Defining parameters
| Level: | \( N \) | \(=\) | \( 1264 = 2^{4} \cdot 79 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1264.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 79 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(160\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1264, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 18 | 3 | 15 |
| Cusp forms | 12 | 2 | 10 |
| Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1264, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1264.1.e.a | $2$ | $0.631$ | \(\Q(\sqrt{5}) \) | $D_{5}$ | \(\Q(\sqrt{-79}) \) | None | \(0\) | \(0\) | \(-1\) | \(0\) | \(q-\beta q^{5}+q^{9}+(1-\beta )q^{11}+(-1+\beta )q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1264, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1264, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 5}\)