Defining parameters
Level: | \( N \) | \(=\) | \( 1275 = 3 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1275.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 33 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1275))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 552 | 152 | 400 |
Cusp forms | 528 | 152 | 376 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(18\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(16\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(19\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(23\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(18\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(20\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(21\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(17\) |
Plus space | \(+\) | \(82\) | ||
Minus space | \(-\) | \(70\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1275))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1275))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1275)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 2}\)