Properties

Label 1264.1.e.a
Level $1264$
Weight $1$
Character orbit 1264.e
Self dual yes
Analytic conductor $0.631$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -79
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1264,1,Mod(1105,1264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1264.1105"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1264, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1264 = 2^{4} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1264.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.630818175968\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 79)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6241.1
Artin image: $D_{10}$
Artin field: Galois closure of 10.0.39884882944.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{5} + q^{9} + ( - \beta + 1) q^{11} + (\beta - 1) q^{13} + \beta q^{19} + \beta q^{23} + \beta q^{25} + ( - \beta + 1) q^{31} - \beta q^{45} + q^{49} + q^{55} - q^{65} + \beta q^{67} - \beta q^{73} + \cdots + ( - \beta + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} + 2 q^{9} + q^{11} - q^{13} + q^{19} + q^{23} + q^{25} + q^{31} - q^{45} + 2 q^{49} + 2 q^{55} - 2 q^{65} + q^{67} - q^{73} - 2 q^{79} + 2 q^{81} - 4 q^{83} - q^{89} - 3 q^{95} - q^{97}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1264\mathbb{Z}\right)^\times\).

\(n\) \(159\) \(161\) \(949\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1105.1
1.61803
−0.618034
0 0 0 −1.61803 0 0 0 1.00000 0
1105.2 0 0 0 0.618034 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
79.b odd 2 1 CM by \(\Q(\sqrt{-79}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1264.1.e.a 2
4.b odd 2 1 79.1.b.a 2
12.b even 2 1 711.1.d.b 2
20.d odd 2 1 1975.1.d.c 2
20.e even 4 2 1975.1.c.a 4
28.d even 2 1 3871.1.c.c 2
28.f even 6 2 3871.1.m.b 4
28.g odd 6 2 3871.1.m.c 4
79.b odd 2 1 CM 1264.1.e.a 2
316.d even 2 1 79.1.b.a 2
948.e odd 2 1 711.1.d.b 2
1580.b even 2 1 1975.1.d.c 2
1580.k odd 4 2 1975.1.c.a 4
2212.b odd 2 1 3871.1.c.c 2
2212.s even 6 2 3871.1.m.c 4
2212.bi odd 6 2 3871.1.m.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
79.1.b.a 2 4.b odd 2 1
79.1.b.a 2 316.d even 2 1
711.1.d.b 2 12.b even 2 1
711.1.d.b 2 948.e odd 2 1
1264.1.e.a 2 1.a even 1 1 trivial
1264.1.e.a 2 79.b odd 2 1 CM
1975.1.c.a 4 20.e even 4 2
1975.1.c.a 4 1580.k odd 4 2
1975.1.d.c 2 20.d odd 2 1
1975.1.d.c 2 1580.b even 2 1
3871.1.c.c 2 28.d even 2 1
3871.1.c.c 2 2212.b odd 2 1
3871.1.m.b 4 28.f even 6 2
3871.1.m.b 4 2212.bi odd 6 2
3871.1.m.c 4 28.g odd 6 2
3871.1.m.c 4 2212.s even 6 2

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1264, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$13$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$23$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$79$ \( (T + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$97$ \( T^{2} + T - 1 \) Copy content Toggle raw display
show more
show less