Newspace parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.10070523904.11 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 10x^{4} + 81 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 10x^{4} + 81 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} - \nu^{2} ) / 18 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{5} - 7\nu ) / 6 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{6} + 19\nu^{2} ) / 18 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{7} + \nu^{6} + 3\nu^{5} + 9\nu^{4} + \nu^{3} - \nu^{2} - 3\nu - 45 ) / 36 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{7} - \nu^{6} - 3\nu^{5} + 9\nu^{4} - \nu^{3} + \nu^{2} + 3\nu - 45 ) / 36 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} - 10\nu^{3} ) / 27 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + \beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( -3\beta_{7} + 2\beta_{6} - 2\beta_{5} + 2\beta_{3} + 2\beta_{2} + 2\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 2\beta_{6} + 2\beta_{5} + 5 \)
|
\(\nu^{5}\) | \(=\) |
\( 6\beta_{3} + 7\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( \beta_{4} + 19\beta_{2} \)
|
\(\nu^{7}\) | \(=\) |
\( -3\beta_{7} + 20\beta_{6} - 20\beta_{5} + 20\beta_{3} + 20\beta_{2} + 20\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).
\(n\) | \(281\) | \(631\) | \(757\) | \(1081\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
629.1 |
|
0 | 0 | 0 | −1.95522 | − | 1.08495i | 0 | 2.37608 | + | 1.16372i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
629.2 | 0 | 0 | 0 | −1.95522 | + | 1.08495i | 0 | 2.37608 | − | 1.16372i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.3 | 0 | 0 | 0 | −1.08495 | − | 1.95522i | 0 | −0.595188 | − | 2.57794i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.4 | 0 | 0 | 0 | −1.08495 | + | 1.95522i | 0 | −0.595188 | + | 2.57794i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.5 | 0 | 0 | 0 | 1.08495 | − | 1.95522i | 0 | 0.595188 | + | 2.57794i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.6 | 0 | 0 | 0 | 1.08495 | + | 1.95522i | 0 | 0.595188 | − | 2.57794i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.7 | 0 | 0 | 0 | 1.95522 | − | 1.08495i | 0 | −2.37608 | − | 1.16372i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
629.8 | 0 | 0 | 0 | 1.95522 | + | 1.08495i | 0 | −2.37608 | + | 1.16372i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
105.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.2.f.a | ✓ | 8 |
3.b | odd | 2 | 1 | 1260.2.f.b | yes | 8 | |
4.b | odd | 2 | 1 | 5040.2.k.f | 8 | ||
5.b | even | 2 | 1 | 1260.2.f.b | yes | 8 | |
5.c | odd | 4 | 2 | 6300.2.d.f | 16 | ||
7.b | odd | 2 | 1 | inner | 1260.2.f.a | ✓ | 8 |
12.b | even | 2 | 1 | 5040.2.k.e | 8 | ||
15.d | odd | 2 | 1 | inner | 1260.2.f.a | ✓ | 8 |
15.e | even | 4 | 2 | 6300.2.d.f | 16 | ||
20.d | odd | 2 | 1 | 5040.2.k.e | 8 | ||
21.c | even | 2 | 1 | 1260.2.f.b | yes | 8 | |
28.d | even | 2 | 1 | 5040.2.k.f | 8 | ||
35.c | odd | 2 | 1 | 1260.2.f.b | yes | 8 | |
35.f | even | 4 | 2 | 6300.2.d.f | 16 | ||
60.h | even | 2 | 1 | 5040.2.k.f | 8 | ||
84.h | odd | 2 | 1 | 5040.2.k.e | 8 | ||
105.g | even | 2 | 1 | inner | 1260.2.f.a | ✓ | 8 |
105.k | odd | 4 | 2 | 6300.2.d.f | 16 | ||
140.c | even | 2 | 1 | 5040.2.k.e | 8 | ||
420.o | odd | 2 | 1 | 5040.2.k.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.2.f.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
1260.2.f.a | ✓ | 8 | 7.b | odd | 2 | 1 | inner |
1260.2.f.a | ✓ | 8 | 15.d | odd | 2 | 1 | inner |
1260.2.f.a | ✓ | 8 | 105.g | even | 2 | 1 | inner |
1260.2.f.b | yes | 8 | 3.b | odd | 2 | 1 | |
1260.2.f.b | yes | 8 | 5.b | even | 2 | 1 | |
1260.2.f.b | yes | 8 | 21.c | even | 2 | 1 | |
1260.2.f.b | yes | 8 | 35.c | odd | 2 | 1 | |
5040.2.k.e | 8 | 12.b | even | 2 | 1 | ||
5040.2.k.e | 8 | 20.d | odd | 2 | 1 | ||
5040.2.k.e | 8 | 84.h | odd | 2 | 1 | ||
5040.2.k.e | 8 | 140.c | even | 2 | 1 | ||
5040.2.k.f | 8 | 4.b | odd | 2 | 1 | ||
5040.2.k.f | 8 | 28.d | even | 2 | 1 | ||
5040.2.k.f | 8 | 60.h | even | 2 | 1 | ||
5040.2.k.f | 8 | 420.o | odd | 2 | 1 | ||
6300.2.d.f | 16 | 5.c | odd | 4 | 2 | ||
6300.2.d.f | 16 | 15.e | even | 4 | 2 | ||
6300.2.d.f | 16 | 35.f | even | 4 | 2 | ||
6300.2.d.f | 16 | 105.k | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{23}^{2} + 10T_{23} + 18 \)
acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 22T^{4} + 625 \)
$7$
\( T^{8} + 4 T^{6} - 10 T^{4} + \cdots + 2401 \)
$11$
\( (T^{2} + 14)^{4} \)
$13$
\( (T^{4} - 12 T^{2} + 8)^{2} \)
$17$
\( (T^{4} + 12 T^{2} + 8)^{2} \)
$19$
\( (T^{4} + 52 T^{2} + 648)^{2} \)
$23$
\( (T^{2} + 10 T + 18)^{4} \)
$29$
\( (T^{2} + 2)^{4} \)
$31$
\( (T^{4} + 76 T^{2} + 72)^{2} \)
$37$
\( (T^{4} + 32 T^{2} + 144)^{2} \)
$41$
\( (T^{4} - 140 T^{2} + 3528)^{2} \)
$43$
\( (T^{4} + 128 T^{2} + 1296)^{2} \)
$47$
\( (T^{4} + 104 T^{2} + 2592)^{2} \)
$53$
\( (T^{2} - 14 T + 42)^{4} \)
$59$
\( (T^{4} - 152 T^{2} + 288)^{2} \)
$61$
\( T^{8} \)
$67$
\( (T^{4} + 176 T^{2} + 576)^{2} \)
$71$
\( (T^{2} + 14)^{4} \)
$73$
\( (T^{4} - 76 T^{2} + 72)^{2} \)
$79$
\( (T^{2} - 8 T - 96)^{4} \)
$83$
\( (T^{4} + 168 T^{2} + 1568)^{2} \)
$89$
\( (T^{4} - 20 T^{2} + 72)^{2} \)
$97$
\( (T^{4} - 364 T^{2} + 31752)^{2} \)
show more
show less