Properties

Label 1275.4.a.e
Level $1275$
Weight $4$
Character orbit 1275.a
Self dual yes
Analytic conductor $75.227$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 3 q^{3} - 7 q^{4} - 3 q^{6} + 2 q^{7} - 15 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 3 q^{3} - 7 q^{4} - 3 q^{6} + 2 q^{7} - 15 q^{8} + 9 q^{9} - 48 q^{11} + 21 q^{12} + 14 q^{13} + 2 q^{14} + 41 q^{16} + 17 q^{17} + 9 q^{18} + 92 q^{19} - 6 q^{21} - 48 q^{22} + 122 q^{23} + 45 q^{24} + 14 q^{26} - 27 q^{27} - 14 q^{28} - 36 q^{29} - 182 q^{31} + 161 q^{32} + 144 q^{33} + 17 q^{34} - 63 q^{36} - 76 q^{37} + 92 q^{38} - 42 q^{39} + 294 q^{41} - 6 q^{42} + 428 q^{43} + 336 q^{44} + 122 q^{46} + 12 q^{47} - 123 q^{48} - 339 q^{49} - 51 q^{51} - 98 q^{52} + 234 q^{53} - 27 q^{54} - 30 q^{56} - 276 q^{57} - 36 q^{58} - 540 q^{59} - 820 q^{61} - 182 q^{62} + 18 q^{63} - 167 q^{64} + 144 q^{66} - 700 q^{67} - 119 q^{68} - 366 q^{69} + 794 q^{71} - 135 q^{72} + 1038 q^{73} - 76 q^{74} - 644 q^{76} - 96 q^{77} - 42 q^{78} + 858 q^{79} + 81 q^{81} + 294 q^{82} - 1052 q^{83} + 42 q^{84} + 428 q^{86} + 108 q^{87} + 720 q^{88} + 1102 q^{89} + 28 q^{91} - 854 q^{92} + 546 q^{93} + 12 q^{94} - 483 q^{96} - 710 q^{97} - 339 q^{98} - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −3.00000 −7.00000 0 −3.00000 2.00000 −15.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1275.4.a.e 1
5.b even 2 1 51.4.a.b 1
15.d odd 2 1 153.4.a.c 1
20.d odd 2 1 816.4.a.a 1
35.c odd 2 1 2499.4.a.d 1
60.h even 2 1 2448.4.a.r 1
85.c even 2 1 867.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.b 1 5.b even 2 1
153.4.a.c 1 15.d odd 2 1
816.4.a.a 1 20.d odd 2 1
867.4.a.c 1 85.c even 2 1
1275.4.a.e 1 1.a even 1 1 trivial
2448.4.a.r 1 60.h even 2 1
2499.4.a.d 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1275))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T + 48 \) Copy content Toggle raw display
$13$ \( T - 14 \) Copy content Toggle raw display
$17$ \( T - 17 \) Copy content Toggle raw display
$19$ \( T - 92 \) Copy content Toggle raw display
$23$ \( T - 122 \) Copy content Toggle raw display
$29$ \( T + 36 \) Copy content Toggle raw display
$31$ \( T + 182 \) Copy content Toggle raw display
$37$ \( T + 76 \) Copy content Toggle raw display
$41$ \( T - 294 \) Copy content Toggle raw display
$43$ \( T - 428 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 234 \) Copy content Toggle raw display
$59$ \( T + 540 \) Copy content Toggle raw display
$61$ \( T + 820 \) Copy content Toggle raw display
$67$ \( T + 700 \) Copy content Toggle raw display
$71$ \( T - 794 \) Copy content Toggle raw display
$73$ \( T - 1038 \) Copy content Toggle raw display
$79$ \( T - 858 \) Copy content Toggle raw display
$83$ \( T + 1052 \) Copy content Toggle raw display
$89$ \( T - 1102 \) Copy content Toggle raw display
$97$ \( T + 710 \) Copy content Toggle raw display
show more
show less