Newspace parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.k (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 140) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).
\(n\) | \(281\) | \(631\) | \(757\) | \(1081\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1009.1 |
|
0 | 0 | 0 | 2.00000 | − | 1.00000i | 0 | − | 1.00000i | 0 | 0 | 0 | |||||||||||||||||||||
1009.2 | 0 | 0 | 0 | 2.00000 | + | 1.00000i | 0 | 1.00000i | 0 | 0 | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.2.k.c | 2 | |
3.b | odd | 2 | 1 | 140.2.e.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 5040.2.t.s | 2 | ||
5.b | even | 2 | 1 | inner | 1260.2.k.c | 2 | |
5.c | odd | 4 | 1 | 6300.2.a.c | 1 | ||
5.c | odd | 4 | 1 | 6300.2.a.t | 1 | ||
12.b | even | 2 | 1 | 560.2.g.a | 2 | ||
15.d | odd | 2 | 1 | 140.2.e.a | ✓ | 2 | |
15.e | even | 4 | 1 | 700.2.a.a | 1 | ||
15.e | even | 4 | 1 | 700.2.a.j | 1 | ||
20.d | odd | 2 | 1 | 5040.2.t.s | 2 | ||
21.c | even | 2 | 1 | 980.2.e.b | 2 | ||
21.g | even | 6 | 2 | 980.2.q.c | 4 | ||
21.h | odd | 6 | 2 | 980.2.q.f | 4 | ||
24.f | even | 2 | 1 | 2240.2.g.f | 2 | ||
24.h | odd | 2 | 1 | 2240.2.g.e | 2 | ||
60.h | even | 2 | 1 | 560.2.g.a | 2 | ||
60.l | odd | 4 | 1 | 2800.2.a.a | 1 | ||
60.l | odd | 4 | 1 | 2800.2.a.bf | 1 | ||
105.g | even | 2 | 1 | 980.2.e.b | 2 | ||
105.k | odd | 4 | 1 | 4900.2.a.b | 1 | ||
105.k | odd | 4 | 1 | 4900.2.a.w | 1 | ||
105.o | odd | 6 | 2 | 980.2.q.f | 4 | ||
105.p | even | 6 | 2 | 980.2.q.c | 4 | ||
120.i | odd | 2 | 1 | 2240.2.g.e | 2 | ||
120.m | even | 2 | 1 | 2240.2.g.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.e.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
140.2.e.a | ✓ | 2 | 15.d | odd | 2 | 1 | |
560.2.g.a | 2 | 12.b | even | 2 | 1 | ||
560.2.g.a | 2 | 60.h | even | 2 | 1 | ||
700.2.a.a | 1 | 15.e | even | 4 | 1 | ||
700.2.a.j | 1 | 15.e | even | 4 | 1 | ||
980.2.e.b | 2 | 21.c | even | 2 | 1 | ||
980.2.e.b | 2 | 105.g | even | 2 | 1 | ||
980.2.q.c | 4 | 21.g | even | 6 | 2 | ||
980.2.q.c | 4 | 105.p | even | 6 | 2 | ||
980.2.q.f | 4 | 21.h | odd | 6 | 2 | ||
980.2.q.f | 4 | 105.o | odd | 6 | 2 | ||
1260.2.k.c | 2 | 1.a | even | 1 | 1 | trivial | |
1260.2.k.c | 2 | 5.b | even | 2 | 1 | inner | |
2240.2.g.e | 2 | 24.h | odd | 2 | 1 | ||
2240.2.g.e | 2 | 120.i | odd | 2 | 1 | ||
2240.2.g.f | 2 | 24.f | even | 2 | 1 | ||
2240.2.g.f | 2 | 120.m | even | 2 | 1 | ||
2800.2.a.a | 1 | 60.l | odd | 4 | 1 | ||
2800.2.a.bf | 1 | 60.l | odd | 4 | 1 | ||
4900.2.a.b | 1 | 105.k | odd | 4 | 1 | ||
4900.2.a.w | 1 | 105.k | odd | 4 | 1 | ||
5040.2.t.s | 2 | 4.b | odd | 2 | 1 | ||
5040.2.t.s | 2 | 20.d | odd | 2 | 1 | ||
6300.2.a.c | 1 | 5.c | odd | 4 | 1 | ||
6300.2.a.t | 1 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11} + 3 \)
acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} - 4T + 5 \)
$7$
\( T^{2} + 1 \)
$11$
\( (T + 3)^{2} \)
$13$
\( T^{2} + 1 \)
$17$
\( T^{2} + 25 \)
$19$
\( (T - 8)^{2} \)
$23$
\( T^{2} + 4 \)
$29$
\( (T + 1)^{2} \)
$31$
\( (T + 2)^{2} \)
$37$
\( T^{2} + 100 \)
$41$
\( (T - 6)^{2} \)
$43$
\( T^{2} + 16 \)
$47$
\( T^{2} + 121 \)
$53$
\( T^{2} + 36 \)
$59$
\( (T + 10)^{2} \)
$61$
\( T^{2} \)
$67$
\( T^{2} + 100 \)
$71$
\( T^{2} \)
$73$
\( T^{2} + 100 \)
$79$
\( (T - 7)^{2} \)
$83$
\( T^{2} + 144 \)
$89$
\( (T - 8)^{2} \)
$97$
\( T^{2} + 9 \)
show more
show less