Properties

Label 1275.4.a.m
Level $1275$
Weight $4$
Character orbit 1275.a
Self dual yes
Analytic conductor $75.227$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 3 q^{3} + 10 q^{4} + 3 \beta q^{6} + ( - 4 \beta + 4) q^{7} + 2 \beta q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + 3 q^{3} + 10 q^{4} + 3 \beta q^{6} + ( - 4 \beta + 4) q^{7} + 2 \beta q^{8} + 9 q^{9} + (4 \beta + 33) q^{11} + 30 q^{12} + ( - 8 \beta + 1) q^{13} + (4 \beta - 72) q^{14} - 44 q^{16} + 17 q^{17} + 9 \beta q^{18} + (16 \beta - 13) q^{19} + ( - 12 \beta + 12) q^{21} + (33 \beta + 72) q^{22} + ( - 4 \beta + 99) q^{23} + 6 \beta q^{24} + (\beta - 144) q^{26} + 27 q^{27} + ( - 40 \beta + 40) q^{28} + (16 \beta + 222) q^{29} + ( - 8 \beta + 266) q^{31} - 60 \beta q^{32} + (12 \beta + 99) q^{33} + 17 \beta q^{34} + 90 q^{36} + (64 \beta - 44) q^{37} + ( - 13 \beta + 288) q^{38} + ( - 24 \beta + 3) q^{39} + (36 \beta + 285) q^{41} + (12 \beta - 216) q^{42} + (16 \beta + 91) q^{43} + (40 \beta + 330) q^{44} + (99 \beta - 72) q^{46} + (12 \beta - 210) q^{47} - 132 q^{48} + ( - 32 \beta - 39) q^{49} + 51 q^{51} + ( - 80 \beta + 10) q^{52} + ( - 124 \beta + 150) q^{53} + 27 \beta q^{54} + (8 \beta - 144) q^{56} + (48 \beta - 39) q^{57} + (222 \beta + 288) q^{58} + ( - 96 \beta + 222) q^{59} + (156 \beta + 200) q^{61} + (266 \beta - 144) q^{62} + ( - 36 \beta + 36) q^{63} - 728 q^{64} + (99 \beta + 216) q^{66} + ( - 72 \beta + 484) q^{67} + 170 q^{68} + ( - 12 \beta + 297) q^{69} + ( - 56 \beta - 924) q^{71} + 18 \beta q^{72} + (12 \beta - 434) q^{73} + ( - 44 \beta + 1152) q^{74} + (160 \beta - 130) q^{76} + ( - 116 \beta - 156) q^{77} + (3 \beta - 432) q^{78} + 254 q^{79} + 81 q^{81} + (285 \beta + 648) q^{82} + (12 \beta - 498) q^{83} + ( - 120 \beta + 120) q^{84} + (91 \beta + 288) q^{86} + (48 \beta + 666) q^{87} + (66 \beta + 144) q^{88} + ( - 252 \beta - 144) q^{89} + ( - 36 \beta + 580) q^{91} + ( - 40 \beta + 990) q^{92} + ( - 24 \beta + 798) q^{93} + ( - 210 \beta + 216) q^{94} - 180 \beta q^{96} + (52 \beta - 512) q^{97} + ( - 39 \beta - 576) q^{98} + (36 \beta + 297) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 20 q^{4} + 8 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} + 20 q^{4} + 8 q^{7} + 18 q^{9} + 66 q^{11} + 60 q^{12} + 2 q^{13} - 144 q^{14} - 88 q^{16} + 34 q^{17} - 26 q^{19} + 24 q^{21} + 144 q^{22} + 198 q^{23} - 288 q^{26} + 54 q^{27} + 80 q^{28} + 444 q^{29} + 532 q^{31} + 198 q^{33} + 180 q^{36} - 88 q^{37} + 576 q^{38} + 6 q^{39} + 570 q^{41} - 432 q^{42} + 182 q^{43} + 660 q^{44} - 144 q^{46} - 420 q^{47} - 264 q^{48} - 78 q^{49} + 102 q^{51} + 20 q^{52} + 300 q^{53} - 288 q^{56} - 78 q^{57} + 576 q^{58} + 444 q^{59} + 400 q^{61} - 288 q^{62} + 72 q^{63} - 1456 q^{64} + 432 q^{66} + 968 q^{67} + 340 q^{68} + 594 q^{69} - 1848 q^{71} - 868 q^{73} + 2304 q^{74} - 260 q^{76} - 312 q^{77} - 864 q^{78} + 508 q^{79} + 162 q^{81} + 1296 q^{82} - 996 q^{83} + 240 q^{84} + 576 q^{86} + 1332 q^{87} + 288 q^{88} - 288 q^{89} + 1160 q^{91} + 1980 q^{92} + 1596 q^{93} + 432 q^{94} - 1024 q^{97} - 1152 q^{98} + 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−4.24264 3.00000 10.0000 0 −12.7279 20.9706 −8.48528 9.00000 0
1.2 4.24264 3.00000 10.0000 0 12.7279 −12.9706 8.48528 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1275.4.a.m 2
5.b even 2 1 51.4.a.d 2
15.d odd 2 1 153.4.a.e 2
20.d odd 2 1 816.4.a.o 2
35.c odd 2 1 2499.4.a.l 2
60.h even 2 1 2448.4.a.v 2
85.c even 2 1 867.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.d 2 5.b even 2 1
153.4.a.e 2 15.d odd 2 1
816.4.a.o 2 20.d odd 2 1
867.4.a.j 2 85.c even 2 1
1275.4.a.m 2 1.a even 1 1 trivial
2448.4.a.v 2 60.h even 2 1
2499.4.a.l 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1275))\):

\( T_{2}^{2} - 18 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 18 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 272 \) Copy content Toggle raw display
$11$ \( T^{2} - 66T + 801 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 1151 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 26T - 4439 \) Copy content Toggle raw display
$23$ \( T^{2} - 198T + 9513 \) Copy content Toggle raw display
$29$ \( T^{2} - 444T + 44676 \) Copy content Toggle raw display
$31$ \( T^{2} - 532T + 69604 \) Copy content Toggle raw display
$37$ \( T^{2} + 88T - 71792 \) Copy content Toggle raw display
$41$ \( T^{2} - 570T + 57897 \) Copy content Toggle raw display
$43$ \( T^{2} - 182T + 3673 \) Copy content Toggle raw display
$47$ \( T^{2} + 420T + 41508 \) Copy content Toggle raw display
$53$ \( T^{2} - 300T - 254268 \) Copy content Toggle raw display
$59$ \( T^{2} - 444T - 116604 \) Copy content Toggle raw display
$61$ \( T^{2} - 400T - 398048 \) Copy content Toggle raw display
$67$ \( T^{2} - 968T + 140944 \) Copy content Toggle raw display
$71$ \( T^{2} + 1848 T + 797328 \) Copy content Toggle raw display
$73$ \( T^{2} + 868T + 185764 \) Copy content Toggle raw display
$79$ \( (T - 254)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 996T + 245412 \) Copy content Toggle raw display
$89$ \( T^{2} + 288 T - 1122336 \) Copy content Toggle raw display
$97$ \( T^{2} + 1024 T + 213472 \) Copy content Toggle raw display
show more
show less