Properties

Label 1274.2.d.c
Level $1274$
Weight $2$
Character orbit 1274.d
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(883,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,-2,0,0,0,0,-4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + q^{3} - q^{4} + 3 i q^{5} + i q^{6} - i q^{8} - 2 q^{9} - 3 q^{10} - q^{12} + ( - 3 i - 2) q^{13} + 3 i q^{15} + q^{16} - 3 q^{17} - 2 i q^{18} + 6 i q^{19} - 3 i q^{20} - 6 q^{23} - i q^{24} + \cdots + 12 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{4} - 4 q^{9} - 6 q^{10} - 2 q^{12} - 4 q^{13} + 2 q^{16} - 6 q^{17} - 12 q^{23} - 8 q^{25} + 6 q^{26} - 10 q^{27} - 6 q^{30} + 4 q^{36} - 12 q^{38} - 4 q^{39} + 6 q^{40} - 2 q^{43}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i 1.00000 −1.00000 3.00000i 1.00000i 0 1.00000i −2.00000 −3.00000
883.2 1.00000i 1.00000 −1.00000 3.00000i 1.00000i 0 1.00000i −2.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.d.c 2
7.b odd 2 1 26.2.b.a 2
7.c even 3 2 1274.2.n.c 4
7.d odd 6 2 1274.2.n.d 4
13.b even 2 1 inner 1274.2.d.c 2
21.c even 2 1 234.2.b.b 2
28.d even 2 1 208.2.f.a 2
35.c odd 2 1 650.2.d.b 2
35.f even 4 1 650.2.c.a 2
35.f even 4 1 650.2.c.d 2
56.e even 2 1 832.2.f.b 2
56.h odd 2 1 832.2.f.d 2
84.h odd 2 1 1872.2.c.f 2
91.b odd 2 1 26.2.b.a 2
91.i even 4 1 338.2.a.b 1
91.i even 4 1 338.2.a.d 1
91.n odd 6 2 338.2.e.c 4
91.r even 6 2 1274.2.n.c 4
91.s odd 6 2 1274.2.n.d 4
91.t odd 6 2 338.2.e.c 4
91.bc even 12 2 338.2.c.b 2
91.bc even 12 2 338.2.c.f 2
273.g even 2 1 234.2.b.b 2
273.o odd 4 1 3042.2.a.g 1
273.o odd 4 1 3042.2.a.j 1
364.h even 2 1 208.2.f.a 2
364.p odd 4 1 2704.2.a.j 1
364.p odd 4 1 2704.2.a.k 1
455.h odd 2 1 650.2.d.b 2
455.s even 4 1 650.2.c.a 2
455.s even 4 1 650.2.c.d 2
455.u even 4 1 8450.2.a.h 1
455.u even 4 1 8450.2.a.u 1
728.b even 2 1 832.2.f.b 2
728.l odd 2 1 832.2.f.d 2
1092.d odd 2 1 1872.2.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.b.a 2 7.b odd 2 1
26.2.b.a 2 91.b odd 2 1
208.2.f.a 2 28.d even 2 1
208.2.f.a 2 364.h even 2 1
234.2.b.b 2 21.c even 2 1
234.2.b.b 2 273.g even 2 1
338.2.a.b 1 91.i even 4 1
338.2.a.d 1 91.i even 4 1
338.2.c.b 2 91.bc even 12 2
338.2.c.f 2 91.bc even 12 2
338.2.e.c 4 91.n odd 6 2
338.2.e.c 4 91.t odd 6 2
650.2.c.a 2 35.f even 4 1
650.2.c.a 2 455.s even 4 1
650.2.c.d 2 35.f even 4 1
650.2.c.d 2 455.s even 4 1
650.2.d.b 2 35.c odd 2 1
650.2.d.b 2 455.h odd 2 1
832.2.f.b 2 56.e even 2 1
832.2.f.b 2 728.b even 2 1
832.2.f.d 2 56.h odd 2 1
832.2.f.d 2 728.l odd 2 1
1274.2.d.c 2 1.a even 1 1 trivial
1274.2.d.c 2 13.b even 2 1 inner
1274.2.n.c 4 7.c even 3 2
1274.2.n.c 4 91.r even 6 2
1274.2.n.d 4 7.d odd 6 2
1274.2.n.d 4 91.s odd 6 2
1872.2.c.f 2 84.h odd 2 1
1872.2.c.f 2 1092.d odd 2 1
2704.2.a.j 1 364.p odd 4 1
2704.2.a.k 1 364.p odd 4 1
3042.2.a.g 1 273.o odd 4 1
3042.2.a.j 1 273.o odd 4 1
8450.2.a.h 1 455.u even 4 1
8450.2.a.u 1 455.u even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 13 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 9 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( (T - 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( T^{2} + 225 \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less