Newspace parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 6x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 6x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} + 4\nu ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 8\nu ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} + 3 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} - \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -2\beta_{2} + 4\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).
\(n\) | \(281\) | \(631\) | \(757\) | \(1081\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
881.1 |
|
0 | 0 | 0 | −1.00000 | 0 | −2.23607 | − | 1.41421i | 0 | 0 | 0 | ||||||||||||||||||||||||||||
881.2 | 0 | 0 | 0 | −1.00000 | 0 | −2.23607 | + | 1.41421i | 0 | 0 | 0 | |||||||||||||||||||||||||||||
881.3 | 0 | 0 | 0 | −1.00000 | 0 | 2.23607 | − | 1.41421i | 0 | 0 | 0 | |||||||||||||||||||||||||||||
881.4 | 0 | 0 | 0 | −1.00000 | 0 | 2.23607 | + | 1.41421i | 0 | 0 | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.2.d.a | ✓ | 4 |
3.b | odd | 2 | 1 | 1260.2.d.b | yes | 4 | |
4.b | odd | 2 | 1 | 5040.2.f.b | 4 | ||
5.b | even | 2 | 1 | 6300.2.d.b | 4 | ||
5.c | odd | 4 | 2 | 6300.2.f.c | 8 | ||
7.b | odd | 2 | 1 | 1260.2.d.b | yes | 4 | |
12.b | even | 2 | 1 | 5040.2.f.d | 4 | ||
15.d | odd | 2 | 1 | 6300.2.d.a | 4 | ||
15.e | even | 4 | 2 | 6300.2.f.a | 8 | ||
21.c | even | 2 | 1 | inner | 1260.2.d.a | ✓ | 4 |
28.d | even | 2 | 1 | 5040.2.f.d | 4 | ||
35.c | odd | 2 | 1 | 6300.2.d.a | 4 | ||
35.f | even | 4 | 2 | 6300.2.f.a | 8 | ||
84.h | odd | 2 | 1 | 5040.2.f.b | 4 | ||
105.g | even | 2 | 1 | 6300.2.d.b | 4 | ||
105.k | odd | 4 | 2 | 6300.2.f.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.2.d.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
1260.2.d.a | ✓ | 4 | 21.c | even | 2 | 1 | inner |
1260.2.d.b | yes | 4 | 3.b | odd | 2 | 1 | |
1260.2.d.b | yes | 4 | 7.b | odd | 2 | 1 | |
5040.2.f.b | 4 | 4.b | odd | 2 | 1 | ||
5040.2.f.b | 4 | 84.h | odd | 2 | 1 | ||
5040.2.f.d | 4 | 12.b | even | 2 | 1 | ||
5040.2.f.d | 4 | 28.d | even | 2 | 1 | ||
6300.2.d.a | 4 | 15.d | odd | 2 | 1 | ||
6300.2.d.a | 4 | 35.c | odd | 2 | 1 | ||
6300.2.d.b | 4 | 5.b | even | 2 | 1 | ||
6300.2.d.b | 4 | 105.g | even | 2 | 1 | ||
6300.2.f.a | 8 | 15.e | even | 4 | 2 | ||
6300.2.f.a | 8 | 35.f | even | 4 | 2 | ||
6300.2.f.c | 8 | 5.c | odd | 4 | 2 | ||
6300.2.f.c | 8 | 105.k | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{41}^{2} - 8T_{41} - 4 \)
acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} \)
$5$
\( (T + 1)^{4} \)
$7$
\( T^{4} - 6T^{2} + 49 \)
$11$
\( (T^{2} + 2)^{2} \)
$13$
\( T^{4} + 24T^{2} + 64 \)
$17$
\( (T^{2} - 20)^{2} \)
$19$
\( T^{4} + 24T^{2} + 64 \)
$23$
\( (T^{2} + 10)^{2} \)
$29$
\( T^{4} + 116T^{2} + 484 \)
$31$
\( T^{4} + 24T^{2} + 64 \)
$37$
\( (T^{2} - 12 T + 16)^{2} \)
$41$
\( (T^{2} - 8 T - 4)^{2} \)
$43$
\( (T^{2} - 8 T - 4)^{2} \)
$47$
\( (T^{2} - 4 T - 16)^{2} \)
$53$
\( T^{4} + 84T^{2} + 484 \)
$59$
\( (T^{2} + 12 T + 16)^{2} \)
$61$
\( T^{4} + 96T^{2} + 1024 \)
$67$
\( T^{4} \)
$71$
\( T^{4} + 84T^{2} + 1444 \)
$73$
\( T^{4} + 280T^{2} + 1600 \)
$79$
\( (T^{2} - 80)^{2} \)
$83$
\( (T^{2} - 20 T + 80)^{2} \)
$89$
\( (T^{2} + 4 T - 76)^{2} \)
$97$
\( T^{4} + 376T^{2} + 64 \)
show more
show less