Properties

Label 1275.4.a
Level $1275$
Weight $4$
Character orbit 1275.a
Rep. character $\chi_{1275}(1,\cdot)$
Character field $\Q$
Dimension $152$
Newform subspaces $33$
Sturm bound $720$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 33 \)
Sturm bound: \(720\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1275))\).

Total New Old
Modular forms 552 152 400
Cusp forms 528 152 376
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(18\)
\(+\)\(+\)\(-\)\(-\)\(16\)
\(+\)\(-\)\(+\)\(-\)\(19\)
\(+\)\(-\)\(-\)\(+\)\(23\)
\(-\)\(+\)\(+\)\(-\)\(18\)
\(-\)\(+\)\(-\)\(+\)\(20\)
\(-\)\(-\)\(+\)\(+\)\(21\)
\(-\)\(-\)\(-\)\(-\)\(17\)
Plus space\(+\)\(82\)
Minus space\(-\)\(70\)

Trace form

\( 152 q + 4 q^{2} + 588 q^{4} - 12 q^{6} - 16 q^{7} - 120 q^{8} + 1368 q^{9} - 96 q^{11} - 48 q^{12} + 4 q^{13} + 8 q^{14} + 2404 q^{16} + 36 q^{18} + 164 q^{19} - 36 q^{21} - 36 q^{22} - 352 q^{23} - 144 q^{24}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1275))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 17
1275.4.a.a 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.a \(-5\) \(3\) \(0\) \(-13\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-5q^{2}+3q^{3}+17q^{4}-15q^{6}-13q^{7}+\cdots\)
1275.4.a.b 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.b \(-3\) \(3\) \(0\) \(-13\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+3q^{3}+q^{4}-9q^{6}-13q^{7}+\cdots\)
1275.4.a.c 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.c \(-3\) \(3\) \(0\) \(20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+3q^{3}+q^{4}-9q^{6}+20q^{7}+\cdots\)
1275.4.a.d 1275.a 1.a $1$ $75.227$ \(\Q\) None 51.4.a.c \(-1\) \(3\) \(0\) \(8\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}-7q^{4}-3q^{6}+8q^{7}+\cdots\)
1275.4.a.e 1275.a 1.a $1$ $75.227$ \(\Q\) None 51.4.a.b \(1\) \(-3\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}-7q^{4}-3q^{6}+2q^{7}+\cdots\)
1275.4.a.f 1275.a 1.a $1$ $75.227$ \(\Q\) None 51.4.a.a \(1\) \(3\) \(0\) \(-34\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}-7q^{4}+3q^{6}-34q^{7}+\cdots\)
1275.4.a.g 1275.a 1.a $1$ $75.227$ \(\Q\) None 255.4.a.b \(2\) \(3\) \(0\) \(17\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}-4q^{4}+6q^{6}+17q^{7}+\cdots\)
1275.4.a.h 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.c \(3\) \(-3\) \(0\) \(-20\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}-3q^{3}+q^{4}-9q^{6}-20q^{7}+\cdots\)
1275.4.a.i 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.b \(3\) \(-3\) \(0\) \(13\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}-3q^{3}+q^{4}-9q^{6}+13q^{7}+\cdots\)
1275.4.a.j 1275.a 1.a $1$ $75.227$ \(\Q\) None 255.4.a.a \(4\) \(3\) \(0\) \(8\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+3q^{3}+8q^{4}+12q^{6}+8q^{7}+\cdots\)
1275.4.a.k 1275.a 1.a $1$ $75.227$ \(\Q\) None 1275.4.a.a \(5\) \(-3\) \(0\) \(13\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{2}-3q^{3}+17q^{4}-15q^{6}+13q^{7}+\cdots\)
1275.4.a.l 1275.a 1.a $2$ $75.227$ \(\Q(\sqrt{33}) \) None 255.4.a.f \(-3\) \(6\) \(0\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+3q^{3}+(1+3\beta )q^{4}+\cdots\)
1275.4.a.m 1275.a 1.a $2$ $75.227$ \(\Q(\sqrt{2}) \) None 51.4.a.d \(0\) \(6\) \(0\) \(8\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+3q^{3}+10q^{4}+3\beta q^{6}+(4+\cdots)q^{7}+\cdots\)
1275.4.a.n 1275.a 1.a $2$ $75.227$ \(\Q(\sqrt{41}) \) None 255.4.a.e \(1\) \(-6\) \(0\) \(25\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-3q^{3}+(2+\beta )q^{4}-3\beta q^{6}+\cdots\)
1275.4.a.o 1275.a 1.a $2$ $75.227$ \(\Q(\sqrt{57}) \) None 255.4.a.d \(3\) \(6\) \(0\) \(-10\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3q^{3}+(7+3\beta )q^{4}+(3+\cdots)q^{6}+\cdots\)
1275.4.a.p 1275.a 1.a $2$ $75.227$ \(\Q(\sqrt{17}) \) None 255.4.a.c \(5\) \(-6\) \(0\) \(7\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}-3q^{3}+(5-5\beta )q^{4}+(-9+\cdots)q^{6}+\cdots\)
1275.4.a.q 1275.a 1.a $3$ $75.227$ 3.3.5912.1 None 51.4.a.e \(-5\) \(-9\) \(0\) \(8\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}-3q^{3}+(5-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
1275.4.a.r 1275.a 1.a $5$ $75.227$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1275.4.a.r \(-5\) \(-15\) \(0\) \(57\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-3q^{3}+(3-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1275.4.a.s 1275.a 1.a $5$ $75.227$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 255.4.a.h \(-1\) \(15\) \(0\) \(-27\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
1275.4.a.t 1275.a 1.a $5$ $75.227$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 255.4.a.g \(-1\) \(15\) \(0\) \(47\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
1275.4.a.u 1275.a 1.a $5$ $75.227$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1275.4.a.r \(5\) \(15\) \(0\) \(-57\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+3q^{3}+(3-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1275.4.a.v 1275.a 1.a $6$ $75.227$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 255.4.a.j \(-1\) \(-18\) \(0\) \(-43\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(7+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.w 1275.a 1.a $6$ $75.227$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 255.4.a.i \(-1\) \(-18\) \(0\) \(-37\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(7+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.x 1275.a 1.a $7$ $75.227$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1275.4.a.x \(-3\) \(-21\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(2+\beta _{1}+\beta _{2})q^{4}+\cdots\)
1275.4.a.y 1275.a 1.a $7$ $75.227$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1275.4.a.x \(3\) \(21\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(2+\beta _{1}+\beta _{2})q^{4}+\cdots\)
1275.4.a.z 1275.a 1.a $8$ $75.227$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1275.4.a.z \(-2\) \(-24\) \(0\) \(-9\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(3+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.ba 1275.a 1.a $8$ $75.227$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1275.4.a.z \(2\) \(24\) \(0\) \(9\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(3+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.bb 1275.a 1.a $9$ $75.227$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1275.4.a.bb \(-1\) \(-27\) \(0\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(4+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.bc 1275.a 1.a $9$ $75.227$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1275.4.a.bb \(1\) \(27\) \(0\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(4+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.bd 1275.a 1.a $10$ $75.227$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 255.4.b.a \(-6\) \(30\) \(0\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+3q^{3}+(3-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1275.4.a.be 1275.a 1.a $10$ $75.227$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 255.4.b.a \(6\) \(-30\) \(0\) \(-8\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-3q^{3}+(3-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1275.4.a.bf 1275.a 1.a $14$ $75.227$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 255.4.b.b \(-2\) \(-42\) \(0\) \(-8\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(5+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)
1275.4.a.bg 1275.a 1.a $14$ $75.227$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 255.4.b.b \(2\) \(42\) \(0\) \(8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(5+\beta _{2})q^{4}+3\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1275))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1275)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 2}\)