) 1997.24 0.0655020
\(977\) −31710.3 −1.03839 −0.519193 0.854657i \(-0.673767\pi\)
−0.519193 + 0.854657i \(0.673767\pi\)
\(978\) −27455.9 −0.897693
\(979\) 2657.99 0.0867721
\(980\) 0 0
\(981\) 5260.99 0.171224
\(982\) 39716.8 1.29065
\(983\) −46038.9 −1.49381 −0.746904 0.664932i \(-0.768460\pi\)
−0.746904 + 0.664932i \(0.768460\pi\)
\(984\) 11239.2 0.364120
\(985\) 0 0
\(986\) −937.392 −0.0302765
\(987\) 54106.8 1.74492
\(988\) 45835.6 1.47593
\(989\) −68501.8 −2.20246
\(990\) 0 0
\(991\) 14394.9 0.461420 0.230710 0.973023i \(-0.425895\pi\)
0.230710 + 0.973023i \(0.425895\pi\)
\(992\) −4995.50 −0.159886
\(993\) 14011.5 0.447775
\(994\) 139883. 4.46359
\(995\) 0 0
\(996\) −976.289 −0.0310591
\(997\) 33473.4 1.06330 0.531652 0.846963i \(-0.321572\pi\)
0.531652 + 0.846963i \(0.321572\pi\)
\(998\) −65505.0 −2.07768
\(999\) −2678.76 −0.0848371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.4.a.q.1.1 3
5.4 even 2 51.4.a.e.1.3 3
15.14 odd 2 153.4.a.f.1.1 3
20.19 odd 2 816.4.a.s.1.1 3
35.34 odd 2 2499.4.a.n.1.3 3
60.59 even 2 2448.4.a.bd.1.3 3
85.84 even 2 867.4.a.k.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.3 3 5.4 even 2
153.4.a.f.1.1 3 15.14 odd 2
816.4.a.s.1.1 3 20.19 odd 2
867.4.a.k.1.3 3 85.84 even 2
1275.4.a.q.1.1 3 1.1 even 1 trivial
2448.4.a.bd.1.3 3 60.59 even 2
2499.4.a.n.1.3 3 35.34 odd 2