Properties

Label 1264.1.e
Level $1264$
Weight $1$
Character orbit 1264.e
Rep. character $\chi_{1264}(1105,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1264 = 2^{4} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1264.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 79 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1264, [\chi])\).

Total New Old
Modular forms 18 3 15
Cusp forms 12 2 10
Eisenstein series 6 1 5

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{5} + 2 q^{9} + q^{11} - q^{13} + q^{19} + q^{23} + q^{25} + q^{31} - q^{45} + 2 q^{49} + 2 q^{55} - 2 q^{65} + q^{67} - q^{73} - 2 q^{79} + 2 q^{81} - 4 q^{83} - q^{89} - 3 q^{95} - q^{97}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1264.1.e.a 1264.e 79.b $2$ $0.631$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-79}) \) None 79.1.b.a \(0\) \(0\) \(-1\) \(0\) \(q-\beta q^{5}+q^{9}+(1-\beta )q^{11}+(-1+\beta )q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1264, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1264, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 5}\)