Properties

Label 1275.4.a.e.1.1
Level $1275$
Weight $4$
Character 1275.1
Self dual yes
Analytic conductor $75.227$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} -3.00000 q^{6} +2.00000 q^{7} -15.0000 q^{8} +9.00000 q^{9} -48.0000 q^{11} +21.0000 q^{12} +14.0000 q^{13} +2.00000 q^{14} +41.0000 q^{16} +17.0000 q^{17} +9.00000 q^{18} +92.0000 q^{19} -6.00000 q^{21} -48.0000 q^{22} +122.000 q^{23} +45.0000 q^{24} +14.0000 q^{26} -27.0000 q^{27} -14.0000 q^{28} -36.0000 q^{29} -182.000 q^{31} +161.000 q^{32} +144.000 q^{33} +17.0000 q^{34} -63.0000 q^{36} -76.0000 q^{37} +92.0000 q^{38} -42.0000 q^{39} +294.000 q^{41} -6.00000 q^{42} +428.000 q^{43} +336.000 q^{44} +122.000 q^{46} +12.0000 q^{47} -123.000 q^{48} -339.000 q^{49} -51.0000 q^{51} -98.0000 q^{52} +234.000 q^{53} -27.0000 q^{54} -30.0000 q^{56} -276.000 q^{57} -36.0000 q^{58} -540.000 q^{59} -820.000 q^{61} -182.000 q^{62} +18.0000 q^{63} -167.000 q^{64} +144.000 q^{66} -700.000 q^{67} -119.000 q^{68} -366.000 q^{69} +794.000 q^{71} -135.000 q^{72} +1038.00 q^{73} -76.0000 q^{74} -644.000 q^{76} -96.0000 q^{77} -42.0000 q^{78} +858.000 q^{79} +81.0000 q^{81} +294.000 q^{82} -1052.00 q^{83} +42.0000 q^{84} +428.000 q^{86} +108.000 q^{87} +720.000 q^{88} +1102.00 q^{89} +28.0000 q^{91} -854.000 q^{92} +546.000 q^{93} +12.0000 q^{94} -483.000 q^{96} -710.000 q^{97} -339.000 q^{98} -432.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.00000 −0.875000
\(5\) 0 0
\(6\) −3.00000 −0.204124
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) −15.0000 −0.662913
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −48.0000 −1.31569 −0.657843 0.753155i \(-0.728531\pi\)
−0.657843 + 0.753155i \(0.728531\pi\)
\(12\) 21.0000 0.505181
\(13\) 14.0000 0.298685 0.149342 0.988786i \(-0.452284\pi\)
0.149342 + 0.988786i \(0.452284\pi\)
\(14\) 2.00000 0.0381802
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 17.0000 0.242536
\(18\) 9.00000 0.117851
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) 0 0
\(21\) −6.00000 −0.0623480
\(22\) −48.0000 −0.465165
\(23\) 122.000 1.10603 0.553016 0.833170i \(-0.313477\pi\)
0.553016 + 0.833170i \(0.313477\pi\)
\(24\) 45.0000 0.382733
\(25\) 0 0
\(26\) 14.0000 0.105601
\(27\) −27.0000 −0.192450
\(28\) −14.0000 −0.0944911
\(29\) −36.0000 −0.230518 −0.115259 0.993335i \(-0.536770\pi\)
−0.115259 + 0.993335i \(0.536770\pi\)
\(30\) 0 0
\(31\) −182.000 −1.05446 −0.527228 0.849724i \(-0.676769\pi\)
−0.527228 + 0.849724i \(0.676769\pi\)
\(32\) 161.000 0.889408
\(33\) 144.000 0.759612
\(34\) 17.0000 0.0857493
\(35\) 0 0
\(36\) −63.0000 −0.291667
\(37\) −76.0000 −0.337684 −0.168842 0.985643i \(-0.554003\pi\)
−0.168842 + 0.985643i \(0.554003\pi\)
\(38\) 92.0000 0.392747
\(39\) −42.0000 −0.172446
\(40\) 0 0
\(41\) 294.000 1.11988 0.559940 0.828533i \(-0.310824\pi\)
0.559940 + 0.828533i \(0.310824\pi\)
\(42\) −6.00000 −0.0220433
\(43\) 428.000 1.51789 0.758946 0.651153i \(-0.225714\pi\)
0.758946 + 0.651153i \(0.225714\pi\)
\(44\) 336.000 1.15123
\(45\) 0 0
\(46\) 122.000 0.391042
\(47\) 12.0000 0.0372421 0.0186211 0.999827i \(-0.494072\pi\)
0.0186211 + 0.999827i \(0.494072\pi\)
\(48\) −123.000 −0.369865
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) −51.0000 −0.140028
\(52\) −98.0000 −0.261349
\(53\) 234.000 0.606460 0.303230 0.952917i \(-0.401935\pi\)
0.303230 + 0.952917i \(0.401935\pi\)
\(54\) −27.0000 −0.0680414
\(55\) 0 0
\(56\) −30.0000 −0.0715878
\(57\) −276.000 −0.641353
\(58\) −36.0000 −0.0815005
\(59\) −540.000 −1.19156 −0.595780 0.803148i \(-0.703157\pi\)
−0.595780 + 0.803148i \(0.703157\pi\)
\(60\) 0 0
\(61\) −820.000 −1.72115 −0.860576 0.509322i \(-0.829896\pi\)
−0.860576 + 0.509322i \(0.829896\pi\)
\(62\) −182.000 −0.372807
\(63\) 18.0000 0.0359966
\(64\) −167.000 −0.326172
\(65\) 0 0
\(66\) 144.000 0.268563
\(67\) −700.000 −1.27640 −0.638199 0.769872i \(-0.720320\pi\)
−0.638199 + 0.769872i \(0.720320\pi\)
\(68\) −119.000 −0.212219
\(69\) −366.000 −0.638568
\(70\) 0 0
\(71\) 794.000 1.32719 0.663595 0.748092i \(-0.269030\pi\)
0.663595 + 0.748092i \(0.269030\pi\)
\(72\) −135.000 −0.220971
\(73\) 1038.00 1.66423 0.832114 0.554604i \(-0.187130\pi\)
0.832114 + 0.554604i \(0.187130\pi\)
\(74\) −76.0000 −0.119389
\(75\) 0 0
\(76\) −644.000 −0.971998
\(77\) −96.0000 −0.142081
\(78\) −42.0000 −0.0609688
\(79\) 858.000 1.22193 0.610965 0.791657i \(-0.290781\pi\)
0.610965 + 0.791657i \(0.290781\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 294.000 0.395937
\(83\) −1052.00 −1.39123 −0.695614 0.718415i \(-0.744868\pi\)
−0.695614 + 0.718415i \(0.744868\pi\)
\(84\) 42.0000 0.0545545
\(85\) 0 0
\(86\) 428.000 0.536656
\(87\) 108.000 0.133090
\(88\) 720.000 0.872185
\(89\) 1102.00 1.31249 0.656246 0.754547i \(-0.272143\pi\)
0.656246 + 0.754547i \(0.272143\pi\)
\(90\) 0 0
\(91\) 28.0000 0.0322549
\(92\) −854.000 −0.967779
\(93\) 546.000 0.608791
\(94\) 12.0000 0.0131671
\(95\) 0 0
\(96\) −483.000 −0.513500
\(97\) −710.000 −0.743192 −0.371596 0.928395i \(-0.621189\pi\)
−0.371596 + 0.928395i \(0.621189\pi\)
\(98\) −339.000 −0.349430
\(99\) −432.000 −0.438562
\(100\) 0 0
\(101\) −1210.00 −1.19207 −0.596037 0.802957i \(-0.703259\pi\)
−0.596037 + 0.802957i \(0.703259\pi\)
\(102\) −51.0000 −0.0495074
\(103\) −644.000 −0.616070 −0.308035 0.951375i \(-0.599671\pi\)
−0.308035 + 0.951375i \(0.599671\pi\)
\(104\) −210.000 −0.198002
\(105\) 0 0
\(106\) 234.000 0.214416
\(107\) 256.000 0.231294 0.115647 0.993290i \(-0.463106\pi\)
0.115647 + 0.993290i \(0.463106\pi\)
\(108\) 189.000 0.168394
\(109\) −1248.00 −1.09667 −0.548334 0.836260i \(-0.684738\pi\)
−0.548334 + 0.836260i \(0.684738\pi\)
\(110\) 0 0
\(111\) 228.000 0.194962
\(112\) 82.0000 0.0691810
\(113\) 350.000 0.291374 0.145687 0.989331i \(-0.453461\pi\)
0.145687 + 0.989331i \(0.453461\pi\)
\(114\) −276.000 −0.226752
\(115\) 0 0
\(116\) 252.000 0.201704
\(117\) 126.000 0.0995616
\(118\) −540.000 −0.421280
\(119\) 34.0000 0.0261914
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) −820.000 −0.608519
\(123\) −882.000 −0.646563
\(124\) 1274.00 0.922650
\(125\) 0 0
\(126\) 18.0000 0.0127267
\(127\) 328.000 0.229176 0.114588 0.993413i \(-0.463445\pi\)
0.114588 + 0.993413i \(0.463445\pi\)
\(128\) −1455.00 −1.00473
\(129\) −1284.00 −0.876356
\(130\) 0 0
\(131\) −1952.00 −1.30189 −0.650943 0.759127i \(-0.725626\pi\)
−0.650943 + 0.759127i \(0.725626\pi\)
\(132\) −1008.00 −0.664660
\(133\) 184.000 0.119961
\(134\) −700.000 −0.451275
\(135\) 0 0
\(136\) −255.000 −0.160780
\(137\) −2634.00 −1.64261 −0.821306 0.570488i \(-0.806754\pi\)
−0.821306 + 0.570488i \(0.806754\pi\)
\(138\) −366.000 −0.225768
\(139\) 1864.00 1.13743 0.568714 0.822536i \(-0.307441\pi\)
0.568714 + 0.822536i \(0.307441\pi\)
\(140\) 0 0
\(141\) −36.0000 −0.0215018
\(142\) 794.000 0.469232
\(143\) −672.000 −0.392975
\(144\) 369.000 0.213542
\(145\) 0 0
\(146\) 1038.00 0.588394
\(147\) 1017.00 0.570617
\(148\) 532.000 0.295474
\(149\) −286.000 −0.157249 −0.0786243 0.996904i \(-0.525053\pi\)
−0.0786243 + 0.996904i \(0.525053\pi\)
\(150\) 0 0
\(151\) −1624.00 −0.875227 −0.437613 0.899163i \(-0.644176\pi\)
−0.437613 + 0.899163i \(0.644176\pi\)
\(152\) −1380.00 −0.736400
\(153\) 153.000 0.0808452
\(154\) −96.0000 −0.0502331
\(155\) 0 0
\(156\) 294.000 0.150890
\(157\) −2542.00 −1.29219 −0.646095 0.763257i \(-0.723599\pi\)
−0.646095 + 0.763257i \(0.723599\pi\)
\(158\) 858.000 0.432018
\(159\) −702.000 −0.350140
\(160\) 0 0
\(161\) 244.000 0.119440
\(162\) 81.0000 0.0392837
\(163\) −684.000 −0.328681 −0.164341 0.986404i \(-0.552550\pi\)
−0.164341 + 0.986404i \(0.552550\pi\)
\(164\) −2058.00 −0.979895
\(165\) 0 0
\(166\) −1052.00 −0.491874
\(167\) −542.000 −0.251145 −0.125573 0.992084i \(-0.540077\pi\)
−0.125573 + 0.992084i \(0.540077\pi\)
\(168\) 90.0000 0.0413313
\(169\) −2001.00 −0.910787
\(170\) 0 0
\(171\) 828.000 0.370285
\(172\) −2996.00 −1.32816
\(173\) 836.000 0.367398 0.183699 0.982983i \(-0.441193\pi\)
0.183699 + 0.982983i \(0.441193\pi\)
\(174\) 108.000 0.0470544
\(175\) 0 0
\(176\) −1968.00 −0.842861
\(177\) 1620.00 0.687947
\(178\) 1102.00 0.464036
\(179\) −3444.00 −1.43808 −0.719041 0.694968i \(-0.755419\pi\)
−0.719041 + 0.694968i \(0.755419\pi\)
\(180\) 0 0
\(181\) −3284.00 −1.34861 −0.674303 0.738454i \(-0.735556\pi\)
−0.674303 + 0.738454i \(0.735556\pi\)
\(182\) 28.0000 0.0114038
\(183\) 2460.00 0.993707
\(184\) −1830.00 −0.733203
\(185\) 0 0
\(186\) 546.000 0.215240
\(187\) −816.000 −0.319101
\(188\) −84.0000 −0.0325869
\(189\) −54.0000 −0.0207827
\(190\) 0 0
\(191\) −340.000 −0.128804 −0.0644019 0.997924i \(-0.520514\pi\)
−0.0644019 + 0.997924i \(0.520514\pi\)
\(192\) 501.000 0.188315
\(193\) 1498.00 0.558696 0.279348 0.960190i \(-0.409882\pi\)
0.279348 + 0.960190i \(0.409882\pi\)
\(194\) −710.000 −0.262758
\(195\) 0 0
\(196\) 2373.00 0.864796
\(197\) 1176.00 0.425312 0.212656 0.977127i \(-0.431789\pi\)
0.212656 + 0.977127i \(0.431789\pi\)
\(198\) −432.000 −0.155055
\(199\) −2450.00 −0.872743 −0.436372 0.899767i \(-0.643737\pi\)
−0.436372 + 0.899767i \(0.643737\pi\)
\(200\) 0 0
\(201\) 2100.00 0.736928
\(202\) −1210.00 −0.421462
\(203\) −72.0000 −0.0248936
\(204\) 357.000 0.122525
\(205\) 0 0
\(206\) −644.000 −0.217814
\(207\) 1098.00 0.368678
\(208\) 574.000 0.191345
\(209\) −4416.00 −1.46154
\(210\) 0 0
\(211\) 1064.00 0.347151 0.173575 0.984821i \(-0.444468\pi\)
0.173575 + 0.984821i \(0.444468\pi\)
\(212\) −1638.00 −0.530652
\(213\) −2382.00 −0.766253
\(214\) 256.000 0.0817748
\(215\) 0 0
\(216\) 405.000 0.127578
\(217\) −364.000 −0.113871
\(218\) −1248.00 −0.387730
\(219\) −3114.00 −0.960843
\(220\) 0 0
\(221\) 238.000 0.0724417
\(222\) 228.000 0.0689295
\(223\) 2244.00 0.673854 0.336927 0.941531i \(-0.390613\pi\)
0.336927 + 0.941531i \(0.390613\pi\)
\(224\) 322.000 0.0960470
\(225\) 0 0
\(226\) 350.000 0.103016
\(227\) −516.000 −0.150873 −0.0754364 0.997151i \(-0.524035\pi\)
−0.0754364 + 0.997151i \(0.524035\pi\)
\(228\) 1932.00 0.561183
\(229\) −2922.00 −0.843193 −0.421596 0.906784i \(-0.638530\pi\)
−0.421596 + 0.906784i \(0.638530\pi\)
\(230\) 0 0
\(231\) 288.000 0.0820303
\(232\) 540.000 0.152814
\(233\) −3114.00 −0.875558 −0.437779 0.899083i \(-0.644235\pi\)
−0.437779 + 0.899083i \(0.644235\pi\)
\(234\) 126.000 0.0352003
\(235\) 0 0
\(236\) 3780.00 1.04261
\(237\) −2574.00 −0.705482
\(238\) 34.0000 0.00926005
\(239\) 4124.00 1.11615 0.558074 0.829791i \(-0.311541\pi\)
0.558074 + 0.829791i \(0.311541\pi\)
\(240\) 0 0
\(241\) −2034.00 −0.543658 −0.271829 0.962346i \(-0.587628\pi\)
−0.271829 + 0.962346i \(0.587628\pi\)
\(242\) 973.000 0.258458
\(243\) −243.000 −0.0641500
\(244\) 5740.00 1.50601
\(245\) 0 0
\(246\) −882.000 −0.228595
\(247\) 1288.00 0.331795
\(248\) 2730.00 0.699013
\(249\) 3156.00 0.803226
\(250\) 0 0
\(251\) 996.000 0.250466 0.125233 0.992127i \(-0.460032\pi\)
0.125233 + 0.992127i \(0.460032\pi\)
\(252\) −126.000 −0.0314970
\(253\) −5856.00 −1.45519
\(254\) 328.000 0.0810258
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) 3246.00 0.787860 0.393930 0.919141i \(-0.371115\pi\)
0.393930 + 0.919141i \(0.371115\pi\)
\(258\) −1284.00 −0.309839
\(259\) −152.000 −0.0364665
\(260\) 0 0
\(261\) −324.000 −0.0768395
\(262\) −1952.00 −0.460286
\(263\) −932.000 −0.218516 −0.109258 0.994013i \(-0.534847\pi\)
−0.109258 + 0.994013i \(0.534847\pi\)
\(264\) −2160.00 −0.503556
\(265\) 0 0
\(266\) 184.000 0.0424126
\(267\) −3306.00 −0.757767
\(268\) 4900.00 1.11685
\(269\) −3884.00 −0.880341 −0.440170 0.897914i \(-0.645082\pi\)
−0.440170 + 0.897914i \(0.645082\pi\)
\(270\) 0 0
\(271\) −1936.00 −0.433962 −0.216981 0.976176i \(-0.569621\pi\)
−0.216981 + 0.976176i \(0.569621\pi\)
\(272\) 697.000 0.155374
\(273\) −84.0000 −0.0186224
\(274\) −2634.00 −0.580751
\(275\) 0 0
\(276\) 2562.00 0.558747
\(277\) −872.000 −0.189146 −0.0945729 0.995518i \(-0.530149\pi\)
−0.0945729 + 0.995518i \(0.530149\pi\)
\(278\) 1864.00 0.402141
\(279\) −1638.00 −0.351486
\(280\) 0 0
\(281\) 3198.00 0.678921 0.339460 0.940620i \(-0.389756\pi\)
0.339460 + 0.940620i \(0.389756\pi\)
\(282\) −36.0000 −0.00760202
\(283\) 1936.00 0.406655 0.203327 0.979111i \(-0.434824\pi\)
0.203327 + 0.979111i \(0.434824\pi\)
\(284\) −5558.00 −1.16129
\(285\) 0 0
\(286\) −672.000 −0.138938
\(287\) 588.000 0.120936
\(288\) 1449.00 0.296469
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 2130.00 0.429082
\(292\) −7266.00 −1.45620
\(293\) 5718.00 1.14010 0.570050 0.821610i \(-0.306924\pi\)
0.570050 + 0.821610i \(0.306924\pi\)
\(294\) 1017.00 0.201744
\(295\) 0 0
\(296\) 1140.00 0.223855
\(297\) 1296.00 0.253204
\(298\) −286.000 −0.0555958
\(299\) 1708.00 0.330355
\(300\) 0 0
\(301\) 856.000 0.163917
\(302\) −1624.00 −0.309439
\(303\) 3630.00 0.688244
\(304\) 3772.00 0.711642
\(305\) 0 0
\(306\) 153.000 0.0285831
\(307\) −684.000 −0.127159 −0.0635797 0.997977i \(-0.520252\pi\)
−0.0635797 + 0.997977i \(0.520252\pi\)
\(308\) 672.000 0.124321
\(309\) 1932.00 0.355688
\(310\) 0 0
\(311\) −290.000 −0.0528759 −0.0264379 0.999650i \(-0.508416\pi\)
−0.0264379 + 0.999650i \(0.508416\pi\)
\(312\) 630.000 0.114316
\(313\) 11050.0 1.99547 0.997736 0.0672478i \(-0.0214218\pi\)
0.997736 + 0.0672478i \(0.0214218\pi\)
\(314\) −2542.00 −0.456858
\(315\) 0 0
\(316\) −6006.00 −1.06919
\(317\) −992.000 −0.175761 −0.0878806 0.996131i \(-0.528009\pi\)
−0.0878806 + 0.996131i \(0.528009\pi\)
\(318\) −702.000 −0.123793
\(319\) 1728.00 0.303290
\(320\) 0 0
\(321\) −768.000 −0.133538
\(322\) 244.000 0.0422285
\(323\) 1564.00 0.269422
\(324\) −567.000 −0.0972222
\(325\) 0 0
\(326\) −684.000 −0.116206
\(327\) 3744.00 0.633161
\(328\) −4410.00 −0.742383
\(329\) 24.0000 0.00402177
\(330\) 0 0
\(331\) 2860.00 0.474924 0.237462 0.971397i \(-0.423684\pi\)
0.237462 + 0.971397i \(0.423684\pi\)
\(332\) 7364.00 1.21733
\(333\) −684.000 −0.112561
\(334\) −542.000 −0.0887932
\(335\) 0 0
\(336\) −246.000 −0.0399417
\(337\) −6298.00 −1.01802 −0.509012 0.860760i \(-0.669989\pi\)
−0.509012 + 0.860760i \(0.669989\pi\)
\(338\) −2001.00 −0.322012
\(339\) −1050.00 −0.168225
\(340\) 0 0
\(341\) 8736.00 1.38733
\(342\) 828.000 0.130916
\(343\) −1364.00 −0.214720
\(344\) −6420.00 −1.00623
\(345\) 0 0
\(346\) 836.000 0.129895
\(347\) 3508.00 0.542707 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(348\) −756.000 −0.116454
\(349\) −2406.00 −0.369026 −0.184513 0.982830i \(-0.559071\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(350\) 0 0
\(351\) −378.000 −0.0574819
\(352\) −7728.00 −1.17018
\(353\) 1842.00 0.277733 0.138867 0.990311i \(-0.455654\pi\)
0.138867 + 0.990311i \(0.455654\pi\)
\(354\) 1620.00 0.243226
\(355\) 0 0
\(356\) −7714.00 −1.14843
\(357\) −102.000 −0.0151216
\(358\) −3444.00 −0.508439
\(359\) 3264.00 0.479853 0.239927 0.970791i \(-0.422877\pi\)
0.239927 + 0.970791i \(0.422877\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) −3284.00 −0.476804
\(363\) −2919.00 −0.422060
\(364\) −196.000 −0.0282231
\(365\) 0 0
\(366\) 2460.00 0.351329
\(367\) −7354.00 −1.04598 −0.522991 0.852338i \(-0.675184\pi\)
−0.522991 + 0.852338i \(0.675184\pi\)
\(368\) 5002.00 0.708552
\(369\) 2646.00 0.373293
\(370\) 0 0
\(371\) 468.000 0.0654915
\(372\) −3822.00 −0.532692
\(373\) −11322.0 −1.57166 −0.785832 0.618440i \(-0.787765\pi\)
−0.785832 + 0.618440i \(0.787765\pi\)
\(374\) −816.000 −0.112819
\(375\) 0 0
\(376\) −180.000 −0.0246883
\(377\) −504.000 −0.0688523
\(378\) −54.0000 −0.00734778
\(379\) 12796.0 1.73426 0.867132 0.498078i \(-0.165961\pi\)
0.867132 + 0.498078i \(0.165961\pi\)
\(380\) 0 0
\(381\) −984.000 −0.132315
\(382\) −340.000 −0.0455390
\(383\) 420.000 0.0560339 0.0280170 0.999607i \(-0.491081\pi\)
0.0280170 + 0.999607i \(0.491081\pi\)
\(384\) 4365.00 0.580079
\(385\) 0 0
\(386\) 1498.00 0.197529
\(387\) 3852.00 0.505964
\(388\) 4970.00 0.650293
\(389\) 6426.00 0.837561 0.418780 0.908088i \(-0.362458\pi\)
0.418780 + 0.908088i \(0.362458\pi\)
\(390\) 0 0
\(391\) 2074.00 0.268252
\(392\) 5085.00 0.655182
\(393\) 5856.00 0.751644
\(394\) 1176.00 0.150371
\(395\) 0 0
\(396\) 3024.00 0.383742
\(397\) 13212.0 1.67026 0.835128 0.550056i \(-0.185394\pi\)
0.835128 + 0.550056i \(0.185394\pi\)
\(398\) −2450.00 −0.308561
\(399\) −552.000 −0.0692596
\(400\) 0 0
\(401\) −6242.00 −0.777333 −0.388667 0.921378i \(-0.627064\pi\)
−0.388667 + 0.921378i \(0.627064\pi\)
\(402\) 2100.00 0.260543
\(403\) −2548.00 −0.314950
\(404\) 8470.00 1.04306
\(405\) 0 0
\(406\) −72.0000 −0.00880123
\(407\) 3648.00 0.444287
\(408\) 765.000 0.0928263
\(409\) −5194.00 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(410\) 0 0
\(411\) 7902.00 0.948362
\(412\) 4508.00 0.539061
\(413\) −1080.00 −0.128676
\(414\) 1098.00 0.130347
\(415\) 0 0
\(416\) 2254.00 0.265653
\(417\) −5592.00 −0.656694
\(418\) −4416.00 −0.516731
\(419\) 15956.0 1.86039 0.930193 0.367071i \(-0.119639\pi\)
0.930193 + 0.367071i \(0.119639\pi\)
\(420\) 0 0
\(421\) −15254.0 −1.76588 −0.882939 0.469488i \(-0.844438\pi\)
−0.882939 + 0.469488i \(0.844438\pi\)
\(422\) 1064.00 0.122736
\(423\) 108.000 0.0124140
\(424\) −3510.00 −0.402030
\(425\) 0 0
\(426\) −2382.00 −0.270911
\(427\) −1640.00 −0.185867
\(428\) −1792.00 −0.202382
\(429\) 2016.00 0.226884
\(430\) 0 0
\(431\) −5538.00 −0.618924 −0.309462 0.950912i \(-0.600149\pi\)
−0.309462 + 0.950912i \(0.600149\pi\)
\(432\) −1107.00 −0.123288
\(433\) −11342.0 −1.25880 −0.629402 0.777080i \(-0.716700\pi\)
−0.629402 + 0.777080i \(0.716700\pi\)
\(434\) −364.000 −0.0402594
\(435\) 0 0
\(436\) 8736.00 0.959584
\(437\) 11224.0 1.22864
\(438\) −3114.00 −0.339709
\(439\) 982.000 0.106762 0.0533808 0.998574i \(-0.483000\pi\)
0.0533808 + 0.998574i \(0.483000\pi\)
\(440\) 0 0
\(441\) −3051.00 −0.329446
\(442\) 238.000 0.0256120
\(443\) 2492.00 0.267265 0.133633 0.991031i \(-0.457336\pi\)
0.133633 + 0.991031i \(0.457336\pi\)
\(444\) −1596.00 −0.170592
\(445\) 0 0
\(446\) 2244.00 0.238243
\(447\) 858.000 0.0907875
\(448\) −334.000 −0.0352233
\(449\) −5498.00 −0.577877 −0.288938 0.957348i \(-0.593302\pi\)
−0.288938 + 0.957348i \(0.593302\pi\)
\(450\) 0 0
\(451\) −14112.0 −1.47341
\(452\) −2450.00 −0.254952
\(453\) 4872.00 0.505312
\(454\) −516.000 −0.0533416
\(455\) 0 0
\(456\) 4140.00 0.425161
\(457\) −4998.00 −0.511590 −0.255795 0.966731i \(-0.582337\pi\)
−0.255795 + 0.966731i \(0.582337\pi\)
\(458\) −2922.00 −0.298114
\(459\) −459.000 −0.0466760
\(460\) 0 0
\(461\) −7586.00 −0.766411 −0.383205 0.923663i \(-0.625180\pi\)
−0.383205 + 0.923663i \(0.625180\pi\)
\(462\) 288.000 0.0290021
\(463\) −5900.00 −0.592217 −0.296108 0.955154i \(-0.595689\pi\)
−0.296108 + 0.955154i \(0.595689\pi\)
\(464\) −1476.00 −0.147676
\(465\) 0 0
\(466\) −3114.00 −0.309556
\(467\) 19404.0 1.92272 0.961360 0.275295i \(-0.0887755\pi\)
0.961360 + 0.275295i \(0.0887755\pi\)
\(468\) −882.000 −0.0871164
\(469\) −1400.00 −0.137838
\(470\) 0 0
\(471\) 7626.00 0.746046
\(472\) 8100.00 0.789900
\(473\) −20544.0 −1.99707
\(474\) −2574.00 −0.249426
\(475\) 0 0
\(476\) −238.000 −0.0229175
\(477\) 2106.00 0.202153
\(478\) 4124.00 0.394618
\(479\) 2586.00 0.246675 0.123338 0.992365i \(-0.460640\pi\)
0.123338 + 0.992365i \(0.460640\pi\)
\(480\) 0 0
\(481\) −1064.00 −0.100861
\(482\) −2034.00 −0.192212
\(483\) −732.000 −0.0689589
\(484\) −6811.00 −0.639651
\(485\) 0 0
\(486\) −243.000 −0.0226805
\(487\) −10106.0 −0.940342 −0.470171 0.882575i \(-0.655808\pi\)
−0.470171 + 0.882575i \(0.655808\pi\)
\(488\) 12300.0 1.14097
\(489\) 2052.00 0.189764
\(490\) 0 0
\(491\) −76.0000 −0.00698540 −0.00349270 0.999994i \(-0.501112\pi\)
−0.00349270 + 0.999994i \(0.501112\pi\)
\(492\) 6174.00 0.565743
\(493\) −612.000 −0.0559089
\(494\) 1288.00 0.117307
\(495\) 0 0
\(496\) −7462.00 −0.675511
\(497\) 1588.00 0.143323
\(498\) 3156.00 0.283983
\(499\) 8096.00 0.726306 0.363153 0.931730i \(-0.381700\pi\)
0.363153 + 0.931730i \(0.381700\pi\)
\(500\) 0 0
\(501\) 1626.00 0.144999
\(502\) 996.000 0.0885531
\(503\) −15942.0 −1.41316 −0.706579 0.707634i \(-0.749763\pi\)
−0.706579 + 0.707634i \(0.749763\pi\)
\(504\) −270.000 −0.0238626
\(505\) 0 0
\(506\) −5856.00 −0.514488
\(507\) 6003.00 0.525843
\(508\) −2296.00 −0.200529
\(509\) −13742.0 −1.19667 −0.598333 0.801247i \(-0.704170\pi\)
−0.598333 + 0.801247i \(0.704170\pi\)
\(510\) 0 0
\(511\) 2076.00 0.179720
\(512\) 11521.0 0.994455
\(513\) −2484.00 −0.213784
\(514\) 3246.00 0.278550
\(515\) 0 0
\(516\) 8988.00 0.766811
\(517\) −576.000 −0.0489989
\(518\) −152.000 −0.0128929
\(519\) −2508.00 −0.212117
\(520\) 0 0
\(521\) 11942.0 1.00420 0.502100 0.864809i \(-0.332561\pi\)
0.502100 + 0.864809i \(0.332561\pi\)
\(522\) −324.000 −0.0271668
\(523\) 6012.00 0.502651 0.251325 0.967903i \(-0.419134\pi\)
0.251325 + 0.967903i \(0.419134\pi\)
\(524\) 13664.0 1.13915
\(525\) 0 0
\(526\) −932.000 −0.0772569
\(527\) −3094.00 −0.255743
\(528\) 5904.00 0.486626
\(529\) 2717.00 0.223309
\(530\) 0 0
\(531\) −4860.00 −0.397187
\(532\) −1288.00 −0.104966
\(533\) 4116.00 0.334491
\(534\) −3306.00 −0.267911
\(535\) 0 0
\(536\) 10500.0 0.846140
\(537\) 10332.0 0.830277
\(538\) −3884.00 −0.311247
\(539\) 16272.0 1.30034
\(540\) 0 0
\(541\) 6420.00 0.510198 0.255099 0.966915i \(-0.417892\pi\)
0.255099 + 0.966915i \(0.417892\pi\)
\(542\) −1936.00 −0.153429
\(543\) 9852.00 0.778618
\(544\) 2737.00 0.215713
\(545\) 0 0
\(546\) −84.0000 −0.00658401
\(547\) −1576.00 −0.123190 −0.0615950 0.998101i \(-0.519619\pi\)
−0.0615950 + 0.998101i \(0.519619\pi\)
\(548\) 18438.0 1.43729
\(549\) −7380.00 −0.573717
\(550\) 0 0
\(551\) −3312.00 −0.256072
\(552\) 5490.00 0.423315
\(553\) 1716.00 0.131956
\(554\) −872.000 −0.0668732
\(555\) 0 0
\(556\) −13048.0 −0.995249
\(557\) −15318.0 −1.16525 −0.582625 0.812741i \(-0.697974\pi\)
−0.582625 + 0.812741i \(0.697974\pi\)
\(558\) −1638.00 −0.124269
\(559\) 5992.00 0.453371
\(560\) 0 0
\(561\) 2448.00 0.184233
\(562\) 3198.00 0.240035
\(563\) −13220.0 −0.989621 −0.494810 0.869001i \(-0.664763\pi\)
−0.494810 + 0.869001i \(0.664763\pi\)
\(564\) 252.000 0.0188140
\(565\) 0 0
\(566\) 1936.00 0.143774
\(567\) 162.000 0.0119989
\(568\) −11910.0 −0.879811
\(569\) 2794.00 0.205853 0.102927 0.994689i \(-0.467179\pi\)
0.102927 + 0.994689i \(0.467179\pi\)
\(570\) 0 0
\(571\) −14756.0 −1.08147 −0.540735 0.841193i \(-0.681854\pi\)
−0.540735 + 0.841193i \(0.681854\pi\)
\(572\) 4704.00 0.343853
\(573\) 1020.00 0.0743649
\(574\) 588.000 0.0427572
\(575\) 0 0
\(576\) −1503.00 −0.108724
\(577\) 2846.00 0.205339 0.102669 0.994716i \(-0.467262\pi\)
0.102669 + 0.994716i \(0.467262\pi\)
\(578\) 289.000 0.0207973
\(579\) −4494.00 −0.322563
\(580\) 0 0
\(581\) −2104.00 −0.150239
\(582\) 2130.00 0.151703
\(583\) −11232.0 −0.797911
\(584\) −15570.0 −1.10324
\(585\) 0 0
\(586\) 5718.00 0.403086
\(587\) 16820.0 1.18268 0.591342 0.806421i \(-0.298598\pi\)
0.591342 + 0.806421i \(0.298598\pi\)
\(588\) −7119.00 −0.499290
\(589\) −16744.0 −1.17135
\(590\) 0 0
\(591\) −3528.00 −0.245554
\(592\) −3116.00 −0.216329
\(593\) −13314.0 −0.921991 −0.460995 0.887403i \(-0.652508\pi\)
−0.460995 + 0.887403i \(0.652508\pi\)
\(594\) 1296.00 0.0895211
\(595\) 0 0
\(596\) 2002.00 0.137592
\(597\) 7350.00 0.503879
\(598\) 1708.00 0.116798
\(599\) 2880.00 0.196450 0.0982250 0.995164i \(-0.468683\pi\)
0.0982250 + 0.995164i \(0.468683\pi\)
\(600\) 0 0
\(601\) −24854.0 −1.68688 −0.843441 0.537222i \(-0.819474\pi\)
−0.843441 + 0.537222i \(0.819474\pi\)
\(602\) 856.000 0.0579534
\(603\) −6300.00 −0.425466
\(604\) 11368.0 0.765823
\(605\) 0 0
\(606\) 3630.00 0.243331
\(607\) −6122.00 −0.409365 −0.204682 0.978828i \(-0.565616\pi\)
−0.204682 + 0.978828i \(0.565616\pi\)
\(608\) 14812.0 0.988003
\(609\) 216.000 0.0143724
\(610\) 0 0
\(611\) 168.000 0.0111237
\(612\) −1071.00 −0.0707396
\(613\) −17398.0 −1.14633 −0.573164 0.819441i \(-0.694284\pi\)
−0.573164 + 0.819441i \(0.694284\pi\)
\(614\) −684.000 −0.0449576
\(615\) 0 0
\(616\) 1440.00 0.0941871
\(617\) −2922.00 −0.190657 −0.0953284 0.995446i \(-0.530390\pi\)
−0.0953284 + 0.995446i \(0.530390\pi\)
\(618\) 1932.00 0.125755
\(619\) 9660.00 0.627251 0.313625 0.949547i \(-0.398456\pi\)
0.313625 + 0.949547i \(0.398456\pi\)
\(620\) 0 0
\(621\) −3294.00 −0.212856
\(622\) −290.000 −0.0186944
\(623\) 2204.00 0.141736
\(624\) −1722.00 −0.110473
\(625\) 0 0
\(626\) 11050.0 0.705506
\(627\) 13248.0 0.843818
\(628\) 17794.0 1.13067
\(629\) −1292.00 −0.0819005
\(630\) 0 0
\(631\) 2788.00 0.175893 0.0879465 0.996125i \(-0.471970\pi\)
0.0879465 + 0.996125i \(0.471970\pi\)
\(632\) −12870.0 −0.810033
\(633\) −3192.00 −0.200428
\(634\) −992.000 −0.0621409
\(635\) 0 0
\(636\) 4914.00 0.306372
\(637\) −4746.00 −0.295202
\(638\) 1728.00 0.107229
\(639\) 7146.00 0.442397
\(640\) 0 0
\(641\) −16290.0 −1.00377 −0.501885 0.864934i \(-0.667360\pi\)
−0.501885 + 0.864934i \(0.667360\pi\)
\(642\) −768.000 −0.0472127
\(643\) 16588.0 1.01737 0.508683 0.860954i \(-0.330132\pi\)
0.508683 + 0.860954i \(0.330132\pi\)
\(644\) −1708.00 −0.104510
\(645\) 0 0
\(646\) 1564.00 0.0952550
\(647\) −22364.0 −1.35892 −0.679459 0.733714i \(-0.737785\pi\)
−0.679459 + 0.733714i \(0.737785\pi\)
\(648\) −1215.00 −0.0736570
\(649\) 25920.0 1.56772
\(650\) 0 0
\(651\) 1092.00 0.0657432
\(652\) 4788.00 0.287596
\(653\) 19356.0 1.15997 0.579984 0.814628i \(-0.303059\pi\)
0.579984 + 0.814628i \(0.303059\pi\)
\(654\) 3744.00 0.223856
\(655\) 0 0
\(656\) 12054.0 0.717423
\(657\) 9342.00 0.554743
\(658\) 24.0000 0.00142191
\(659\) −4220.00 −0.249450 −0.124725 0.992191i \(-0.539805\pi\)
−0.124725 + 0.992191i \(0.539805\pi\)
\(660\) 0 0
\(661\) −12070.0 −0.710240 −0.355120 0.934821i \(-0.615560\pi\)
−0.355120 + 0.934821i \(0.615560\pi\)
\(662\) 2860.00 0.167911
\(663\) −714.000 −0.0418242
\(664\) 15780.0 0.922263
\(665\) 0 0
\(666\) −684.000 −0.0397965
\(667\) −4392.00 −0.254961
\(668\) 3794.00 0.219752
\(669\) −6732.00 −0.389050
\(670\) 0 0
\(671\) 39360.0 2.26449
\(672\) −966.000 −0.0554528
\(673\) 5914.00 0.338734 0.169367 0.985553i \(-0.445828\pi\)
0.169367 + 0.985553i \(0.445828\pi\)
\(674\) −6298.00 −0.359926
\(675\) 0 0
\(676\) 14007.0 0.796939
\(677\) 27624.0 1.56821 0.784104 0.620630i \(-0.213123\pi\)
0.784104 + 0.620630i \(0.213123\pi\)
\(678\) −1050.00 −0.0594764
\(679\) −1420.00 −0.0802571
\(680\) 0 0
\(681\) 1548.00 0.0871064
\(682\) 8736.00 0.490497
\(683\) −29132.0 −1.63207 −0.816036 0.578001i \(-0.803833\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(684\) −5796.00 −0.323999
\(685\) 0 0
\(686\) −1364.00 −0.0759151
\(687\) 8766.00 0.486818
\(688\) 17548.0 0.972400
\(689\) 3276.00 0.181140
\(690\) 0 0
\(691\) −20336.0 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(692\) −5852.00 −0.321473
\(693\) −864.000 −0.0473602
\(694\) 3508.00 0.191876
\(695\) 0 0
\(696\) −1620.00 −0.0882269
\(697\) 4998.00 0.271611
\(698\) −2406.00 −0.130471
\(699\) 9342.00 0.505503
\(700\) 0 0
\(701\) 17142.0 0.923601 0.461801 0.886984i \(-0.347204\pi\)
0.461801 + 0.886984i \(0.347204\pi\)
\(702\) −378.000 −0.0203229
\(703\) −6992.00 −0.375118
\(704\) 8016.00 0.429140
\(705\) 0 0
\(706\) 1842.00 0.0981935
\(707\) −2420.00 −0.128732
\(708\) −11340.0 −0.601954
\(709\) 22784.0 1.20687 0.603435 0.797412i \(-0.293798\pi\)
0.603435 + 0.797412i \(0.293798\pi\)
\(710\) 0 0
\(711\) 7722.00 0.407310
\(712\) −16530.0 −0.870067
\(713\) −22204.0 −1.16626
\(714\) −102.000 −0.00534629
\(715\) 0 0
\(716\) 24108.0 1.25832
\(717\) −12372.0 −0.644408
\(718\) 3264.00 0.169654
\(719\) 58.0000 0.00300839 0.00150420 0.999999i \(-0.499521\pi\)
0.00150420 + 0.999999i \(0.499521\pi\)
\(720\) 0 0
\(721\) −1288.00 −0.0665293
\(722\) 1605.00 0.0827312
\(723\) 6102.00 0.313881
\(724\) 22988.0 1.18003
\(725\) 0 0
\(726\) −2919.00 −0.149221
\(727\) −712.000 −0.0363227 −0.0181614 0.999835i \(-0.505781\pi\)
−0.0181614 + 0.999835i \(0.505781\pi\)
\(728\) −420.000 −0.0213822
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 7276.00 0.368143
\(732\) −17220.0 −0.869494
\(733\) −23050.0 −1.16149 −0.580744 0.814086i \(-0.697238\pi\)
−0.580744 + 0.814086i \(0.697238\pi\)
\(734\) −7354.00 −0.369811
\(735\) 0 0
\(736\) 19642.0 0.983714
\(737\) 33600.0 1.67934
\(738\) 2646.00 0.131979
\(739\) −38708.0 −1.92679 −0.963394 0.268088i \(-0.913608\pi\)
−0.963394 + 0.268088i \(0.913608\pi\)
\(740\) 0 0
\(741\) −3864.00 −0.191562
\(742\) 468.000 0.0231547
\(743\) 11034.0 0.544816 0.272408 0.962182i \(-0.412180\pi\)
0.272408 + 0.962182i \(0.412180\pi\)
\(744\) −8190.00 −0.403575
\(745\) 0 0
\(746\) −11322.0 −0.555667
\(747\) −9468.00 −0.463743
\(748\) 5712.00 0.279213
\(749\) 512.000 0.0249774
\(750\) 0 0
\(751\) 7502.00 0.364516 0.182258 0.983251i \(-0.441659\pi\)
0.182258 + 0.983251i \(0.441659\pi\)
\(752\) 492.000 0.0238582
\(753\) −2988.00 −0.144607
\(754\) −504.000 −0.0243430
\(755\) 0 0
\(756\) 378.000 0.0181848
\(757\) 20954.0 1.00606 0.503029 0.864269i \(-0.332219\pi\)
0.503029 + 0.864269i \(0.332219\pi\)
\(758\) 12796.0 0.613155
\(759\) 17568.0 0.840155
\(760\) 0 0
\(761\) 8186.00 0.389937 0.194969 0.980809i \(-0.437539\pi\)
0.194969 + 0.980809i \(0.437539\pi\)
\(762\) −984.000 −0.0467803
\(763\) −2496.00 −0.118429
\(764\) 2380.00 0.112703
\(765\) 0 0
\(766\) 420.000 0.0198110
\(767\) −7560.00 −0.355901
\(768\) 357.000 0.0167736
\(769\) −5798.00 −0.271887 −0.135944 0.990717i \(-0.543407\pi\)
−0.135944 + 0.990717i \(0.543407\pi\)
\(770\) 0 0
\(771\) −9738.00 −0.454871
\(772\) −10486.0 −0.488859
\(773\) 39950.0 1.85886 0.929432 0.368994i \(-0.120298\pi\)
0.929432 + 0.368994i \(0.120298\pi\)
\(774\) 3852.00 0.178885
\(775\) 0 0
\(776\) 10650.0 0.492671
\(777\) 456.000 0.0210539
\(778\) 6426.00 0.296122
\(779\) 27048.0 1.24402
\(780\) 0 0
\(781\) −38112.0 −1.74616
\(782\) 2074.00 0.0948415
\(783\) 972.000 0.0443633
\(784\) −13899.0 −0.633154
\(785\) 0 0
\(786\) 5856.00 0.265746
\(787\) −20656.0 −0.935587 −0.467793 0.883838i \(-0.654951\pi\)
−0.467793 + 0.883838i \(0.654951\pi\)
\(788\) −8232.00 −0.372148
\(789\) 2796.00 0.126160
\(790\) 0 0
\(791\) 700.000 0.0314654
\(792\) 6480.00 0.290728
\(793\) −11480.0 −0.514082
\(794\) 13212.0 0.590524
\(795\) 0 0
\(796\) 17150.0 0.763650
\(797\) 3722.00 0.165420 0.0827102 0.996574i \(-0.473642\pi\)
0.0827102 + 0.996574i \(0.473642\pi\)
\(798\) −552.000 −0.0244870
\(799\) 204.000 0.00903254
\(800\) 0 0
\(801\) 9918.00 0.437497
\(802\) −6242.00 −0.274829
\(803\) −49824.0 −2.18960
\(804\) −14700.0 −0.644812
\(805\) 0 0
\(806\) −2548.00 −0.111352
\(807\) 11652.0 0.508265
\(808\) 18150.0 0.790241
\(809\) 6518.00 0.283264 0.141632 0.989919i \(-0.454765\pi\)
0.141632 + 0.989919i \(0.454765\pi\)
\(810\) 0 0
\(811\) −33068.0 −1.43178 −0.715891 0.698212i \(-0.753979\pi\)
−0.715891 + 0.698212i \(0.753979\pi\)
\(812\) 504.000 0.0217819
\(813\) 5808.00 0.250548
\(814\) 3648.00 0.157079
\(815\) 0 0
\(816\) −2091.00 −0.0897054
\(817\) 39376.0 1.68616
\(818\) −5194.00 −0.222010
\(819\) 252.000 0.0107516
\(820\) 0 0
\(821\) −5328.00 −0.226490 −0.113245 0.993567i \(-0.536125\pi\)
−0.113245 + 0.993567i \(0.536125\pi\)
\(822\) 7902.00 0.335297
\(823\) −25874.0 −1.09588 −0.547941 0.836517i \(-0.684588\pi\)
−0.547941 + 0.836517i \(0.684588\pi\)
\(824\) 9660.00 0.408401
\(825\) 0 0
\(826\) −1080.00 −0.0454940
\(827\) −29184.0 −1.22712 −0.613559 0.789649i \(-0.710263\pi\)
−0.613559 + 0.789649i \(0.710263\pi\)
\(828\) −7686.00 −0.322593
\(829\) −9394.00 −0.393567 −0.196784 0.980447i \(-0.563050\pi\)
−0.196784 + 0.980447i \(0.563050\pi\)
\(830\) 0 0
\(831\) 2616.00 0.109203
\(832\) −2338.00 −0.0974226
\(833\) −5763.00 −0.239707
\(834\) −5592.00 −0.232176
\(835\) 0 0
\(836\) 30912.0 1.27884
\(837\) 4914.00 0.202930
\(838\) 15956.0 0.657746
\(839\) −32062.0 −1.31931 −0.659656 0.751567i \(-0.729298\pi\)
−0.659656 + 0.751567i \(0.729298\pi\)
\(840\) 0 0
\(841\) −23093.0 −0.946861
\(842\) −15254.0 −0.624332
\(843\) −9594.00 −0.391975
\(844\) −7448.00 −0.303757
\(845\) 0 0
\(846\) 108.000 0.00438903
\(847\) 1946.00 0.0789437
\(848\) 9594.00 0.388513
\(849\) −5808.00 −0.234782
\(850\) 0 0
\(851\) −9272.00 −0.373490
\(852\) 16674.0 0.670472
\(853\) −9152.00 −0.367361 −0.183680 0.982986i \(-0.558801\pi\)
−0.183680 + 0.982986i \(0.558801\pi\)
\(854\) −1640.00 −0.0657139
\(855\) 0 0
\(856\) −3840.00 −0.153328
\(857\) 19706.0 0.785466 0.392733 0.919653i \(-0.371530\pi\)
0.392733 + 0.919653i \(0.371530\pi\)
\(858\) 2016.00 0.0802157
\(859\) 28684.0 1.13933 0.569666 0.821877i \(-0.307073\pi\)
0.569666 + 0.821877i \(0.307073\pi\)
\(860\) 0 0
\(861\) −1764.00 −0.0698223
\(862\) −5538.00 −0.218823
\(863\) 6320.00 0.249288 0.124644 0.992202i \(-0.460221\pi\)
0.124644 + 0.992202i \(0.460221\pi\)
\(864\) −4347.00 −0.171167
\(865\) 0 0
\(866\) −11342.0 −0.445054
\(867\) −867.000 −0.0339618
\(868\) 2548.00 0.0996368
\(869\) −41184.0 −1.60768
\(870\) 0 0
\(871\) −9800.00 −0.381240
\(872\) 18720.0 0.726994
\(873\) −6390.00 −0.247731
\(874\) 11224.0 0.434391
\(875\) 0 0
\(876\) 21798.0 0.840738
\(877\) −49272.0 −1.89715 −0.948573 0.316558i \(-0.897473\pi\)
−0.948573 + 0.316558i \(0.897473\pi\)
\(878\) 982.000 0.0377459
\(879\) −17154.0 −0.658237
\(880\) 0 0
\(881\) −16462.0 −0.629533 −0.314767 0.949169i \(-0.601926\pi\)
−0.314767 + 0.949169i \(0.601926\pi\)
\(882\) −3051.00 −0.116477
\(883\) −21300.0 −0.811780 −0.405890 0.913922i \(-0.633038\pi\)
−0.405890 + 0.913922i \(0.633038\pi\)
\(884\) −1666.00 −0.0633865
\(885\) 0 0
\(886\) 2492.00 0.0944925
\(887\) 16590.0 0.628002 0.314001 0.949423i \(-0.398330\pi\)
0.314001 + 0.949423i \(0.398330\pi\)
\(888\) −3420.00 −0.129243
\(889\) 656.000 0.0247486
\(890\) 0 0
\(891\) −3888.00 −0.146187
\(892\) −15708.0 −0.589622
\(893\) 1104.00 0.0413706
\(894\) 858.000 0.0320982
\(895\) 0 0
\(896\) −2910.00 −0.108500
\(897\) −5124.00 −0.190731
\(898\) −5498.00 −0.204310
\(899\) 6552.00 0.243072
\(900\) 0 0
\(901\) 3978.00 0.147088
\(902\) −14112.0 −0.520929
\(903\) −2568.00 −0.0946375
\(904\) −5250.00 −0.193155
\(905\) 0 0
\(906\) 4872.00 0.178655
\(907\) 36184.0 1.32466 0.662332 0.749211i \(-0.269567\pi\)
0.662332 + 0.749211i \(0.269567\pi\)
\(908\) 3612.00 0.132014
\(909\) −10890.0 −0.397358
\(910\) 0 0
\(911\) 15626.0 0.568290 0.284145 0.958781i \(-0.408290\pi\)
0.284145 + 0.958781i \(0.408290\pi\)
\(912\) −11316.0 −0.410866
\(913\) 50496.0 1.83042
\(914\) −4998.00 −0.180874
\(915\) 0 0
\(916\) 20454.0 0.737794
\(917\) −3904.00 −0.140590
\(918\) −459.000 −0.0165025
\(919\) 36672.0 1.31632 0.658160 0.752878i \(-0.271335\pi\)
0.658160 + 0.752878i \(0.271335\pi\)
\(920\) 0 0
\(921\) 2052.00 0.0734155
\(922\) −7586.00 −0.270967
\(923\) 11116.0 0.396411
\(924\) −2016.00 −0.0717765
\(925\) 0 0
\(926\) −5900.00 −0.209380
\(927\) −5796.00 −0.205357
\(928\) −5796.00 −0.205025
\(929\) −15810.0 −0.558352 −0.279176 0.960240i \(-0.590061\pi\)
−0.279176 + 0.960240i \(0.590061\pi\)
\(930\) 0 0
\(931\) −31188.0 −1.09790
\(932\) 21798.0 0.766113
\(933\) 870.000 0.0305279
\(934\) 19404.0 0.679784
\(935\) 0 0
\(936\) −1890.00 −0.0660006
\(937\) −48646.0 −1.69605 −0.848023 0.529959i \(-0.822207\pi\)
−0.848023 + 0.529959i \(0.822207\pi\)
\(938\) −1400.00 −0.0487331
\(939\) −33150.0 −1.15209
\(940\) 0 0
\(941\) 43872.0 1.51986 0.759929 0.650006i \(-0.225234\pi\)
0.759929 + 0.650006i \(0.225234\pi\)
\(942\) 7626.00 0.263767
\(943\) 35868.0 1.23862
\(944\) −22140.0 −0.763343
\(945\) 0 0
\(946\) −20544.0 −0.706071
\(947\) −38552.0 −1.32288 −0.661442 0.749996i \(-0.730055\pi\)
−0.661442 + 0.749996i \(0.730055\pi\)
\(948\) 18018.0 0.617297
\(949\) 14532.0 0.497080
\(950\) 0 0
\(951\) 2976.00 0.101476
\(952\) −510.000 −0.0173626
\(953\) 52954.0 1.79995 0.899973 0.435946i \(-0.143586\pi\)
0.899973 + 0.435946i \(0.143586\pi\)
\(954\) 2106.00 0.0714720
\(955\) 0 0
\(956\) −28868.0 −0.976630
\(957\) −5184.00 −0.175104
\(958\) 2586.00 0.0872128
\(959\) −5268.00 −0.177385
\(960\) 0 0
\(961\) 3333.00 0.111879
\(962\) −1064.00 −0.0356598
\(963\) 2304.00 0.0770980
\(964\) 14238.0 0.475700
\(965\) 0 0
\(966\) −732.000 −0.0243807
\(967\) 46428.0 1.54398 0.771988 0.635638i \(-0.219263\pi\)
0.771988 + 0.635638i \(0.219263\pi\)
\(968\) −14595.0 −0.484609
\(969\) −4692.00 −0.155551
\(970\) 0 0
\(971\) −40980.0 −1.35439 −0.677194 0.735804i \(-0.736804\pi\)
−0.677194 + 0.735804i \(0.736804\pi\)
\(972\) 1701.00 0.0561313
\(973\) 3728.00 0.122831
\(974\) −10106.0 −0.332461
\(975\) 0 0
\(976\) −33620.0 −1.10261
\(977\) 10206.0 0.334206 0.167103 0.985939i \(-0.446559\pi\)
0.167103 + 0.985939i \(0.446559\pi\)
\(978\) 2052.00 0.0670917
\(979\) −52896.0 −1.72683
\(980\) 0 0
\(981\) −11232.0 −0.365556
\(982\) −76.0000 −0.00246971
\(983\) 44934.0 1.45796 0.728979 0.684536i \(-0.239995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(984\) 13230.0 0.428615
\(985\) 0 0
\(986\) −612.000 −0.0197668
\(987\) −72.0000 −0.00232197
\(988\) −9016.00 −0.290321
\(989\) 52216.0 1.67884
\(990\) 0 0
\(991\) 20526.0 0.657951 0.328976 0.944338i \(-0.393297\pi\)
0.328976 + 0.944338i \(0.393297\pi\)
\(992\) −29302.0 −0.937842
\(993\) −8580.00 −0.274197
\(994\) 1588.00 0.0506723
\(995\) 0 0
\(996\) −22092.0 −0.702823
\(997\) −29260.0 −0.929462 −0.464731 0.885452i \(-0.653849\pi\)
−0.464731 + 0.885452i \(0.653849\pi\)
\(998\) 8096.00 0.256788
\(999\) 2052.00 0.0649874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.4.a.e.1.1 1
5.4 even 2 51.4.a.b.1.1 1
15.14 odd 2 153.4.a.c.1.1 1
20.19 odd 2 816.4.a.a.1.1 1
35.34 odd 2 2499.4.a.d.1.1 1
60.59 even 2 2448.4.a.r.1.1 1
85.84 even 2 867.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.b.1.1 1 5.4 even 2
153.4.a.c.1.1 1 15.14 odd 2
816.4.a.a.1.1 1 20.19 odd 2
867.4.a.c.1.1 1 85.84 even 2
1275.4.a.e.1.1 1 1.1 even 1 trivial
2448.4.a.r.1.1 1 60.59 even 2
2499.4.a.d.1.1 1 35.34 odd 2