Properties

Label 1260.2.s.f.541.2
Level $1260$
Weight $2$
Character 1260.541
Analytic conductor $10.061$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.2
Root \(1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1260.541
Dual form 1260.2.s.f.361.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(1.32288 - 2.29129i) q^{7} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{5} +(1.32288 - 2.29129i) q^{7} +(1.82288 + 3.15731i) q^{11} +2.64575 q^{13} +(1.82288 + 3.15731i) q^{17} +(1.14575 - 1.98450i) q^{19} +(-1.82288 + 3.15731i) q^{23} +(-0.500000 - 0.866025i) q^{25} -2.35425 q^{29} +(-3.14575 - 5.44860i) q^{31} +(-1.32288 - 2.29129i) q^{35} +(2.32288 - 4.02334i) q^{37} +10.9373 q^{41} +9.93725 q^{43} +(3.00000 - 5.19615i) q^{47} +(-3.50000 - 6.06218i) q^{49} +(-3.64575 - 6.31463i) q^{53} +3.64575 q^{55} +(-2.46863 - 4.27579i) q^{59} +(-4.00000 + 6.92820i) q^{61} +(1.32288 - 2.29129i) q^{65} +(2.32288 + 4.02334i) q^{67} -8.35425 q^{71} +(6.61438 + 11.4564i) q^{73} +9.64575 q^{77} +(4.14575 - 7.18065i) q^{79} -4.93725 q^{83} +3.64575 q^{85} +(6.11438 - 10.5904i) q^{89} +(3.50000 - 6.06218i) q^{91} +(-1.14575 - 1.98450i) q^{95} +8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{5} + 2 q^{11} + 2 q^{17} - 6 q^{19} - 2 q^{23} - 2 q^{25} - 20 q^{29} - 2 q^{31} + 4 q^{37} + 12 q^{41} + 8 q^{43} + 12 q^{47} - 14 q^{49} - 4 q^{53} + 4 q^{55} + 6 q^{59} - 16 q^{61} + 4 q^{67} - 44 q^{71} + 28 q^{77} + 6 q^{79} + 12 q^{83} + 4 q^{85} - 2 q^{89} + 14 q^{91} + 6 q^{95} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 1.32288 2.29129i 0.500000 0.866025i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.82288 + 3.15731i 0.549618 + 0.951966i 0.998301 + 0.0582747i \(0.0185599\pi\)
−0.448683 + 0.893691i \(0.648107\pi\)
\(12\) 0 0
\(13\) 2.64575 0.733799 0.366900 0.930261i \(-0.380419\pi\)
0.366900 + 0.930261i \(0.380419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.82288 + 3.15731i 0.442112 + 0.765761i 0.997846 0.0655994i \(-0.0208959\pi\)
−0.555734 + 0.831360i \(0.687563\pi\)
\(18\) 0 0
\(19\) 1.14575 1.98450i 0.262853 0.455275i −0.704146 0.710056i \(-0.748670\pi\)
0.966999 + 0.254780i \(0.0820031\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.82288 + 3.15731i −0.380096 + 0.658345i −0.991076 0.133301i \(-0.957442\pi\)
0.610980 + 0.791646i \(0.290776\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.35425 −0.437173 −0.218587 0.975818i \(-0.570145\pi\)
−0.218587 + 0.975818i \(0.570145\pi\)
\(30\) 0 0
\(31\) −3.14575 5.44860i −0.564994 0.978598i −0.997050 0.0767512i \(-0.975545\pi\)
0.432057 0.901846i \(-0.357788\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.32288 2.29129i −0.223607 0.387298i
\(36\) 0 0
\(37\) 2.32288 4.02334i 0.381878 0.661433i −0.609452 0.792823i \(-0.708611\pi\)
0.991331 + 0.131390i \(0.0419440\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.9373 1.70811 0.854056 0.520181i \(-0.174136\pi\)
0.854056 + 0.520181i \(0.174136\pi\)
\(42\) 0 0
\(43\) 9.93725 1.51542 0.757709 0.652593i \(-0.226319\pi\)
0.757709 + 0.652593i \(0.226319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.64575 6.31463i −0.500782 0.867381i −1.00000 0.000903738i \(-0.999712\pi\)
0.499217 0.866477i \(-0.333621\pi\)
\(54\) 0 0
\(55\) 3.64575 0.491593
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.46863 4.27579i −0.321388 0.556660i 0.659387 0.751804i \(-0.270816\pi\)
−0.980775 + 0.195144i \(0.937483\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.32288 2.29129i 0.164083 0.284199i
\(66\) 0 0
\(67\) 2.32288 + 4.02334i 0.283784 + 0.491529i 0.972314 0.233680i \(-0.0750767\pi\)
−0.688529 + 0.725209i \(0.741743\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.35425 −0.991467 −0.495733 0.868475i \(-0.665101\pi\)
−0.495733 + 0.868475i \(0.665101\pi\)
\(72\) 0 0
\(73\) 6.61438 + 11.4564i 0.774154 + 1.34087i 0.935269 + 0.353939i \(0.115158\pi\)
−0.161114 + 0.986936i \(0.551509\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.64575 1.09924
\(78\) 0 0
\(79\) 4.14575 7.18065i 0.466433 0.807886i −0.532831 0.846221i \(-0.678872\pi\)
0.999265 + 0.0383349i \(0.0122054\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.93725 −0.541934 −0.270967 0.962589i \(-0.587343\pi\)
−0.270967 + 0.962589i \(0.587343\pi\)
\(84\) 0 0
\(85\) 3.64575 0.395437
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.11438 10.5904i 0.648123 1.12258i −0.335448 0.942059i \(-0.608888\pi\)
0.983571 0.180523i \(-0.0577790\pi\)
\(90\) 0 0
\(91\) 3.50000 6.06218i 0.366900 0.635489i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.14575 1.98450i −0.117552 0.203605i
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.46863 + 9.47194i 0.544149 + 0.942493i 0.998660 + 0.0517522i \(0.0164806\pi\)
−0.454511 + 0.890741i \(0.650186\pi\)
\(102\) 0 0
\(103\) −7.32288 + 12.6836i −0.721544 + 1.24975i 0.238836 + 0.971060i \(0.423234\pi\)
−0.960381 + 0.278692i \(0.910099\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.531373 + 0.920365i −0.0513698 + 0.0889751i −0.890567 0.454852i \(-0.849692\pi\)
0.839197 + 0.543827i \(0.183025\pi\)
\(108\) 0 0
\(109\) 6.50000 + 11.2583i 0.622587 + 1.07835i 0.989002 + 0.147901i \(0.0472517\pi\)
−0.366415 + 0.930451i \(0.619415\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 1.82288 + 3.15731i 0.169984 + 0.294421i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.64575 0.884225
\(120\) 0 0
\(121\) −1.14575 + 1.98450i −0.104159 + 0.180409i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −17.9373 −1.59167 −0.795837 0.605511i \(-0.792969\pi\)
−0.795837 + 0.605511i \(0.792969\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.35425 9.27383i 0.467803 0.810258i −0.531520 0.847046i \(-0.678379\pi\)
0.999323 + 0.0367872i \(0.0117124\pi\)
\(132\) 0 0
\(133\) −3.03137 5.25049i −0.262853 0.455275i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.11438 + 5.39426i 0.266079 + 0.460863i 0.967846 0.251544i \(-0.0809384\pi\)
−0.701767 + 0.712407i \(0.747605\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.82288 + 8.35347i 0.403309 + 0.698552i
\(144\) 0 0
\(145\) −1.17712 + 2.03884i −0.0977549 + 0.169316i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.29150 12.6293i 0.597343 1.03463i −0.395868 0.918307i \(-0.629556\pi\)
0.993212 0.116321i \(-0.0371103\pi\)
\(150\) 0 0
\(151\) −8.29150 14.3613i −0.674753 1.16871i −0.976541 0.215331i \(-0.930917\pi\)
0.301788 0.953375i \(-0.402416\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.29150 −0.505346
\(156\) 0 0
\(157\) −4.64575 8.04668i −0.370771 0.642195i 0.618913 0.785459i \(-0.287573\pi\)
−0.989684 + 0.143265i \(0.954240\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.82288 + 8.35347i 0.380096 + 0.658345i
\(162\) 0 0
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.3542 −1.11077 −0.555383 0.831595i \(-0.687428\pi\)
−0.555383 + 0.831595i \(0.687428\pi\)
\(168\) 0 0
\(169\) −6.00000 −0.461538
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.9373 + 18.9439i −0.831544 + 1.44028i 0.0652695 + 0.997868i \(0.479209\pi\)
−0.896813 + 0.442409i \(0.854124\pi\)
\(174\) 0 0
\(175\) −2.64575 −0.200000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.2915 17.8254i −0.769223 1.33233i −0.937985 0.346676i \(-0.887310\pi\)
0.168762 0.985657i \(-0.446023\pi\)
\(180\) 0 0
\(181\) 6.29150 0.467644 0.233822 0.972279i \(-0.424877\pi\)
0.233822 + 0.972279i \(0.424877\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.32288 4.02334i −0.170781 0.295802i
\(186\) 0 0
\(187\) −6.64575 + 11.5108i −0.485985 + 0.841752i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.5830 + 20.0624i −0.838117 + 1.45166i 0.0533504 + 0.998576i \(0.483010\pi\)
−0.891467 + 0.453085i \(0.850323\pi\)
\(192\) 0 0
\(193\) 11.9686 + 20.7303i 0.861521 + 1.49220i 0.870461 + 0.492237i \(0.163821\pi\)
−0.00894034 + 0.999960i \(0.502846\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.9373 −0.779247 −0.389624 0.920974i \(-0.627395\pi\)
−0.389624 + 0.920974i \(0.627395\pi\)
\(198\) 0 0
\(199\) −9.58301 16.5983i −0.679321 1.17662i −0.975186 0.221389i \(-0.928941\pi\)
0.295864 0.955230i \(-0.404392\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.11438 + 5.39426i −0.218587 + 0.378603i
\(204\) 0 0
\(205\) 5.46863 9.47194i 0.381945 0.661549i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.35425 0.577875
\(210\) 0 0
\(211\) −12.5830 −0.866250 −0.433125 0.901334i \(-0.642589\pi\)
−0.433125 + 0.901334i \(0.642589\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.96863 8.60591i 0.338858 0.586918i
\(216\) 0 0
\(217\) −16.6458 −1.12999
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.82288 + 8.35347i 0.324422 + 0.561915i
\(222\) 0 0
\(223\) −13.8745 −0.929106 −0.464553 0.885545i \(-0.653785\pi\)
−0.464553 + 0.885545i \(0.653785\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.17712 + 12.4311i 0.476362 + 0.825084i 0.999633 0.0270825i \(-0.00862168\pi\)
−0.523271 + 0.852167i \(0.675288\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.35425 9.27383i 0.350768 0.607549i −0.635616 0.772006i \(-0.719254\pi\)
0.986384 + 0.164457i \(0.0525871\pi\)
\(234\) 0 0
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 11.6458 + 20.1710i 0.750169 + 1.29933i 0.947741 + 0.319042i \(0.103361\pi\)
−0.197572 + 0.980288i \(0.563306\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) 3.03137 5.25049i 0.192882 0.334081i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.93725 −0.311637 −0.155818 0.987786i \(-0.549801\pi\)
−0.155818 + 0.987786i \(0.549801\pi\)
\(252\) 0 0
\(253\) −13.2915 −0.835630
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.7601 + 27.2973i −0.983090 + 1.70276i −0.332955 + 0.942943i \(0.608046\pi\)
−0.650135 + 0.759819i \(0.725288\pi\)
\(258\) 0 0
\(259\) −6.14575 10.6448i −0.381878 0.661433i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.2288 + 21.1808i 0.754057 + 1.30607i 0.945842 + 0.324629i \(0.105239\pi\)
−0.191784 + 0.981437i \(0.561427\pi\)
\(264\) 0 0
\(265\) −7.29150 −0.447913
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.93725 3.35542i −0.118116 0.204584i 0.800905 0.598792i \(-0.204352\pi\)
−0.919021 + 0.394208i \(0.871019\pi\)
\(270\) 0 0
\(271\) −14.2915 + 24.7536i −0.868147 + 1.50367i −0.00425882 + 0.999991i \(0.501356\pi\)
−0.863888 + 0.503684i \(0.831978\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.82288 3.15731i 0.109924 0.190393i
\(276\) 0 0
\(277\) 7.67712 + 13.2972i 0.461274 + 0.798949i 0.999025 0.0441542i \(-0.0140593\pi\)
−0.537751 + 0.843104i \(0.680726\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) 4.67712 + 8.10102i 0.278026 + 0.481555i 0.970894 0.239509i \(-0.0769865\pi\)
−0.692868 + 0.721064i \(0.743653\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.4686 25.0604i 0.854056 1.47927i
\(288\) 0 0
\(289\) 1.85425 3.21165i 0.109073 0.188921i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −4.93725 −0.287458
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.82288 + 8.35347i −0.278914 + 0.483093i
\(300\) 0 0
\(301\) 13.1458 22.7691i 0.757709 1.31239i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 + 6.92820i 0.229039 + 0.396708i
\(306\) 0 0
\(307\) 12.0627 0.688457 0.344229 0.938886i \(-0.388140\pi\)
0.344229 + 0.938886i \(0.388140\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.17712 + 7.23499i 0.236863 + 0.410259i 0.959812 0.280642i \(-0.0905474\pi\)
−0.722949 + 0.690901i \(0.757214\pi\)
\(312\) 0 0
\(313\) −2.61438 + 4.52824i −0.147773 + 0.255951i −0.930404 0.366535i \(-0.880544\pi\)
0.782631 + 0.622486i \(0.213877\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.76013 + 11.7089i −0.379687 + 0.657637i −0.991017 0.133739i \(-0.957302\pi\)
0.611330 + 0.791376i \(0.290635\pi\)
\(318\) 0 0
\(319\) −4.29150 7.43310i −0.240278 0.416174i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.35425 0.464843
\(324\) 0 0
\(325\) −1.32288 2.29129i −0.0733799 0.127098i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.93725 13.7477i −0.437595 0.757937i
\(330\) 0 0
\(331\) −11.0830 + 19.1963i −0.609177 + 1.05513i 0.382199 + 0.924080i \(0.375167\pi\)
−0.991376 + 0.131046i \(0.958167\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.64575 0.253825
\(336\) 0 0
\(337\) −6.77124 −0.368853 −0.184427 0.982846i \(-0.559043\pi\)
−0.184427 + 0.982846i \(0.559043\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.4686 19.8642i 0.621061 1.07571i
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.5830 25.2585i −0.782857 1.35595i −0.930271 0.366873i \(-0.880428\pi\)
0.147414 0.989075i \(-0.452905\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.0516 + 19.1420i 0.588219 + 1.01883i 0.994466 + 0.105062i \(0.0335040\pi\)
−0.406247 + 0.913763i \(0.633163\pi\)
\(354\) 0 0
\(355\) −4.17712 + 7.23499i −0.221699 + 0.383993i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.4059 23.2197i 0.707535 1.22549i −0.258233 0.966083i \(-0.583140\pi\)
0.965769 0.259405i \(-0.0835263\pi\)
\(360\) 0 0
\(361\) 6.87451 + 11.9070i 0.361816 + 0.626684i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.2288 0.692425
\(366\) 0 0
\(367\) 9.61438 + 16.6526i 0.501866 + 0.869258i 0.999998 + 0.00215655i \(0.000686450\pi\)
−0.498131 + 0.867102i \(0.665980\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −19.2915 −1.00156
\(372\) 0 0
\(373\) −7.96863 + 13.8021i −0.412600 + 0.714644i −0.995173 0.0981342i \(-0.968713\pi\)
0.582573 + 0.812778i \(0.302046\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.22876 −0.320797
\(378\) 0 0
\(379\) −26.2915 −1.35050 −0.675252 0.737587i \(-0.735965\pi\)
−0.675252 + 0.737587i \(0.735965\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.35425 + 14.4700i −0.426882 + 0.739382i −0.996594 0.0824628i \(-0.973721\pi\)
0.569712 + 0.821844i \(0.307055\pi\)
\(384\) 0 0
\(385\) 4.82288 8.35347i 0.245797 0.425732i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.7601 32.4935i −0.951176 1.64749i −0.742885 0.669419i \(-0.766543\pi\)
−0.208291 0.978067i \(-0.566790\pi\)
\(390\) 0 0
\(391\) −13.2915 −0.672180
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.14575 7.18065i −0.208595 0.361298i
\(396\) 0 0
\(397\) 8.32288 14.4156i 0.417713 0.723500i −0.577996 0.816040i \(-0.696165\pi\)
0.995709 + 0.0925393i \(0.0294984\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.64575 16.7069i 0.481686 0.834304i −0.518093 0.855324i \(-0.673358\pi\)
0.999779 + 0.0210198i \(0.00669131\pi\)
\(402\) 0 0
\(403\) −8.32288 14.4156i −0.414592 0.718094i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9373 0.839549
\(408\) 0 0
\(409\) 18.0830 + 31.3207i 0.894147 + 1.54871i 0.834857 + 0.550467i \(0.185550\pi\)
0.0592904 + 0.998241i \(0.481116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13.0627 −0.642776
\(414\) 0 0
\(415\) −2.46863 + 4.27579i −0.121180 + 0.209890i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.7085 −0.523144 −0.261572 0.965184i \(-0.584241\pi\)
−0.261572 + 0.965184i \(0.584241\pi\)
\(420\) 0 0
\(421\) 1.58301 0.0771510 0.0385755 0.999256i \(-0.487718\pi\)
0.0385755 + 0.999256i \(0.487718\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.82288 3.15731i 0.0884225 0.153152i
\(426\) 0 0
\(427\) 10.5830 + 18.3303i 0.512148 + 0.887066i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.06275 + 7.03688i 0.195696 + 0.338955i 0.947128 0.320855i \(-0.103970\pi\)
−0.751433 + 0.659810i \(0.770637\pi\)
\(432\) 0 0
\(433\) 8.64575 0.415488 0.207744 0.978183i \(-0.433388\pi\)
0.207744 + 0.978183i \(0.433388\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.17712 + 7.23499i 0.199819 + 0.346097i
\(438\) 0 0
\(439\) 2.64575 4.58258i 0.126275 0.218714i −0.795956 0.605355i \(-0.793031\pi\)
0.922231 + 0.386640i \(0.126365\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.9373 + 18.9439i −0.519645 + 0.900051i 0.480095 + 0.877217i \(0.340602\pi\)
−0.999739 + 0.0228342i \(0.992731\pi\)
\(444\) 0 0
\(445\) −6.11438 10.5904i −0.289849 0.502034i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.58301 −0.405057 −0.202529 0.979276i \(-0.564916\pi\)
−0.202529 + 0.979276i \(0.564916\pi\)
\(450\) 0 0
\(451\) 19.9373 + 34.5323i 0.938809 + 1.62606i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.50000 6.06218i −0.164083 0.284199i
\(456\) 0 0
\(457\) 4.67712 8.10102i 0.218787 0.378950i −0.735651 0.677361i \(-0.763123\pi\)
0.954437 + 0.298412i \(0.0964568\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.3542 0.668544 0.334272 0.942477i \(-0.391510\pi\)
0.334272 + 0.942477i \(0.391510\pi\)
\(462\) 0 0
\(463\) −26.5203 −1.23250 −0.616250 0.787550i \(-0.711349\pi\)
−0.616250 + 0.787550i \(0.711349\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.8745 22.2993i 0.595761 1.03189i −0.397678 0.917525i \(-0.630184\pi\)
0.993439 0.114363i \(-0.0364829\pi\)
\(468\) 0 0
\(469\) 12.2915 0.567569
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.1144 + 31.3750i 0.832900 + 1.44263i
\(474\) 0 0
\(475\) −2.29150 −0.105141
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.29150 + 12.6293i 0.333157 + 0.577045i 0.983129 0.182913i \(-0.0585527\pi\)
−0.649972 + 0.759958i \(0.725219\pi\)
\(480\) 0 0
\(481\) 6.14575 10.6448i 0.280222 0.485359i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000 6.92820i 0.181631 0.314594i
\(486\) 0 0
\(487\) −1.32288 2.29129i −0.0599452 0.103828i 0.834495 0.551015i \(-0.185759\pi\)
−0.894441 + 0.447187i \(0.852426\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.8745 −1.52874 −0.764368 0.644781i \(-0.776949\pi\)
−0.764368 + 0.644781i \(0.776949\pi\)
\(492\) 0 0
\(493\) −4.29150 7.43310i −0.193280 0.334770i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.0516 + 19.1420i −0.495733 + 0.858636i
\(498\) 0 0
\(499\) 12.7288 22.0469i 0.569817 0.986953i −0.426766 0.904362i \(-0.640347\pi\)
0.996584 0.0825907i \(-0.0263194\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.4575 1.35803 0.679017 0.734123i \(-0.262406\pi\)
0.679017 + 0.734123i \(0.262406\pi\)
\(504\) 0 0
\(505\) 10.9373 0.486701
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.93725 3.35542i 0.0858673 0.148726i −0.819893 0.572517i \(-0.805967\pi\)
0.905760 + 0.423790i \(0.139301\pi\)
\(510\) 0 0
\(511\) 35.0000 1.54831
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.32288 + 12.6836i 0.322684 + 0.558906i
\(516\) 0 0
\(517\) 21.8745 0.962040
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.9373 29.3362i −0.742035 1.28524i −0.951567 0.307440i \(-0.900528\pi\)
0.209533 0.977802i \(-0.432806\pi\)
\(522\) 0 0
\(523\) −2.38562 + 4.13202i −0.104316 + 0.180681i −0.913459 0.406932i \(-0.866599\pi\)
0.809143 + 0.587612i \(0.199932\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.4686 19.8642i 0.499581 0.865300i
\(528\) 0 0
\(529\) 4.85425 + 8.40781i 0.211054 + 0.365557i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.9373 1.25341
\(534\) 0 0
\(535\) 0.531373 + 0.920365i 0.0229733 + 0.0397909i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.7601 22.1012i 0.549618 0.951966i
\(540\) 0 0
\(541\) 13.3745 23.1653i 0.575015 0.995955i −0.421025 0.907049i \(-0.638330\pi\)
0.996040 0.0889062i \(-0.0283371\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.0000 0.556859
\(546\) 0 0
\(547\) −32.7085 −1.39851 −0.699257 0.714870i \(-0.746486\pi\)
−0.699257 + 0.714870i \(0.746486\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.69738 + 4.67201i −0.114912 + 0.199034i
\(552\) 0 0
\(553\) −10.9686 18.9982i −0.466433 0.807886i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.00000 15.5885i −0.381342 0.660504i 0.609912 0.792469i \(-0.291205\pi\)
−0.991254 + 0.131965i \(0.957871\pi\)
\(558\) 0 0
\(559\) 26.2915 1.11201
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.70850 13.3515i −0.324874 0.562699i 0.656613 0.754228i \(-0.271989\pi\)
−0.981487 + 0.191529i \(0.938655\pi\)
\(564\) 0 0
\(565\) −3.00000 + 5.19615i −0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.1144 + 26.1789i −0.633628 + 1.09748i 0.353176 + 0.935557i \(0.385102\pi\)
−0.986804 + 0.161919i \(0.948232\pi\)
\(570\) 0 0
\(571\) −16.8542 29.1924i −0.705328 1.22166i −0.966573 0.256392i \(-0.917466\pi\)
0.261245 0.965273i \(-0.415867\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.64575 0.152038
\(576\) 0 0
\(577\) 2.73987 + 4.74559i 0.114062 + 0.197562i 0.917405 0.397956i \(-0.130280\pi\)
−0.803342 + 0.595518i \(0.796947\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.53137 + 11.3127i −0.270967 + 0.469329i
\(582\) 0 0
\(583\) 13.2915 23.0216i 0.550478 0.953456i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.06275 −0.0438642 −0.0219321 0.999759i \(-0.506982\pi\)
−0.0219321 + 0.999759i \(0.506982\pi\)
\(588\) 0 0
\(589\) −14.4170 −0.594042
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.4686 + 35.4527i −0.840546 + 1.45587i 0.0488882 + 0.998804i \(0.484432\pi\)
−0.889434 + 0.457064i \(0.848901\pi\)
\(594\) 0 0
\(595\) 4.82288 8.35347i 0.197719 0.342459i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9373 + 29.3362i 0.692037 + 1.19864i 0.971169 + 0.238391i \(0.0766200\pi\)
−0.279132 + 0.960253i \(0.590047\pi\)
\(600\) 0 0
\(601\) −16.4170 −0.669663 −0.334832 0.942278i \(-0.608679\pi\)
−0.334832 + 0.942278i \(0.608679\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.14575 + 1.98450i 0.0465814 + 0.0806814i
\(606\) 0 0
\(607\) 21.6144 37.4372i 0.877301 1.51953i 0.0230088 0.999735i \(-0.492675\pi\)
0.854292 0.519794i \(-0.173991\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.93725 13.7477i 0.321107 0.556174i
\(612\) 0 0
\(613\) −0.583005 1.00979i −0.0235474 0.0407852i 0.854012 0.520254i \(-0.174163\pi\)
−0.877559 + 0.479469i \(0.840829\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.29150 0.0519939 0.0259970 0.999662i \(-0.491724\pi\)
0.0259970 + 0.999662i \(0.491724\pi\)
\(618\) 0 0
\(619\) 9.50000 + 16.4545i 0.381837 + 0.661361i 0.991325 0.131434i \(-0.0419582\pi\)
−0.609488 + 0.792796i \(0.708625\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.1771 28.0196i −0.648123 1.12258i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.9373 0.675333
\(630\) 0 0
\(631\) 27.7490 1.10467 0.552335 0.833622i \(-0.313737\pi\)
0.552335 + 0.833622i \(0.313737\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.96863 + 15.5341i −0.355909 + 0.616453i
\(636\) 0 0
\(637\) −9.26013 16.0390i −0.366900 0.635489i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.0516 + 39.9266i 0.910485 + 1.57701i 0.813381 + 0.581732i \(0.197625\pi\)
0.0971039 + 0.995274i \(0.469042\pi\)
\(642\) 0 0
\(643\) 25.8118 1.01792 0.508958 0.860791i \(-0.330031\pi\)
0.508958 + 0.860791i \(0.330031\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.53137 + 6.11652i 0.138833 + 0.240465i 0.927055 0.374925i \(-0.122332\pi\)
−0.788222 + 0.615390i \(0.788998\pi\)
\(648\) 0 0
\(649\) 9.00000 15.5885i 0.353281 0.611900i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.8229 29.1381i 0.658330 1.14026i −0.322718 0.946495i \(-0.604596\pi\)
0.981048 0.193766i \(-0.0620702\pi\)
\(654\) 0 0
\(655\) −5.35425 9.27383i −0.209208 0.362359i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 4.56275 + 7.90291i 0.177470 + 0.307387i 0.941013 0.338369i \(-0.109875\pi\)
−0.763543 + 0.645757i \(0.776542\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.06275 −0.235103
\(666\) 0 0
\(667\) 4.29150 7.43310i 0.166168 0.287811i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −29.1660 −1.12594
\(672\) 0 0
\(673\) −10.6458 −0.410364 −0.205182 0.978724i \(-0.565779\pi\)
−0.205182 + 0.978724i \(0.565779\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.8229 + 23.9419i −0.531256 + 0.920163i 0.468078 + 0.883687i \(0.344947\pi\)
−0.999335 + 0.0364758i \(0.988387\pi\)
\(678\) 0 0
\(679\) 10.5830 18.3303i 0.406138 0.703452i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.46863 9.47194i −0.209251 0.362434i 0.742228 0.670148i \(-0.233769\pi\)
−0.951479 + 0.307714i \(0.900436\pi\)
\(684\) 0 0
\(685\) 6.22876 0.237989
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.64575 16.7069i −0.367474 0.636483i
\(690\) 0 0
\(691\) −1.20850 + 2.09318i −0.0459734 + 0.0796283i −0.888096 0.459657i \(-0.847972\pi\)
0.842123 + 0.539285i \(0.181306\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.50000 4.33013i 0.0948304 0.164251i
\(696\) 0 0
\(697\) 19.9373 + 34.5323i 0.755177 + 1.30801i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.0627 −0.719990 −0.359995 0.932954i \(-0.617222\pi\)
−0.359995 + 0.932954i \(0.617222\pi\)
\(702\) 0 0
\(703\) −5.32288 9.21949i −0.200756 0.347720i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28.9373 1.08830
\(708\) 0 0
\(709\) 0.708497 1.22715i 0.0266082 0.0460867i −0.852415 0.522866i \(-0.824863\pi\)
0.879023 + 0.476780i \(0.158196\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.9373 0.859007
\(714\) 0 0
\(715\) 9.64575 0.360731
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.6458 + 21.9031i −0.471607 + 0.816847i −0.999472 0.0324808i \(-0.989659\pi\)
0.527865 + 0.849328i \(0.322993\pi\)
\(720\) 0 0
\(721\) 19.3745 + 33.5576i 0.721544 + 1.24975i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.17712 + 2.03884i 0.0437173 + 0.0757206i
\(726\) 0 0
\(727\) 13.8118 0.512250 0.256125 0.966644i \(-0.417554\pi\)
0.256125 + 0.966644i \(0.417554\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.1144 + 31.3750i 0.669984 + 1.16045i
\(732\) 0 0
\(733\) 9.61438 16.6526i 0.355115 0.615078i −0.632023 0.774950i \(-0.717775\pi\)
0.987138 + 0.159873i \(0.0511083\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.46863 + 14.6681i −0.311946 + 0.540306i
\(738\) 0 0
\(739\) −14.5000 25.1147i −0.533391 0.923861i −0.999239 0.0389959i \(-0.987584\pi\)
0.465848 0.884865i \(-0.345749\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.9373 1.06160 0.530802 0.847496i \(-0.321891\pi\)
0.530802 + 0.847496i \(0.321891\pi\)
\(744\) 0 0
\(745\) −7.29150 12.6293i −0.267140 0.462700i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.40588 + 2.43506i 0.0513698 + 0.0889751i
\(750\) 0 0
\(751\) 9.08301 15.7322i 0.331444 0.574077i −0.651352 0.758776i \(-0.725798\pi\)
0.982795 + 0.184699i \(0.0591310\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.5830 −0.603517
\(756\) 0 0
\(757\) −51.1660 −1.85966 −0.929830 0.367989i \(-0.880046\pi\)
−0.929830 + 0.367989i \(0.880046\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.0516 39.9266i 0.835621 1.44734i −0.0579028 0.998322i \(-0.518441\pi\)
0.893524 0.449016i \(-0.148225\pi\)
\(762\) 0 0
\(763\) 34.3948 1.24517
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.53137 11.3127i −0.235834 0.408477i
\(768\) 0 0
\(769\) −14.2915 −0.515365 −0.257682 0.966230i \(-0.582959\pi\)
−0.257682 + 0.966230i \(0.582959\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.6974 35.8489i −0.744433 1.28940i −0.950459 0.310850i \(-0.899386\pi\)
0.206026 0.978547i \(-0.433947\pi\)
\(774\) 0 0
\(775\) −3.14575 + 5.44860i −0.112999 + 0.195720i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.5314 21.7050i 0.448983 0.777661i
\(780\) 0 0
\(781\) −15.2288 26.3770i −0.544928 0.943843i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.29150 −0.331628
\(786\) 0 0
\(787\) 12.9373 + 22.4080i 0.461163 + 0.798758i 0.999019 0.0442785i \(-0.0140989\pi\)
−0.537856 + 0.843037i \(0.680766\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.93725 + 13.7477i −0.282216 + 0.488813i
\(792\) 0 0
\(793\) −10.5830 + 18.3303i −0.375814 + 0.650928i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.9373 0.387417 0.193709 0.981059i \(-0.437948\pi\)
0.193709 + 0.981059i \(0.437948\pi\)
\(798\) 0 0
\(799\) 21.8745 0.773864
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −24.1144 + 41.7673i −0.8509