Properties

Label 1260.2.co
Level $1260$
Weight $2$
Character orbit 1260.co
Rep. character $\chi_{1260}(509,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.co (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 315 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1260, [\chi])\).

Total New Old
Modular forms 600 96 504
Cusp forms 552 96 456
Eisenstein series 48 0 48

Trace form

\( 96 q - 6 q^{9} - 6 q^{11} + 11 q^{15} - 2 q^{21} - 6 q^{29} + 15 q^{35} - 6 q^{41} - 24 q^{45} + 6 q^{49} + 14 q^{51} + 42 q^{69} + 9 q^{75} + 36 q^{79} - 26 q^{81} + 24 q^{89} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1260.2.co.a 1260.co 315.aq $96$ $10.061$ None 1260.2.bf.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 2}\)