Properties

Label 127.1.b.a.126.1
Level 127
Weight 1
Character 127.126
Self dual yes
Analytic conductor 0.063
Analytic rank 0
Dimension 2
Projective image \(D_{5}\)
CM discriminant -127
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 127 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 127.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.0633812566044\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Defining polynomial: \(x^{2} - x - 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{5}\)
Projective field Galois closure of 5.1.16129.1
Artin image $D_5$
Artin field Galois closure of 5.1.16129.1

Embedding invariants

Embedding label 126.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 127.126

$q$-expansion

\(f(q)\) \(=\) \(q-1.61803 q^{2} +1.61803 q^{4} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.61803 q^{2} +1.61803 q^{4} -1.00000 q^{8} +1.00000 q^{9} +0.618034 q^{11} +0.618034 q^{13} -1.61803 q^{17} -1.61803 q^{18} -1.61803 q^{19} -1.00000 q^{22} +1.00000 q^{25} -1.00000 q^{26} -1.61803 q^{31} +1.00000 q^{32} +2.61803 q^{34} +1.61803 q^{36} -1.61803 q^{37} +2.61803 q^{38} +0.618034 q^{41} +1.00000 q^{44} +0.618034 q^{47} +1.00000 q^{49} -1.61803 q^{50} +1.00000 q^{52} -1.61803 q^{61} +2.61803 q^{62} -1.61803 q^{64} -2.61803 q^{68} -1.61803 q^{71} -1.00000 q^{72} +0.618034 q^{73} +2.61803 q^{74} -2.61803 q^{76} +0.618034 q^{79} +1.00000 q^{81} -1.00000 q^{82} -0.618034 q^{88} -1.00000 q^{94} -1.61803 q^{98} +0.618034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + q^{4} - 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - q^{2} + q^{4} - 2q^{8} + 2q^{9} - q^{11} - q^{13} - q^{17} - q^{18} - q^{19} - 2q^{22} + 2q^{25} - 2q^{26} - q^{31} + 2q^{32} + 3q^{34} + q^{36} - q^{37} + 3q^{38} - q^{41} + 2q^{44} - q^{47} + 2q^{49} - q^{50} + 2q^{52} - q^{61} + 3q^{62} - q^{64} - 3q^{68} - q^{71} - 2q^{72} - q^{73} + 3q^{74} - 3q^{76} - q^{79} + 2q^{81} - 2q^{82} + q^{88} - 2q^{94} - q^{98} - q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/127\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 1.61803 1.61803
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −1.00000 −1.00000
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(12\) 0 0
\(13\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(18\) −1.61803 −1.61803
\(19\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −1.00000
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) −1.00000 −1.00000
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 2.61803 2.61803
\(35\) 0 0
\(36\) 1.61803 1.61803
\(37\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(38\) 2.61803 2.61803
\(39\) 0 0
\(40\) 0 0
\(41\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 1.00000 1.00000
\(45\) 0 0
\(46\) 0 0
\(47\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) −1.61803 −1.61803
\(51\) 0 0
\(52\) 1.00000 1.00000
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) 2.61803 2.61803
\(63\) 0 0
\(64\) −1.61803 −1.61803
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −2.61803 −2.61803
\(69\) 0 0
\(70\) 0 0
\(71\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(72\) −1.00000 −1.00000
\(73\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(74\) 2.61803 2.61803
\(75\) 0 0
\(76\) −2.61803 −2.61803
\(77\) 0 0
\(78\) 0 0
\(79\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) −1.00000 −1.00000
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −0.618034 −0.618034
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −1.00000 −1.00000
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.61803 −1.61803
\(99\) 0.618034 0.618034
\(100\) 1.61803 1.61803
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(104\) −0.618034 −0.618034
\(105\) 0 0
\(106\) 0 0
\(107\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.618034 0.618034
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.618034 −0.618034
\(122\) 2.61803 2.61803
\(123\) 0 0
\(124\) −2.61803 −2.61803
\(125\) 0 0
\(126\) 0 0
\(127\) 1.00000 1.00000
\(128\) 1.61803 1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.61803 1.61803
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.61803 2.61803
\(143\) 0.381966 0.381966
\(144\) 0 0
\(145\) 0 0
\(146\) −1.00000 −1.00000
\(147\) 0 0
\(148\) −2.61803 −2.61803
\(149\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.61803 1.61803
\(153\) −1.61803 −1.61803
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(158\) −1.00000 −1.00000
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.61803 −1.61803
\(163\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(164\) 1.00000 1.00000
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −0.618034 −0.618034
\(170\) 0 0
\(171\) −1.61803 −1.61803
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.00000 −1.00000
\(188\) 1.00000 1.00000
\(189\) 0 0
\(190\) 0 0
\(191\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.61803 1.61803
\(197\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(198\) −1.00000 −1.00000
\(199\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.00000 −1.00000
\(207\) 0 0
\(208\) 0 0
\(209\) −1.00000 −1.00000
\(210\) 0 0
\(211\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.61803 2.61803
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) −1.00000 −1.00000
\(227\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −1.00000 −1.00000
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.00000 1.00000
\(243\) 0 0
\(244\) −2.61803 −2.61803
\(245\) 0 0
\(246\) 0 0
\(247\) −1.00000 −1.00000
\(248\) 1.61803 1.61803
\(249\) 0 0
\(250\) 0 0
\(251\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1.61803 −1.61803
\(255\) 0 0
\(256\) −1.00000 −1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −3.23607 −3.23607
\(263\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(270\) 0 0
\(271\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.618034 0.618034
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −1.61803 −1.61803
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) −2.61803 −2.61803
\(285\) 0 0
\(286\) −0.618034 −0.618034
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) 1.61803 1.61803
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 1.00000
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.61803 1.61803
\(297\) 0 0
\(298\) 2.61803 2.61803
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 2.61803 2.61803
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −1.00000 −1.00000
\(315\) 0 0
\(316\) 1.00000 1.00000
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.61803 2.61803
\(324\) 1.61803 1.61803
\(325\) 0.618034 0.618034
\(326\) −3.23607 −3.23607
\(327\) 0 0
\(328\) −0.618034 −0.618034
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −1.61803 −1.61803
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 1.00000 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) −1.00000 −1.00000
\(342\) 2.61803 2.61803
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.618034 0.618034
\(353\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.61803 2.61803
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.61803 1.61803
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(368\) 0 0
\(369\) 0.618034 0.618034
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 1.61803 1.61803
\(375\) 0 0
\(376\) −0.618034 −0.618034
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.23607 −3.23607
\(383\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −1.00000
\(393\) 0 0
\(394\) −1.00000 −1.00000
\(395\) 0 0
\(396\) 1.00000 1.00000
\(397\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(398\) −1.00000 −1.00000
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −1.00000 −1.00000
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 −1.00000
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.00000 1.00000
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.618034 0.618034
\(417\) 0 0
\(418\) 1.61803 1.61803
\(419\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −1.00000 −1.00000
\(423\) 0.618034 0.618034
\(424\) 0 0
\(425\) −1.61803 −1.61803
\(426\) 0 0
\(427\) 0 0
\(428\) −2.61803 −2.61803
\(429\) 0 0
\(430\) 0 0
\(431\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 0 0
\(433\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 1.61803 1.61803
\(443\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(450\) −1.61803 −1.61803
\(451\) 0.381966 0.381966
\(452\) 1.00000 1.00000
\(453\) 0 0
\(454\) −3.23607 −3.23607
\(455\) 0 0
\(456\) 0 0
\(457\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 1.00000 1.00000
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.61803 −1.61803
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 0 0
\(481\) −1.00000 −1.00000
\(482\) 0 0
\(483\) 0 0
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 1.61803 1.61803
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.61803 1.61803
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.00000 −1.00000
\(503\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 1.61803 1.61803
\(509\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.381966 0.381966
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(522\) 0 0
\(523\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(524\) 3.23607 3.23607
\(525\) 0 0
\(526\) 2.61803 2.61803
\(527\) 2.61803 2.61803
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.381966 0.381966
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 2.61803 2.61803
\(539\) 0.618034 0.618034
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −3.23607 −3.23607
\(543\) 0 0
\(544\) −1.61803 −1.61803
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.61803 −1.61803
\(550\) −1.00000 −1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(558\) 2.61803 2.61803
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 1.61803 1.61803
\(569\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0.618034 0.618034
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.61803 −1.61803
\(577\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(578\) −2.61803 −2.61803
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.618034 −0.618034
\(585\) 0 0
\(586\) 0 0
\(587\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(588\) 0 0
\(589\) 2.61803 2.61803
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.61803 −2.61803
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) −1.61803 −1.61803
\(609\) 0 0
\(610\) 0 0
\(611\) 0.381966 0.381966
\(612\) −2.61803 −2.61803
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 1.00000 1.00000
\(629\) 2.61803 2.61803
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −0.618034 −0.618034
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.618034 0.618034
\(638\) 0 0
\(639\) −1.61803 −1.61803
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4.23607 −4.23607
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −1.00000 −1.00000
\(649\) 0 0
\(650\) −1.00000 −1.00000
\(651\) 0 0
\(652\) 3.23607 3.23607
\(653\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.618034 0.618034
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 2.61803 2.61803
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.00000 −1.00000
\(672\) 0 0
\(673\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.00000 −1.00000
\(677\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 1.61803 1.61803
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −2.61803 −2.61803
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.00000 −1.00000
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 2.61803 2.61803
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 2.61803 2.61803
\(707\) 0 0
\(708\) 0 0
\(709\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0.618034 0.618034
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −2.61803 −2.61803
\(717\) 0 0
\(718\) 0 0
\(719\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.61803 −2.61803
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(734\) 2.61803 2.61803
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.00000 −1.00000
\(739\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −1.61803 −1.61803
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.23607 3.23607
\(765\) 0 0
\(766\) −3.23607 −3.23607
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(774\) 0 0
\(775\) −1.61803 −1.61803
\(776\) 0 0
\(777\) 0 0
\(778\) −1.00000 −1.00000
\(779\) −1.00000 −1.00000
\(780\) 0 0
\(781\) −1.00000 −1.00000
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(788\) 1.00000 1.00000
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.618034 −0.618034
\(793\) −1.00000 −1.00000
\(794\) 2.61803 2.61803
\(795\) 0 0
\(796\) 1.00000 1.00000
\(797\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(798\) 0 0
\(799\) −1.00000 −1.00000
\(800\) 1.00000 1.00000
\(801\) 0 0
\(802\) 0 0
\(803\) 0.381966 0.381966
\(804\) 0 0
\(805\) 0 0
\(806\) 1.61803 1.61803
\(807\) 0 0
\(808\) 0 0
\(809\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(810\) 0 0
\(811\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.61803 1.61803
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(824\) −0.618034 −0.618034
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 −1.00000
\(833\) −1.61803 −1.61803
\(834\) 0 0
\(835\) 0 0
\(836\) −1.61803 −1.61803
\(837\) 0 0
\(838\) 2.61803 2.61803
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 1.00000 1.00000
\(845\) 0 0
\(846\) −1.00000 −1.00000
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 2.61803 2.61803
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.61803 1.61803
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.00000 −1.00000
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.61803 2.61803
\(867\) 0 0
\(868\) 0 0
\(869\) 0.381966 0.381966
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.61803 −1.61803
\(883\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(884\) −1.61803 −1.61803
\(885\) 0 0
\(886\) 2.61803 2.61803
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.618034 0.618034
\(892\) 0 0
\(893\) −1.00000 −1.00000
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.00000 −1.00000
\(899\) 0 0
\(900\) 1.61803 1.61803
\(901\) 0 0
\(902\) −0.618034 −0.618034
\(903\) 0 0
\(904\) −0.618034 −0.618034
\(905\) 0 0
\(906\) 0 0
\(907\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(908\) 3.23607 3.23607
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.00000 −1.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.00000 −1.00000
\(924\) 0 0
\(925\) −1.61803 −1.61803
\(926\) 2.61803 2.61803
\(927\) 0.618034 0.618034
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −1.61803 −1.61803
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.618034 −0.618034
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0.381966 0.381966
\(950\) 2.61803 2.61803
\(951\) 0 0
\(952\) 0 0
\(953\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −1.00000 −1.00000
\(959\) 0 0
\(960\) 0 0
\(961\) 1.61803 1.61803
\(962\) 1.61803 1.61803
\(963\) −1.61803 −1.61803
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.618034 0.618034
\(969\) 0 0
\(970\) 0 0
\(971\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.61803 −1.61803
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.61803 −1.61803
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 127.1.b.a.126.1 2
3.2 odd 2 1143.1.d.b.253.2 2
4.3 odd 2 2032.1.b.a.1777.1 2
5.2 odd 4 3175.1.c.b.3174.1 4
5.3 odd 4 3175.1.c.b.3174.4 4
5.4 even 2 3175.1.d.d.126.2 2
127.126 odd 2 CM 127.1.b.a.126.1 2
381.380 even 2 1143.1.d.b.253.2 2
508.507 even 2 2032.1.b.a.1777.1 2
635.253 even 4 3175.1.c.b.3174.4 4
635.507 even 4 3175.1.c.b.3174.1 4
635.634 odd 2 3175.1.d.d.126.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
127.1.b.a.126.1 2 1.1 even 1 trivial
127.1.b.a.126.1 2 127.126 odd 2 CM
1143.1.d.b.253.2 2 3.2 odd 2
1143.1.d.b.253.2 2 381.380 even 2
2032.1.b.a.1777.1 2 4.3 odd 2
2032.1.b.a.1777.1 2 508.507 even 2
3175.1.c.b.3174.1 4 5.2 odd 4
3175.1.c.b.3174.1 4 635.507 even 4
3175.1.c.b.3174.4 4 5.3 odd 4
3175.1.c.b.3174.4 4 635.253 even 4
3175.1.d.d.126.2 2 5.4 even 2
3175.1.d.d.126.2 2 635.634 odd 2