Properties

Label 1274.2.n.d
Level $1274$
Weight $2$
Character orbit 1274.n
Analytic conductor $10.173$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,2,0,0,0,0,4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} + \zeta_{12}^{2} q^{4} + 3 \zeta_{12} q^{5} - \zeta_{12}^{3} q^{6} - \zeta_{12}^{3} q^{8} + ( - 2 \zeta_{12}^{2} + 2) q^{9} - 3 \zeta_{12}^{2} q^{10} + (\zeta_{12}^{2} - 1) q^{12} + \cdots - 12 \zeta_{12}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{4} + 4 q^{9} - 6 q^{10} - 2 q^{12} + 8 q^{13} - 2 q^{16} - 6 q^{17} + 12 q^{23} + 8 q^{25} + 6 q^{26} + 20 q^{27} + 6 q^{30} + 8 q^{36} - 12 q^{38} + 4 q^{39} + 6 q^{40} - 4 q^{43}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
753.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i 0.500000 0.866025i 0.500000 0.866025i 2.59808 1.50000i 1.00000i 0 1.00000i 1.00000 + 1.73205i −1.50000 + 2.59808i
753.2 0.866025 0.500000i 0.500000 0.866025i 0.500000 0.866025i −2.59808 + 1.50000i 1.00000i 0 1.00000i 1.00000 + 1.73205i −1.50000 + 2.59808i
961.1 −0.866025 0.500000i 0.500000 + 0.866025i 0.500000 + 0.866025i 2.59808 + 1.50000i 1.00000i 0 1.00000i 1.00000 1.73205i −1.50000 2.59808i
961.2 0.866025 + 0.500000i 0.500000 + 0.866025i 0.500000 + 0.866025i −2.59808 1.50000i 1.00000i 0 1.00000i 1.00000 1.73205i −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
13.b even 2 1 inner
91.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.n.d 4
7.b odd 2 1 1274.2.n.c 4
7.c even 3 1 26.2.b.a 2
7.c even 3 1 inner 1274.2.n.d 4
7.d odd 6 1 1274.2.d.c 2
7.d odd 6 1 1274.2.n.c 4
13.b even 2 1 inner 1274.2.n.d 4
21.h odd 6 1 234.2.b.b 2
28.g odd 6 1 208.2.f.a 2
35.j even 6 1 650.2.d.b 2
35.l odd 12 1 650.2.c.a 2
35.l odd 12 1 650.2.c.d 2
56.k odd 6 1 832.2.f.b 2
56.p even 6 1 832.2.f.d 2
84.n even 6 1 1872.2.c.f 2
91.b odd 2 1 1274.2.n.c 4
91.g even 3 1 338.2.e.c 4
91.h even 3 1 338.2.e.c 4
91.k even 6 1 338.2.e.c 4
91.r even 6 1 26.2.b.a 2
91.r even 6 1 inner 1274.2.n.d 4
91.s odd 6 1 1274.2.d.c 2
91.s odd 6 1 1274.2.n.c 4
91.u even 6 1 338.2.e.c 4
91.x odd 12 1 338.2.c.b 2
91.x odd 12 1 338.2.c.f 2
91.z odd 12 1 338.2.a.b 1
91.z odd 12 1 338.2.a.d 1
91.bd odd 12 1 338.2.c.b 2
91.bd odd 12 1 338.2.c.f 2
273.w odd 6 1 234.2.b.b 2
273.cd even 12 1 3042.2.a.g 1
273.cd even 12 1 3042.2.a.j 1
364.bl odd 6 1 208.2.f.a 2
364.ce even 12 1 2704.2.a.j 1
364.ce even 12 1 2704.2.a.k 1
455.bh even 6 1 650.2.d.b 2
455.cv odd 12 1 650.2.c.a 2
455.cv odd 12 1 650.2.c.d 2
455.di odd 12 1 8450.2.a.h 1
455.di odd 12 1 8450.2.a.u 1
728.bs odd 6 1 832.2.f.b 2
728.cj even 6 1 832.2.f.d 2
1092.by even 6 1 1872.2.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.b.a 2 7.c even 3 1
26.2.b.a 2 91.r even 6 1
208.2.f.a 2 28.g odd 6 1
208.2.f.a 2 364.bl odd 6 1
234.2.b.b 2 21.h odd 6 1
234.2.b.b 2 273.w odd 6 1
338.2.a.b 1 91.z odd 12 1
338.2.a.d 1 91.z odd 12 1
338.2.c.b 2 91.x odd 12 1
338.2.c.b 2 91.bd odd 12 1
338.2.c.f 2 91.x odd 12 1
338.2.c.f 2 91.bd odd 12 1
338.2.e.c 4 91.g even 3 1
338.2.e.c 4 91.h even 3 1
338.2.e.c 4 91.k even 6 1
338.2.e.c 4 91.u even 6 1
650.2.c.a 2 35.l odd 12 1
650.2.c.a 2 455.cv odd 12 1
650.2.c.d 2 35.l odd 12 1
650.2.c.d 2 455.cv odd 12 1
650.2.d.b 2 35.j even 6 1
650.2.d.b 2 455.bh even 6 1
832.2.f.b 2 56.k odd 6 1
832.2.f.b 2 728.bs odd 6 1
832.2.f.d 2 56.p even 6 1
832.2.f.d 2 728.cj even 6 1
1274.2.d.c 2 7.d odd 6 1
1274.2.d.c 2 91.s odd 6 1
1274.2.n.c 4 7.b odd 2 1
1274.2.n.c 4 7.d odd 6 1
1274.2.n.c 4 91.b odd 2 1
1274.2.n.c 4 91.s odd 6 1
1274.2.n.d 4 1.a even 1 1 trivial
1274.2.n.d 4 7.c even 3 1 inner
1274.2.n.d 4 13.b even 2 1 inner
1274.2.n.d 4 91.r even 6 1 inner
1872.2.c.f 2 84.n even 6 1
1872.2.c.f 2 1092.by even 6 1
2704.2.a.j 1 364.ce even 12 1
2704.2.a.k 1 364.ce even 12 1
3042.2.a.g 1 273.cd even 12 1
3042.2.a.j 1 273.cd even 12 1
8450.2.a.h 1 455.di odd 12 1
8450.2.a.u 1 455.di odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} - 9T_{5}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$23$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T + 1)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$53$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$71$ \( (T^{2} + 225)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T^{2} + 10 T + 100)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$97$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
show more
show less