Properties

Label 1265.1.bi.a
Level $1265$
Weight $1$
Character orbit 1265.bi
Analytic conductor $0.631$
Analytic rank $0$
Dimension $20$
Projective image $D_{44}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1265 = 5 \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1265.bi (of order \(44\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.631317240981\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\Q(\zeta_{44})\)
Defining polynomial: \(x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{44}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{44} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( -\zeta_{44}^{2} + \zeta_{44}^{19} ) q^{3} -\zeta_{44}^{15} q^{4} + \zeta_{44}^{21} q^{5} + ( \zeta_{44}^{4} - \zeta_{44}^{16} - \zeta_{44}^{21} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{44}^{2} + \zeta_{44}^{19} ) q^{3} -\zeta_{44}^{15} q^{4} + \zeta_{44}^{21} q^{5} + ( \zeta_{44}^{4} - \zeta_{44}^{16} - \zeta_{44}^{21} ) q^{9} + \zeta_{44}^{9} q^{11} + ( \zeta_{44}^{12} + \zeta_{44}^{17} ) q^{12} + ( \zeta_{44} - \zeta_{44}^{18} ) q^{15} -\zeta_{44}^{8} q^{16} + \zeta_{44}^{14} q^{20} -\zeta_{44}^{9} q^{23} -\zeta_{44}^{20} q^{25} + ( -\zeta_{44} - \zeta_{44}^{6} + \zeta_{44}^{13} + \zeta_{44}^{18} ) q^{27} + ( -\zeta_{44}^{5} - \zeta_{44}^{7} ) q^{31} + ( -\zeta_{44}^{6} - \zeta_{44}^{11} ) q^{33} + ( -\zeta_{44}^{9} - \zeta_{44}^{14} - \zeta_{44}^{19} ) q^{36} + ( -\zeta_{44}^{14} - \zeta_{44}^{17} ) q^{37} + \zeta_{44}^{2} q^{44} + ( -\zeta_{44}^{3} + \zeta_{44}^{15} + \zeta_{44}^{20} ) q^{45} + ( \zeta_{44} - \zeta_{44}^{10} ) q^{47} + ( \zeta_{44}^{5} + \zeta_{44}^{10} ) q^{48} -\zeta_{44}^{5} q^{49} + ( -\zeta_{44}^{12} + \zeta_{44}^{15} ) q^{53} -\zeta_{44}^{8} q^{55} + ( \zeta_{44}^{10} - \zeta_{44}^{18} ) q^{59} + ( -\zeta_{44}^{11} - \zeta_{44}^{16} ) q^{60} -\zeta_{44} q^{64} + ( \zeta_{44}^{16} - \zeta_{44}^{21} ) q^{67} + ( \zeta_{44}^{6} + \zeta_{44}^{11} ) q^{69} + ( -1 - \zeta_{44}^{4} ) q^{71} + ( -1 + \zeta_{44}^{17} ) q^{75} + \zeta_{44}^{7} q^{80} + ( \zeta_{44}^{3} + \zeta_{44}^{8} - \zeta_{44}^{10} - \zeta_{44}^{15} - \zeta_{44}^{20} ) q^{81} + ( -\zeta_{44}^{13} - \zeta_{44}^{19} ) q^{89} -\zeta_{44}^{2} q^{92} + ( \zeta_{44}^{2} + \zeta_{44}^{4} + \zeta_{44}^{7} + \zeta_{44}^{9} ) q^{93} + ( 1 - \zeta_{44}^{13} ) q^{97} + ( \zeta_{44}^{3} + \zeta_{44}^{8} + \zeta_{44}^{13} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} + O(q^{10}) \) \( 20q - 2q^{3} - 2q^{12} - 2q^{15} + 2q^{16} + 2q^{20} + 2q^{25} - 2q^{33} - 2q^{36} - 2q^{37} + 2q^{44} - 2q^{45} - 2q^{47} + 2q^{48} + 2q^{53} + 2q^{55} + 2q^{60} - 2q^{67} + 2q^{69} - 18q^{71} - 20q^{75} - 2q^{81} - 2q^{92} + 20q^{97} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1265\mathbb{Z}\right)^\times\).

\(n\) \(166\) \(507\) \(1036\)
\(\chi(n)\) \(\zeta_{44}^{2}\) \(-\zeta_{44}^{11}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
0.755750 + 0.654861i
−0.755750 + 0.654861i
−0.909632 0.415415i
0.540641 0.841254i
0.540641 + 0.841254i
0.989821 + 0.142315i
−0.989821 + 0.142315i
0.281733 0.959493i
−0.909632 + 0.415415i
−0.281733 0.959493i
−0.755750 0.654861i
−0.540641 0.841254i
0.755750 0.654861i
0.909632 + 0.415415i
−0.281733 + 0.959493i
−0.540641 + 0.841254i
0.909632 0.415415i
−0.989821 0.142315i
0.989821 0.142315i
0.281733 + 0.959493i
0 0.398326 0.148568i 0.281733 + 0.959493i −0.755750 + 0.654861i 0 0 0 −0.619158 + 0.536504i 0
153.1 0 −0.682956 + 1.83107i −0.281733 + 0.959493i 0.755750 + 0.654861i 0 0 0 −2.13066 1.84623i 0
263.1 0 −0.373128 1.71524i 0.989821 + 0.142315i 0.909632 0.415415i 0 0 0 −1.89320 + 0.864596i 0
318.1 0 1.40524 + 0.767317i 0.755750 + 0.654861i −0.540641 0.841254i 0 0 0 0.845273 + 1.31527i 0
362.1 0 1.40524 0.767317i 0.755750 0.654861i −0.540641 + 0.841254i 0 0 0 0.845273 1.31527i 0
373.1 0 −1.86912 + 0.133682i 0.540641 0.841254i −0.989821 + 0.142315i 0 0 0 2.48594 0.357424i 0
428.1 0 −0.0498610 + 0.697148i −0.540641 0.841254i 0.989821 + 0.142315i 0 0 0 0.506293 + 0.0727939i 0
527.1 0 1.59700 + 1.19550i −0.909632 + 0.415415i −0.281733 0.959493i 0 0 0 0.839462 + 2.85895i 0
582.1 0 −0.373128 + 1.71524i 0.989821 0.142315i 0.909632 + 0.415415i 0 0 0 −1.89320 0.864596i 0
747.1 0 0.0855040 + 0.114220i 0.909632 + 0.415415i 0.281733 0.959493i 0 0 0 0.275997 0.939960i 0
802.1 0 −0.682956 1.83107i −0.281733 0.959493i 0.755750 0.654861i 0 0 0 −2.13066 + 1.84623i 0
868.1 0 −0.574406 1.05195i −0.755750 + 0.654861i 0.540641 0.841254i 0 0 0 −0.236009 + 0.367237i 0
912.1 0 0.398326 + 0.148568i 0.281733 0.959493i −0.755750 0.654861i 0 0 0 −0.619158 0.536504i 0
1022.1 0 −0.936593 + 0.203743i −0.989821 0.142315i −0.909632 + 0.415415i 0 0 0 −0.0739364 + 0.0337656i 0
1033.1 0 0.0855040 0.114220i 0.909632 0.415415i 0.281733 + 0.959493i 0 0 0 0.275997 + 0.939960i 0
1077.1 0 −0.574406 + 1.05195i −0.755750 0.654861i 0.540641 + 0.841254i 0 0 0 −0.236009 0.367237i 0
1088.1 0 −0.936593 0.203743i −0.989821 + 0.142315i −0.909632 0.415415i 0 0 0 −0.0739364 0.0337656i 0
1132.1 0 −0.0498610 0.697148i −0.540641 + 0.841254i 0.989821 0.142315i 0 0 0 0.506293 0.0727939i 0
1187.1 0 −1.86912 0.133682i 0.540641 + 0.841254i −0.989821 0.142315i 0 0 0 2.48594 + 0.357424i 0
1253.1 0 1.59700 1.19550i −0.909632 0.415415i −0.281733 + 0.959493i 0 0 0 0.839462 2.85895i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1253.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
115.l even 44 1 inner
1265.bi odd 44 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1265.1.bi.a 20
5.c odd 4 1 1265.1.bi.b yes 20
11.b odd 2 1 CM 1265.1.bi.a 20
23.d odd 22 1 1265.1.bi.b yes 20
55.e even 4 1 1265.1.bi.b yes 20
115.l even 44 1 inner 1265.1.bi.a 20
253.l even 22 1 1265.1.bi.b yes 20
1265.bi odd 44 1 inner 1265.1.bi.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1265.1.bi.a 20 1.a even 1 1 trivial
1265.1.bi.a 20 11.b odd 2 1 CM
1265.1.bi.a 20 115.l even 44 1 inner
1265.1.bi.a 20 1265.bi odd 44 1 inner
1265.1.bi.b yes 20 5.c odd 4 1
1265.1.bi.b yes 20 23.d odd 22 1
1265.1.bi.b yes 20 55.e even 4 1
1265.1.bi.b yes 20 253.l even 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{20} + \cdots\) acting on \(S_{1}^{\mathrm{new}}(1265, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \)
$3$ \( 1 - 10 T + 61 T^{2} - 66 T^{3} - 69 T^{4} - 36 T^{5} + 37 T^{6} + 660 T^{7} + 944 T^{8} + 614 T^{9} + 142 T^{10} - 166 T^{11} + 16 T^{12} + 88 T^{13} + 80 T^{14} + 36 T^{15} - 4 T^{16} + 2 T^{18} + 2 T^{19} + T^{20} \)
$5$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
$7$ \( T^{20} \)
$11$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
$13$ \( T^{20} \)
$17$ \( T^{20} \)
$19$ \( T^{20} \)
$23$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
$29$ \( T^{20} \)
$31$ \( 121 + 605 T^{2} + 484 T^{4} - 968 T^{6} + 484 T^{8} + 99 T^{10} + 165 T^{12} + 22 T^{16} + T^{20} \)
$37$ \( 1 - 10 T + 6 T^{2} + 88 T^{3} + 261 T^{4} + 206 T^{5} + 741 T^{6} + 638 T^{7} + 933 T^{8} + 614 T^{9} + 208 T^{10} - 100 T^{11} - 204 T^{12} - 110 T^{13} - 8 T^{14} - 8 T^{15} - 4 T^{16} + 2 T^{18} + 2 T^{19} + T^{20} \)
$41$ \( T^{20} \)
$43$ \( T^{20} \)
$47$ \( 1 - 10 T + 50 T^{2} - 25 T^{4} + 52 T^{5} + 730 T^{6} + 748 T^{7} + 383 T^{8} - 2 T^{9} + 472 T^{10} + 472 T^{11} + 236 T^{12} + 58 T^{14} + 58 T^{15} + 29 T^{16} + 2 T^{18} + 2 T^{19} + T^{20} \)
$53$ \( 1 + 10 T + 61 T^{2} + 66 T^{3} - 69 T^{4} + 36 T^{5} + 37 T^{6} - 660 T^{7} + 944 T^{8} - 614 T^{9} + 142 T^{10} + 166 T^{11} + 16 T^{12} - 88 T^{13} + 80 T^{14} - 36 T^{15} - 4 T^{16} + 2 T^{18} - 2 T^{19} + T^{20} \)
$59$ \( ( 11 + 11 T + 11 T^{2} - 33 T^{3} + 22 T^{5} + T^{10} )^{2} \)
$61$ \( T^{20} \)
$67$ \( 1 - 10 T + 6 T^{2} + 88 T^{3} + 261 T^{4} + 206 T^{5} + 741 T^{6} + 638 T^{7} + 933 T^{8} + 614 T^{9} + 208 T^{10} - 100 T^{11} - 204 T^{12} - 110 T^{13} - 8 T^{14} - 8 T^{15} - 4 T^{16} + 2 T^{18} + 2 T^{19} + T^{20} \)
$71$ \( ( 1 + 5 T + 25 T^{2} + 70 T^{3} + 130 T^{4} + 166 T^{5} + 148 T^{6} + 91 T^{7} + 37 T^{8} + 9 T^{9} + T^{10} )^{2} \)
$73$ \( T^{20} \)
$79$ \( T^{20} \)
$83$ \( T^{20} \)
$89$ \( 121 - 121 T^{2} + 847 T^{4} + 1573 T^{6} + 1452 T^{8} + 462 T^{10} + 22 T^{12} + T^{20} \)
$97$ \( 1 - 10 T + 105 T^{2} - 660 T^{3} + 2945 T^{4} - 9892 T^{5} + 25942 T^{6} - 54384 T^{7} + 92530 T^{8} - 128988 T^{9} + 148070 T^{10} - 140152 T^{11} + 109136 T^{12} - 69498 T^{13} + 35819 T^{14} - 14704 T^{15} + 4693 T^{16} - 1122 T^{17} + 189 T^{18} - 20 T^{19} + T^{20} \)
show more
show less