Properties

Label 1260.2.c.d.811.9
Level $1260$
Weight $2$
Character 1260.811
Analytic conductor $10.061$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 3 x^{12} + 2 x^{11} - 7 x^{10} + 12 x^{9} - 28 x^{8} + 24 x^{7} - 28 x^{6} + 16 x^{5} + 48 x^{4} - 128 x^{3} + 192 x^{2} - 256 x + 256\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.9
Root \(-0.102186 - 1.41052i\) of defining polynomial
Character \(\chi\) \(=\) 1260.811
Dual form 1260.2.c.d.811.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.102186 - 1.41052i) q^{2} +(-1.97912 - 0.288270i) q^{4} -1.00000i q^{5} +(-0.178143 - 2.63975i) q^{7} +(-0.608847 + 2.76212i) q^{8} +O(q^{10})\) \(q+(0.102186 - 1.41052i) q^{2} +(-1.97912 - 0.288270i) q^{4} -1.00000i q^{5} +(-0.178143 - 2.63975i) q^{7} +(-0.608847 + 2.76212i) q^{8} +(-1.41052 - 0.102186i) q^{10} +5.22855i q^{11} +4.52534i q^{13} +(-3.74161 - 0.0184704i) q^{14} +(3.83380 + 1.14104i) q^{16} +6.70156i q^{17} +2.81981 q^{19} +(-0.288270 + 1.97912i) q^{20} +(7.37496 + 0.534284i) q^{22} -0.858617i q^{23} -1.00000 q^{25} +(6.38308 + 0.462426i) q^{26} +(-0.408393 + 5.27572i) q^{28} -6.47333 q^{29} +2.60723 q^{31} +(2.00121 - 5.29104i) q^{32} +(9.45266 + 0.684805i) q^{34} +(-2.63975 + 0.178143i) q^{35} +2.13976 q^{37} +(0.288144 - 3.97738i) q^{38} +(2.76212 + 0.608847i) q^{40} +8.71476i q^{41} -7.42042i q^{43} +(1.50723 - 10.3479i) q^{44} +(-1.21109 - 0.0877385i) q^{46} +9.82671 q^{47} +(-6.93653 + 0.940508i) q^{49} +(-0.102186 + 1.41052i) q^{50} +(1.30452 - 8.95618i) q^{52} -3.69301 q^{53} +5.22855 q^{55} +(7.39976 + 1.11515i) q^{56} +(-0.661483 + 9.13075i) q^{58} -4.27962 q^{59} -10.7054i q^{61} +(0.266423 - 3.67755i) q^{62} +(-7.25861 - 3.36342i) q^{64} +4.52534 q^{65} +4.52269i q^{67} +(1.93186 - 13.2632i) q^{68} +(-0.0184704 + 3.74161i) q^{70} +7.23513i q^{71} +9.24697i q^{73} +(0.218653 - 3.01816i) q^{74} +(-5.58072 - 0.812865i) q^{76} +(13.8020 - 0.931432i) q^{77} +2.68314i q^{79} +(1.14104 - 3.83380i) q^{80} +(12.2923 + 0.890525i) q^{82} +16.2812 q^{83} +6.70156 q^{85} +(-10.4666 - 0.758262i) q^{86} +(-14.4419 - 3.18339i) q^{88} +8.53516i q^{89} +(11.9458 - 0.806161i) q^{91} +(-0.247513 + 1.69930i) q^{92} +(1.00415 - 13.8607i) q^{94} -2.81981i q^{95} +10.5209i q^{97} +(0.617786 + 9.88020i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 2 q^{4} - 4 q^{7} - 2 q^{8} + O(q^{10}) \) \( 16 q - 2 q^{2} - 2 q^{4} - 4 q^{7} - 2 q^{8} + 2 q^{14} + 6 q^{16} - 24 q^{19} - 12 q^{22} - 16 q^{25} + 12 q^{26} + 14 q^{28} - 16 q^{29} + 8 q^{31} + 18 q^{32} + 24 q^{34} + 24 q^{37} - 28 q^{38} + 12 q^{40} + 8 q^{44} - 20 q^{46} - 16 q^{47} - 16 q^{49} + 2 q^{50} - 20 q^{52} + 32 q^{53} - 2 q^{56} - 32 q^{58} - 8 q^{59} - 16 q^{62} - 2 q^{64} + 8 q^{65} - 4 q^{68} + 4 q^{74} + 16 q^{76} + 8 q^{77} + 16 q^{80} - 4 q^{82} - 8 q^{83} - 64 q^{86} - 52 q^{88} + 16 q^{91} - 64 q^{92} + 16 q^{94} + 86 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.102186 1.41052i 0.0722563 0.997386i
\(3\) 0 0
\(4\) −1.97912 0.288270i −0.989558 0.144135i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −0.178143 2.63975i −0.0673319 0.997731i
\(8\) −0.608847 + 2.76212i −0.215260 + 0.976557i
\(9\) 0 0
\(10\) −1.41052 0.102186i −0.446045 0.0323140i
\(11\) 5.22855i 1.57647i 0.615376 + 0.788234i \(0.289004\pi\)
−0.615376 + 0.788234i \(0.710996\pi\)
\(12\) 0 0
\(13\) 4.52534i 1.25510i 0.778574 + 0.627552i \(0.215943\pi\)
−0.778574 + 0.627552i \(0.784057\pi\)
\(14\) −3.74161 0.0184704i −0.999988 0.00493643i
\(15\) 0 0
\(16\) 3.83380 + 1.14104i 0.958450 + 0.285260i
\(17\) 6.70156i 1.62537i 0.582705 + 0.812684i \(0.301994\pi\)
−0.582705 + 0.812684i \(0.698006\pi\)
\(18\) 0 0
\(19\) 2.81981 0.646908 0.323454 0.946244i \(-0.395156\pi\)
0.323454 + 0.946244i \(0.395156\pi\)
\(20\) −0.288270 + 1.97912i −0.0644591 + 0.442544i
\(21\) 0 0
\(22\) 7.37496 + 0.534284i 1.57235 + 0.113910i
\(23\) 0.858617i 0.179034i −0.995985 0.0895170i \(-0.971468\pi\)
0.995985 0.0895170i \(-0.0285323\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 6.38308 + 0.462426i 1.25182 + 0.0906893i
\(27\) 0 0
\(28\) −0.408393 + 5.27572i −0.0771790 + 0.997017i
\(29\) −6.47333 −1.20207 −0.601034 0.799224i \(-0.705244\pi\)
−0.601034 + 0.799224i \(0.705244\pi\)
\(30\) 0 0
\(31\) 2.60723 0.468273 0.234137 0.972204i \(-0.424774\pi\)
0.234137 + 0.972204i \(0.424774\pi\)
\(32\) 2.00121 5.29104i 0.353768 0.935333i
\(33\) 0 0
\(34\) 9.45266 + 0.684805i 1.62112 + 0.117443i
\(35\) −2.63975 + 0.178143i −0.446199 + 0.0301117i
\(36\) 0 0
\(37\) 2.13976 0.351774 0.175887 0.984410i \(-0.443721\pi\)
0.175887 + 0.984410i \(0.443721\pi\)
\(38\) 0.288144 3.97738i 0.0467432 0.645217i
\(39\) 0 0
\(40\) 2.76212 + 0.608847i 0.436729 + 0.0962672i
\(41\) 8.71476i 1.36102i 0.732740 + 0.680508i \(0.238241\pi\)
−0.732740 + 0.680508i \(0.761759\pi\)
\(42\) 0 0
\(43\) 7.42042i 1.13160i −0.824541 0.565802i \(-0.808567\pi\)
0.824541 0.565802i \(-0.191433\pi\)
\(44\) 1.50723 10.3479i 0.227224 1.56001i
\(45\) 0 0
\(46\) −1.21109 0.0877385i −0.178566 0.0129363i
\(47\) 9.82671 1.43337 0.716686 0.697396i \(-0.245658\pi\)
0.716686 + 0.697396i \(0.245658\pi\)
\(48\) 0 0
\(49\) −6.93653 + 0.940508i −0.990933 + 0.134358i
\(50\) −0.102186 + 1.41052i −0.0144513 + 0.199477i
\(51\) 0 0
\(52\) 1.30452 8.95618i 0.180904 1.24200i
\(53\) −3.69301 −0.507274 −0.253637 0.967299i \(-0.581627\pi\)
−0.253637 + 0.967299i \(0.581627\pi\)
\(54\) 0 0
\(55\) 5.22855 0.705018
\(56\) 7.39976 + 1.11515i 0.988834 + 0.149018i
\(57\) 0 0
\(58\) −0.661483 + 9.13075i −0.0868570 + 1.19893i
\(59\) −4.27962 −0.557159 −0.278579 0.960413i \(-0.589864\pi\)
−0.278579 + 0.960413i \(0.589864\pi\)
\(60\) 0 0
\(61\) 10.7054i 1.37069i −0.728221 0.685343i \(-0.759653\pi\)
0.728221 0.685343i \(-0.240347\pi\)
\(62\) 0.266423 3.67755i 0.0338357 0.467049i
\(63\) 0 0
\(64\) −7.25861 3.36342i −0.907326 0.420427i
\(65\) 4.52534 0.561300
\(66\) 0 0
\(67\) 4.52269i 0.552534i 0.961081 + 0.276267i \(0.0890975\pi\)
−0.961081 + 0.276267i \(0.910903\pi\)
\(68\) 1.93186 13.2632i 0.234272 1.60840i
\(69\) 0 0
\(70\) −0.0184704 + 3.74161i −0.00220764 + 0.447208i
\(71\) 7.23513i 0.858652i 0.903150 + 0.429326i \(0.141249\pi\)
−0.903150 + 0.429326i \(0.858751\pi\)
\(72\) 0 0
\(73\) 9.24697i 1.08228i 0.840934 + 0.541138i \(0.182006\pi\)
−0.840934 + 0.541138i \(0.817994\pi\)
\(74\) 0.218653 3.01816i 0.0254179 0.350854i
\(75\) 0 0
\(76\) −5.58072 0.812865i −0.640153 0.0932420i
\(77\) 13.8020 0.931432i 1.57289 0.106147i
\(78\) 0 0
\(79\) 2.68314i 0.301877i 0.988543 + 0.150938i \(0.0482295\pi\)
−0.988543 + 0.150938i \(0.951770\pi\)
\(80\) 1.14104 3.83380i 0.127572 0.428632i
\(81\) 0 0
\(82\) 12.2923 + 0.890525i 1.35746 + 0.0983421i
\(83\) 16.2812 1.78710 0.893548 0.448967i \(-0.148208\pi\)
0.893548 + 0.448967i \(0.148208\pi\)
\(84\) 0 0
\(85\) 6.70156 0.726886
\(86\) −10.4666 0.758262i −1.12865 0.0817655i
\(87\) 0 0
\(88\) −14.4419 3.18339i −1.53951 0.339350i
\(89\) 8.53516i 0.904725i 0.891834 + 0.452362i \(0.149419\pi\)
−0.891834 + 0.452362i \(0.850581\pi\)
\(90\) 0 0
\(91\) 11.9458 0.806161i 1.25226 0.0845086i
\(92\) −0.247513 + 1.69930i −0.0258051 + 0.177165i
\(93\) 0 0
\(94\) 1.00415 13.8607i 0.103570 1.42963i
\(95\) 2.81981i 0.289306i
\(96\) 0 0
\(97\) 10.5209i 1.06824i 0.845410 + 0.534118i \(0.179356\pi\)
−0.845410 + 0.534118i \(0.820644\pi\)
\(98\) 0.617786 + 9.88020i 0.0624059 + 0.998051i
\(99\) 0 0
\(100\) 1.97912 + 0.288270i 0.197912 + 0.0288270i
\(101\) 3.97836i 0.395861i 0.980216 + 0.197931i \(0.0634221\pi\)
−0.980216 + 0.197931i \(0.936578\pi\)
\(102\) 0 0
\(103\) 3.78934 0.373375 0.186688 0.982419i \(-0.440225\pi\)
0.186688 + 0.982419i \(0.440225\pi\)
\(104\) −12.4995 2.75524i −1.22568 0.270174i
\(105\) 0 0
\(106\) −0.377374 + 5.20906i −0.0366538 + 0.505948i
\(107\) 2.38868i 0.230922i −0.993312 0.115461i \(-0.963165\pi\)
0.993312 0.115461i \(-0.0368346\pi\)
\(108\) 0 0
\(109\) 5.79748 0.555298 0.277649 0.960683i \(-0.410445\pi\)
0.277649 + 0.960683i \(0.410445\pi\)
\(110\) 0.534284 7.37496i 0.0509420 0.703175i
\(111\) 0 0
\(112\) 2.32909 10.3235i 0.220078 0.975482i
\(113\) 6.86598 0.645897 0.322948 0.946417i \(-0.395326\pi\)
0.322948 + 0.946417i \(0.395326\pi\)
\(114\) 0 0
\(115\) −0.858617 −0.0800665
\(116\) 12.8115 + 1.86607i 1.18952 + 0.173260i
\(117\) 0 0
\(118\) −0.437316 + 6.03647i −0.0402582 + 0.555702i
\(119\) 17.6904 1.19384i 1.62168 0.109439i
\(120\) 0 0
\(121\) −16.3377 −1.48525
\(122\) −15.1001 1.09394i −1.36710 0.0990407i
\(123\) 0 0
\(124\) −5.16002 0.751587i −0.463384 0.0674945i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 10.4834i 0.930250i −0.885245 0.465125i \(-0.846009\pi\)
0.885245 0.465125i \(-0.153991\pi\)
\(128\) −5.48588 + 9.89470i −0.484888 + 0.874576i
\(129\) 0 0
\(130\) 0.462426 6.38308i 0.0405575 0.559833i
\(131\) −19.0936 −1.66821 −0.834106 0.551604i \(-0.814016\pi\)
−0.834106 + 0.551604i \(0.814016\pi\)
\(132\) 0 0
\(133\) −0.502330 7.44358i −0.0435576 0.645440i
\(134\) 6.37933 + 0.462155i 0.551090 + 0.0399241i
\(135\) 0 0
\(136\) −18.5105 4.08023i −1.58726 0.349876i
\(137\) −5.47214 −0.467516 −0.233758 0.972295i \(-0.575102\pi\)
−0.233758 + 0.972295i \(0.575102\pi\)
\(138\) 0 0
\(139\) −2.83943 −0.240838 −0.120419 0.992723i \(-0.538424\pi\)
−0.120419 + 0.992723i \(0.538424\pi\)
\(140\) 5.27572 + 0.408393i 0.445880 + 0.0345155i
\(141\) 0 0
\(142\) 10.2053 + 0.739328i 0.856407 + 0.0620430i
\(143\) −23.6610 −1.97863
\(144\) 0 0
\(145\) 6.47333i 0.537581i
\(146\) 13.0430 + 0.944910i 1.07945 + 0.0782013i
\(147\) 0 0
\(148\) −4.23483 0.616827i −0.348101 0.0507029i
\(149\) −1.72856 −0.141609 −0.0708045 0.997490i \(-0.522557\pi\)
−0.0708045 + 0.997490i \(0.522557\pi\)
\(150\) 0 0
\(151\) 14.9532i 1.21687i 0.793603 + 0.608436i \(0.208203\pi\)
−0.793603 + 0.608436i \(0.791797\pi\)
\(152\) −1.71683 + 7.78864i −0.139253 + 0.631742i
\(153\) 0 0
\(154\) 0.0965736 19.5632i 0.00778212 1.57645i
\(155\) 2.60723i 0.209418i
\(156\) 0 0
\(157\) 11.0383i 0.880953i −0.897764 0.440476i \(-0.854810\pi\)
0.897764 0.440476i \(-0.145190\pi\)
\(158\) 3.78461 + 0.274179i 0.301088 + 0.0218125i
\(159\) 0 0
\(160\) −5.29104 2.00121i −0.418294 0.158210i
\(161\) −2.26653 + 0.152957i −0.178628 + 0.0120547i
\(162\) 0 0
\(163\) 18.7969i 1.47229i 0.676826 + 0.736143i \(0.263355\pi\)
−0.676826 + 0.736143i \(0.736645\pi\)
\(164\) 2.51220 17.2475i 0.196170 1.34681i
\(165\) 0 0
\(166\) 1.66371 22.9649i 0.129129 1.78243i
\(167\) 1.89315 0.146496 0.0732481 0.997314i \(-0.476663\pi\)
0.0732481 + 0.997314i \(0.476663\pi\)
\(168\) 0 0
\(169\) −7.47874 −0.575288
\(170\) 0.684805 9.45266i 0.0525221 0.724986i
\(171\) 0 0
\(172\) −2.13908 + 14.6859i −0.163104 + 1.11979i
\(173\) 9.43306i 0.717182i −0.933495 0.358591i \(-0.883257\pi\)
0.933495 0.358591i \(-0.116743\pi\)
\(174\) 0 0
\(175\) 0.178143 + 2.63975i 0.0134664 + 0.199546i
\(176\) −5.96598 + 20.0452i −0.449703 + 1.51097i
\(177\) 0 0
\(178\) 12.0390 + 0.872173i 0.902360 + 0.0653721i
\(179\) 21.4618i 1.60413i −0.597239 0.802063i \(-0.703736\pi\)
0.597239 0.802063i \(-0.296264\pi\)
\(180\) 0 0
\(181\) 24.1736i 1.79681i 0.439171 + 0.898403i \(0.355272\pi\)
−0.439171 + 0.898403i \(0.644728\pi\)
\(182\) 0.0835851 16.9321i 0.00619574 1.25509i
\(183\) 0 0
\(184\) 2.37160 + 0.522767i 0.174837 + 0.0385389i
\(185\) 2.13976i 0.157318i
\(186\) 0 0
\(187\) −35.0394 −2.56234
\(188\) −19.4482 2.83274i −1.41841 0.206599i
\(189\) 0 0
\(190\) −3.97738 0.288144i −0.288550 0.0209042i
\(191\) 18.9822i 1.37350i −0.726892 0.686751i \(-0.759036\pi\)
0.726892 0.686751i \(-0.240964\pi\)
\(192\) 0 0
\(193\) 26.5854 1.91366 0.956828 0.290654i \(-0.0938728\pi\)
0.956828 + 0.290654i \(0.0938728\pi\)
\(194\) 14.8399 + 1.07509i 1.06544 + 0.0771868i
\(195\) 0 0
\(196\) 13.9993 + 0.138218i 0.999951 + 0.00987275i
\(197\) −23.2008 −1.65299 −0.826494 0.562945i \(-0.809668\pi\)
−0.826494 + 0.562945i \(0.809668\pi\)
\(198\) 0 0
\(199\) −19.8867 −1.40973 −0.704866 0.709341i \(-0.748993\pi\)
−0.704866 + 0.709341i \(0.748993\pi\)
\(200\) 0.608847 2.76212i 0.0430520 0.195311i
\(201\) 0 0
\(202\) 5.61154 + 0.406532i 0.394827 + 0.0286035i
\(203\) 1.15318 + 17.0880i 0.0809375 + 1.19934i
\(204\) 0 0
\(205\) 8.71476 0.608665
\(206\) 0.387217 5.34493i 0.0269787 0.372399i
\(207\) 0 0
\(208\) −5.16359 + 17.3493i −0.358031 + 1.20296i
\(209\) 14.7435i 1.01983i
\(210\) 0 0
\(211\) 2.51318i 0.173014i 0.996251 + 0.0865072i \(0.0275706\pi\)
−0.996251 + 0.0865072i \(0.972429\pi\)
\(212\) 7.30890 + 1.06458i 0.501977 + 0.0731159i
\(213\) 0 0
\(214\) −3.36927 0.244089i −0.230319 0.0166856i
\(215\) −7.42042 −0.506068
\(216\) 0 0
\(217\) −0.464462 6.88244i −0.0315297 0.467211i
\(218\) 0.592420 8.17744i 0.0401238 0.553846i
\(219\) 0 0
\(220\) −10.3479 1.50723i −0.697656 0.101618i
\(221\) −30.3269 −2.04001
\(222\) 0 0
\(223\) −1.23567 −0.0827463 −0.0413732 0.999144i \(-0.513173\pi\)
−0.0413732 + 0.999144i \(0.513173\pi\)
\(224\) −14.3235 4.34014i −0.957030 0.289988i
\(225\) 0 0
\(226\) 0.701606 9.68458i 0.0466701 0.644208i
\(227\) −1.76552 −0.117182 −0.0585909 0.998282i \(-0.518661\pi\)
−0.0585909 + 0.998282i \(0.518661\pi\)
\(228\) 0 0
\(229\) 8.94803i 0.591302i 0.955296 + 0.295651i \(0.0955366\pi\)
−0.955296 + 0.295651i \(0.904463\pi\)
\(230\) −0.0877385 + 1.21109i −0.00578531 + 0.0798572i
\(231\) 0 0
\(232\) 3.94127 17.8801i 0.258757 1.17389i
\(233\) 21.8087 1.42874 0.714368 0.699770i \(-0.246714\pi\)
0.714368 + 0.699770i \(0.246714\pi\)
\(234\) 0 0
\(235\) 9.82671i 0.641024i
\(236\) 8.46986 + 1.23368i 0.551341 + 0.0803060i
\(237\) 0 0
\(238\) 0.123781 25.0746i 0.00802352 1.62535i
\(239\) 14.7558i 0.954471i −0.878776 0.477235i \(-0.841639\pi\)
0.878776 0.477235i \(-0.158361\pi\)
\(240\) 0 0
\(241\) 15.3302i 0.987503i −0.869603 0.493751i \(-0.835625\pi\)
0.869603 0.493751i \(-0.164375\pi\)
\(242\) −1.66949 + 23.0447i −0.107319 + 1.48137i
\(243\) 0 0
\(244\) −3.08604 + 21.1872i −0.197564 + 1.35637i
\(245\) 0.940508 + 6.93653i 0.0600868 + 0.443159i
\(246\) 0 0
\(247\) 12.7606i 0.811937i
\(248\) −1.58741 + 7.20149i −0.100800 + 0.457295i
\(249\) 0 0
\(250\) 1.41052 + 0.102186i 0.0892089 + 0.00646280i
\(251\) −15.4063 −0.972435 −0.486218 0.873838i \(-0.661624\pi\)
−0.486218 + 0.873838i \(0.661624\pi\)
\(252\) 0 0
\(253\) 4.48932 0.282241
\(254\) −14.7870 1.07125i −0.927818 0.0672164i
\(255\) 0 0
\(256\) 13.3961 + 8.74903i 0.837254 + 0.546814i
\(257\) 11.6114i 0.724298i 0.932120 + 0.362149i \(0.117957\pi\)
−0.932120 + 0.362149i \(0.882043\pi\)
\(258\) 0 0
\(259\) −0.381184 5.64842i −0.0236856 0.350976i
\(260\) −8.95618 1.30452i −0.555439 0.0809029i
\(261\) 0 0
\(262\) −1.95109 + 26.9318i −0.120539 + 1.66385i
\(263\) 14.4160i 0.888927i 0.895797 + 0.444463i \(0.146606\pi\)
−0.895797 + 0.444463i \(0.853394\pi\)
\(264\) 0 0
\(265\) 3.69301i 0.226860i
\(266\) −10.5506 0.0520831i −0.646900 0.00319342i
\(267\) 0 0
\(268\) 1.30375 8.95093i 0.0796395 0.546765i
\(269\) 10.8482i 0.661425i −0.943732 0.330712i \(-0.892711\pi\)
0.943732 0.330712i \(-0.107289\pi\)
\(270\) 0 0
\(271\) 18.9758 1.15270 0.576349 0.817204i \(-0.304477\pi\)
0.576349 + 0.817204i \(0.304477\pi\)
\(272\) −7.64674 + 25.6924i −0.463652 + 1.55783i
\(273\) 0 0
\(274\) −0.559175 + 7.71854i −0.0337810 + 0.466294i
\(275\) 5.22855i 0.315293i
\(276\) 0 0
\(277\) 11.0960 0.666692 0.333346 0.942804i \(-0.391822\pi\)
0.333346 + 0.942804i \(0.391822\pi\)
\(278\) −0.290150 + 4.00507i −0.0174020 + 0.240208i
\(279\) 0 0
\(280\) 1.11515 7.39976i 0.0666429 0.442220i
\(281\) 26.1397 1.55937 0.779683 0.626175i \(-0.215380\pi\)
0.779683 + 0.626175i \(0.215380\pi\)
\(282\) 0 0
\(283\) −15.0023 −0.891793 −0.445897 0.895084i \(-0.647115\pi\)
−0.445897 + 0.895084i \(0.647115\pi\)
\(284\) 2.08567 14.3192i 0.123762 0.849686i
\(285\) 0 0
\(286\) −2.41782 + 33.3742i −0.142969 + 1.97346i
\(287\) 23.0048 1.55248i 1.35793 0.0916399i
\(288\) 0 0
\(289\) −27.9109 −1.64182
\(290\) 9.13075 + 0.661483i 0.536176 + 0.0388436i
\(291\) 0 0
\(292\) 2.66562 18.3008i 0.155994 1.07097i
\(293\) 30.1766i 1.76293i 0.472245 + 0.881467i \(0.343444\pi\)
−0.472245 + 0.881467i \(0.656556\pi\)
\(294\) 0 0
\(295\) 4.27962i 0.249169i
\(296\) −1.30278 + 5.91026i −0.0757228 + 0.343527i
\(297\) 0 0
\(298\) −0.176634 + 2.43816i −0.0102321 + 0.141239i
\(299\) 3.88554 0.224706
\(300\) 0 0
\(301\) −19.5880 + 1.32190i −1.12904 + 0.0761930i
\(302\) 21.0917 + 1.52800i 1.21369 + 0.0879267i
\(303\) 0 0
\(304\) 10.8106 + 3.21751i 0.620029 + 0.184537i
\(305\) −10.7054 −0.612989
\(306\) 0 0
\(307\) 6.17458 0.352402 0.176201 0.984354i \(-0.443619\pi\)
0.176201 + 0.984354i \(0.443619\pi\)
\(308\) −27.5844 2.13530i −1.57176 0.121670i
\(309\) 0 0
\(310\) −3.67755 0.266423i −0.208871 0.0151318i
\(311\) 3.80564 0.215798 0.107899 0.994162i \(-0.465588\pi\)
0.107899 + 0.994162i \(0.465588\pi\)
\(312\) 0 0
\(313\) 16.5774i 0.937011i 0.883461 + 0.468506i \(0.155207\pi\)
−0.883461 + 0.468506i \(0.844793\pi\)
\(314\) −15.5697 1.12796i −0.878650 0.0636544i
\(315\) 0 0
\(316\) 0.773468 5.31025i 0.0435110 0.298725i
\(317\) 11.1118 0.624098 0.312049 0.950066i \(-0.398985\pi\)
0.312049 + 0.950066i \(0.398985\pi\)
\(318\) 0 0
\(319\) 33.8461i 1.89502i
\(320\) −3.36342 + 7.25861i −0.188021 + 0.405769i
\(321\) 0 0
\(322\) −0.0158590 + 3.21261i −0.000883790 + 0.179032i
\(323\) 18.8971i 1.05146i
\(324\) 0 0
\(325\) 4.52534i 0.251021i
\(326\) 26.5133 + 1.92078i 1.46844 + 0.106382i
\(327\) 0 0
\(328\) −24.0712 5.30596i −1.32911 0.292972i
\(329\) −1.75056 25.9400i −0.0965117 1.43012i
\(330\) 0 0
\(331\) 22.4709i 1.23511i −0.786526 0.617557i \(-0.788123\pi\)
0.786526 0.617557i \(-0.211877\pi\)
\(332\) −32.2224 4.69339i −1.76844 0.257583i
\(333\) 0 0
\(334\) 0.193453 2.67032i 0.0105853 0.146113i
\(335\) 4.52269 0.247101
\(336\) 0 0
\(337\) −6.02729 −0.328328 −0.164164 0.986433i \(-0.552493\pi\)
−0.164164 + 0.986433i \(0.552493\pi\)
\(338\) −0.764222 + 10.5489i −0.0415682 + 0.573784i
\(339\) 0 0
\(340\) −13.2632 1.93186i −0.719296 0.104770i
\(341\) 13.6321i 0.738217i
\(342\) 0 0
\(343\) 3.71840 + 18.1431i 0.200775 + 0.979637i
\(344\) 20.4961 + 4.51790i 1.10508 + 0.243589i
\(345\) 0 0
\(346\) −13.3055 0.963925i −0.715307 0.0518209i
\(347\) 9.57093i 0.513794i 0.966439 + 0.256897i \(0.0827001\pi\)
−0.966439 + 0.256897i \(0.917300\pi\)
\(348\) 0 0
\(349\) 12.9442i 0.692884i −0.938071 0.346442i \(-0.887390\pi\)
0.938071 0.346442i \(-0.112610\pi\)
\(350\) 3.74161 + 0.0184704i 0.199998 + 0.000987287i
\(351\) 0 0
\(352\) 27.6645 + 10.4635i 1.47452 + 0.557704i
\(353\) 11.6209i 0.618520i −0.950978 0.309260i \(-0.899919\pi\)
0.950978 0.309260i \(-0.100081\pi\)
\(354\) 0 0
\(355\) 7.23513 0.384001
\(356\) 2.46043 16.8921i 0.130402 0.895278i
\(357\) 0 0
\(358\) −30.2722 2.19309i −1.59993 0.115908i
\(359\) 5.42483i 0.286312i 0.989700 + 0.143156i \(0.0457250\pi\)
−0.989700 + 0.143156i \(0.954275\pi\)
\(360\) 0 0
\(361\) −11.0487 −0.581510
\(362\) 34.0972 + 2.47020i 1.79211 + 0.129831i
\(363\) 0 0
\(364\) −23.8744 1.84812i −1.25136 0.0968677i
\(365\) 9.24697 0.484009
\(366\) 0 0
\(367\) 28.4203 1.48353 0.741763 0.670662i \(-0.233990\pi\)
0.741763 + 0.670662i \(0.233990\pi\)
\(368\) 0.979715 3.29177i 0.0510712 0.171595i
\(369\) 0 0
\(370\) −3.01816 0.218653i −0.156907 0.0113672i
\(371\) 0.657886 + 9.74862i 0.0341557 + 0.506123i
\(372\) 0 0
\(373\) 23.0923 1.19568 0.597838 0.801617i \(-0.296027\pi\)
0.597838 + 0.801617i \(0.296027\pi\)
\(374\) −3.58054 + 49.4237i −0.185145 + 2.55564i
\(375\) 0 0
\(376\) −5.98296 + 27.1425i −0.308548 + 1.39977i
\(377\) 29.2941i 1.50872i
\(378\) 0 0
\(379\) 12.0804i 0.620527i 0.950651 + 0.310263i \(0.100417\pi\)
−0.950651 + 0.310263i \(0.899583\pi\)
\(380\) −0.812865 + 5.58072i −0.0416991 + 0.286285i
\(381\) 0 0
\(382\) −26.7747 1.93971i −1.36991 0.0992443i
\(383\) −4.05602 −0.207253 −0.103626 0.994616i \(-0.533045\pi\)
−0.103626 + 0.994616i \(0.533045\pi\)
\(384\) 0 0
\(385\) −0.931432 13.8020i −0.0474702 0.703418i
\(386\) 2.71665 37.4991i 0.138274 1.90865i
\(387\) 0 0
\(388\) 3.03286 20.8221i 0.153970 1.05708i
\(389\) −5.28804 −0.268114 −0.134057 0.990974i \(-0.542801\pi\)
−0.134057 + 0.990974i \(0.542801\pi\)
\(390\) 0 0
\(391\) 5.75407 0.290996
\(392\) 1.62549 19.7322i 0.0820997 0.996624i
\(393\) 0 0
\(394\) −2.37079 + 32.7251i −0.119439 + 1.64867i
\(395\) 2.68314 0.135003
\(396\) 0 0
\(397\) 15.0058i 0.753121i 0.926392 + 0.376561i \(0.122893\pi\)
−0.926392 + 0.376561i \(0.877107\pi\)
\(398\) −2.03214 + 28.0505i −0.101862 + 1.40605i
\(399\) 0 0
\(400\) −3.83380 1.14104i −0.191690 0.0570519i
\(401\) −19.3630 −0.966942 −0.483471 0.875360i \(-0.660624\pi\)
−0.483471 + 0.875360i \(0.660624\pi\)
\(402\) 0 0
\(403\) 11.7986i 0.587732i
\(404\) 1.14684 7.87363i 0.0570574 0.391728i
\(405\) 0 0
\(406\) 24.2207 + 0.119565i 1.20205 + 0.00593393i
\(407\) 11.1878i 0.554560i
\(408\) 0 0
\(409\) 0.432474i 0.0213845i 0.999943 + 0.0106922i \(0.00340351\pi\)
−0.999943 + 0.0106922i \(0.996596\pi\)
\(410\) 0.890525 12.2923i 0.0439799 0.607074i
\(411\) 0 0
\(412\) −7.49955 1.09235i −0.369476 0.0538164i
\(413\) 0.762386 + 11.2971i 0.0375146 + 0.555894i
\(414\) 0 0
\(415\) 16.2812i 0.799214i
\(416\) 23.9438 + 9.05619i 1.17394 + 0.444016i
\(417\) 0 0
\(418\) 20.7960 + 1.50658i 1.01716 + 0.0736891i
\(419\) 5.56216 0.271729 0.135865 0.990727i \(-0.456619\pi\)
0.135865 + 0.990727i \(0.456619\pi\)
\(420\) 0 0
\(421\) −1.97874 −0.0964379 −0.0482190 0.998837i \(-0.515355\pi\)
−0.0482190 + 0.998837i \(0.515355\pi\)
\(422\) 3.54488 + 0.256811i 0.172562 + 0.0125014i
\(423\) 0 0
\(424\) 2.24848 10.2005i 0.109196 0.495382i
\(425\) 6.70156i 0.325073i
\(426\) 0 0
\(427\) −28.2595 + 1.90710i −1.36757 + 0.0922908i
\(428\) −0.688584 + 4.72747i −0.0332840 + 0.228511i
\(429\) 0 0
\(430\) −0.758262 + 10.4666i −0.0365666 + 0.504746i
\(431\) 14.0974i 0.679048i 0.940597 + 0.339524i \(0.110266\pi\)
−0.940597 + 0.339524i \(0.889734\pi\)
\(432\) 0 0
\(433\) 18.3496i 0.881826i −0.897550 0.440913i \(-0.854655\pi\)
0.897550 0.440913i \(-0.145345\pi\)
\(434\) −9.75526 0.0481568i −0.468268 0.00231160i
\(435\) 0 0
\(436\) −11.4739 1.67124i −0.549499 0.0800378i
\(437\) 2.42113i 0.115819i
\(438\) 0 0
\(439\) −8.36492 −0.399236 −0.199618 0.979874i \(-0.563970\pi\)
−0.199618 + 0.979874i \(0.563970\pi\)
\(440\) −3.18339 + 14.4419i −0.151762 + 0.688490i
\(441\) 0 0
\(442\) −3.09898 + 42.7766i −0.147403 + 2.03467i
\(443\) 1.47488i 0.0700737i 0.999386 + 0.0350368i \(0.0111549\pi\)
−0.999386 + 0.0350368i \(0.988845\pi\)
\(444\) 0 0
\(445\) 8.53516 0.404605
\(446\) −0.126268 + 1.74293i −0.00597895 + 0.0825300i
\(447\) 0 0
\(448\) −7.58550 + 19.7601i −0.358381 + 0.933575i
\(449\) 16.1871 0.763918 0.381959 0.924179i \(-0.375250\pi\)
0.381959 + 0.924179i \(0.375250\pi\)
\(450\) 0 0
\(451\) −45.5656 −2.14560
\(452\) −13.5886 1.97925i −0.639152 0.0930963i
\(453\) 0 0
\(454\) −0.180411 + 2.49030i −0.00846713 + 0.116876i
\(455\) −0.806161 11.9458i −0.0377934 0.560026i
\(456\) 0 0
\(457\) −26.6551 −1.24687 −0.623435 0.781875i \(-0.714264\pi\)
−0.623435 + 0.781875i \(0.714264\pi\)
\(458\) 12.6213 + 0.914362i 0.589757 + 0.0427253i
\(459\) 0 0
\(460\) 1.69930 + 0.247513i 0.0792304 + 0.0115404i
\(461\) 34.3308i 1.59895i −0.600703 0.799473i \(-0.705112\pi\)
0.600703 0.799473i \(-0.294888\pi\)
\(462\) 0 0
\(463\) 16.8787i 0.784421i −0.919875 0.392210i \(-0.871710\pi\)
0.919875 0.392210i \(-0.128290\pi\)
\(464\) −24.8175 7.38632i −1.15212 0.342902i
\(465\) 0 0
\(466\) 2.22854 30.7615i 0.103235 1.42500i
\(467\) −33.4884 −1.54966 −0.774829 0.632171i \(-0.782164\pi\)
−0.774829 + 0.632171i \(0.782164\pi\)
\(468\) 0 0
\(469\) 11.9388 0.805688i 0.551280 0.0372032i
\(470\) −13.8607 1.00415i −0.639348 0.0463180i
\(471\) 0 0
\(472\) 2.60563 11.8208i 0.119934 0.544097i
\(473\) 38.7980 1.78394
\(474\) 0 0
\(475\) −2.81981 −0.129382
\(476\) −35.3556 2.73687i −1.62052 0.125444i
\(477\) 0 0
\(478\) −20.8132 1.50783i −0.951976 0.0689665i
\(479\) −21.1342 −0.965644 −0.482822 0.875718i \(-0.660388\pi\)
−0.482822 + 0.875718i \(0.660388\pi\)
\(480\) 0 0
\(481\) 9.68314i 0.441513i
\(482\) −21.6235 1.56653i −0.984921 0.0713533i
\(483\) 0 0
\(484\) 32.3343 + 4.70968i 1.46974 + 0.214076i
\(485\) 10.5209 0.477730
\(486\) 0 0
\(487\) 13.3600i 0.605399i −0.953086 0.302699i \(-0.902112\pi\)
0.953086 0.302699i \(-0.0978878\pi\)
\(488\) 29.5696 + 6.51795i 1.33855 + 0.295054i
\(489\) 0 0
\(490\) 9.88020 0.617786i 0.446342 0.0279087i
\(491\) 10.6077i 0.478717i −0.970931 0.239359i \(-0.923063\pi\)
0.970931 0.239359i \(-0.0769372\pi\)
\(492\) 0 0
\(493\) 43.3814i 1.95380i
\(494\) 17.9990 + 1.30395i 0.809815 + 0.0586676i
\(495\) 0 0
\(496\) 9.99562 + 2.97496i 0.448817 + 0.133579i
\(497\) 19.0989 1.28889i 0.856703 0.0578147i
\(498\) 0 0
\(499\) 22.9131i 1.02573i −0.858470 0.512865i \(-0.828584\pi\)
0.858470 0.512865i \(-0.171416\pi\)
\(500\) 0.288270 1.97912i 0.0128918 0.0885088i
\(501\) 0 0
\(502\) −1.57430 + 21.7308i −0.0702646 + 0.969893i
\(503\) 15.2517 0.680040 0.340020 0.940418i \(-0.389566\pi\)
0.340020 + 0.940418i \(0.389566\pi\)
\(504\) 0 0
\(505\) 3.97836 0.177035
\(506\) 0.458745 6.33227i 0.0203937 0.281504i
\(507\) 0 0
\(508\) −3.02204 + 20.7478i −0.134081 + 0.920536i
\(509\) 6.06153i 0.268673i −0.990936 0.134336i \(-0.957110\pi\)
0.990936 0.134336i \(-0.0428902\pi\)
\(510\) 0 0
\(511\) 24.4097 1.64729i 1.07982 0.0728717i
\(512\) 13.7095 18.0013i 0.605882 0.795555i
\(513\) 0 0
\(514\) 16.3781 + 1.18652i 0.722405 + 0.0523351i
\(515\) 3.78934i 0.166978i
\(516\) 0 0
\(517\) 51.3794i 2.25967i
\(518\) −8.00614 0.0395222i −0.351770 0.00173651i
\(519\) 0 0
\(520\) −2.75524 + 12.4995i −0.120825 + 0.548141i
\(521\) 33.7238i 1.47747i −0.673998 0.738733i \(-0.735424\pi\)
0.673998 0.738733i \(-0.264576\pi\)
\(522\) 0 0
\(523\) −17.5830 −0.768852 −0.384426 0.923156i \(-0.625601\pi\)
−0.384426 + 0.923156i \(0.625601\pi\)
\(524\) 37.7884 + 5.50410i 1.65079 + 0.240448i
\(525\) 0 0
\(526\) 20.3340 + 1.47311i 0.886603 + 0.0642306i
\(527\) 17.4725i 0.761116i
\(528\) 0 0
\(529\) 22.2628 0.967947
\(530\) 5.20906 + 0.377374i 0.226267 + 0.0163921i
\(531\) 0 0
\(532\) −1.15159 + 14.8765i −0.0499277 + 0.644978i
\(533\) −39.4373 −1.70822
\(534\) 0 0
\(535\) −2.38868 −0.103272
\(536\) −12.4922 2.75363i −0.539581 0.118939i
\(537\) 0 0
\(538\) −15.3015 1.10853i −0.659696 0.0477921i
\(539\) −4.91749 36.2680i −0.211811 1.56217i
\(540\) 0 0
\(541\) −22.7960 −0.980079 −0.490039 0.871700i \(-0.663018\pi\)
−0.490039 + 0.871700i \(0.663018\pi\)
\(542\) 1.93906 26.7657i 0.0832897 1.14968i
\(543\) 0 0
\(544\) 35.4582 + 13.4113i 1.52026 + 0.575003i
\(545\) 5.79748i 0.248337i
\(546\) 0 0
\(547\) 14.4784i 0.619053i 0.950891 + 0.309527i \(0.100171\pi\)
−0.950891 + 0.309527i \(0.899829\pi\)
\(548\) 10.8300 + 1.57745i 0.462635 + 0.0673854i
\(549\) 0 0
\(550\) −7.37496 0.534284i −0.314469 0.0227819i
\(551\) −18.2535 −0.777627
\(552\) 0 0
\(553\) 7.08281 0.477984i 0.301192 0.0203259i
\(554\) 1.13385 15.6511i 0.0481727 0.664950i
\(555\) 0 0
\(556\) 5.61957 + 0.818523i 0.238323 + 0.0347131i
\(557\) −14.9697 −0.634288 −0.317144 0.948377i \(-0.602724\pi\)
−0.317144 + 0.948377i \(0.602724\pi\)
\(558\) 0 0
\(559\) 33.5800 1.42028
\(560\) −10.3235 2.32909i −0.436249 0.0984219i
\(561\) 0 0
\(562\) 2.67111 36.8705i 0.112674 1.55529i
\(563\) 6.81282 0.287126 0.143563 0.989641i \(-0.454144\pi\)
0.143563 + 0.989641i \(0.454144\pi\)
\(564\) 0 0
\(565\) 6.86598i 0.288854i
\(566\) −1.53302 + 21.1610i −0.0644377 + 0.889462i
\(567\) 0 0
\(568\) −19.9843 4.40509i −0.838522 0.184833i
\(569\) −15.3819 −0.644841 −0.322421 0.946597i \(-0.604497\pi\)
−0.322421 + 0.946597i \(0.604497\pi\)
\(570\) 0 0
\(571\) 33.9875i 1.42233i 0.703024 + 0.711167i \(0.251833\pi\)
−0.703024 + 0.711167i \(0.748167\pi\)
\(572\) 46.8278 + 6.82075i 1.95797 + 0.285190i
\(573\) 0 0
\(574\) 0.160965 32.6073i 0.00671857 1.36100i
\(575\) 0.858617i 0.0358068i
\(576\) 0 0
\(577\) 41.9819i 1.74773i −0.486170 0.873864i \(-0.661606\pi\)
0.486170 0.873864i \(-0.338394\pi\)
\(578\) −2.85210 + 39.3688i −0.118632 + 1.63753i
\(579\) 0 0
\(580\) 1.86607 12.8115i 0.0774842 0.531968i
\(581\) −2.90039 42.9783i −0.120329 1.78304i
\(582\) 0 0
\(583\) 19.3091i 0.799701i
\(584\) −25.5412 5.62999i −1.05690 0.232971i
\(585\) 0 0
\(586\) 42.5646 + 3.08362i 1.75833 + 0.127383i
\(587\) 12.5442 0.517756 0.258878 0.965910i \(-0.416647\pi\)
0.258878 + 0.965910i \(0.416647\pi\)
\(588\) 0 0
\(589\) 7.35190 0.302930
\(590\) 6.03647 + 0.437316i 0.248518 + 0.0180040i
\(591\) 0 0
\(592\) 8.20340 + 2.44155i 0.337158 + 0.100347i
\(593\) 9.26081i 0.380296i −0.981755 0.190148i \(-0.939103\pi\)
0.981755 0.190148i \(-0.0608968\pi\)
\(594\) 0 0
\(595\) −1.19384 17.6904i −0.0489426 0.725237i
\(596\) 3.42102 + 0.498291i 0.140130 + 0.0204108i
\(597\) 0 0
\(598\) 0.397047 5.48062i 0.0162365 0.224119i
\(599\) 15.8991i 0.649618i 0.945780 + 0.324809i \(0.105300\pi\)
−0.945780 + 0.324809i \(0.894700\pi\)
\(600\) 0 0
\(601\) 31.4061i 1.28108i −0.767925 0.640540i \(-0.778711\pi\)
0.767925 0.640540i \(-0.221289\pi\)
\(602\) −0.137058 + 27.7643i −0.00558608 + 1.13159i
\(603\) 0 0
\(604\) 4.31055 29.5941i 0.175394 1.20417i
\(605\) 16.3377i 0.664223i
\(606\) 0 0
\(607\) 14.6628 0.595147 0.297573 0.954699i \(-0.403823\pi\)
0.297573 + 0.954699i \(0.403823\pi\)
\(608\) 5.64304 14.9197i 0.228855 0.605074i
\(609\) 0 0
\(610\) −1.09394 + 15.1001i −0.0442923 + 0.611387i
\(611\) 44.4692i 1.79903i
\(612\) 0 0
\(613\) 35.6120 1.43836 0.719178 0.694826i \(-0.244519\pi\)
0.719178 + 0.694826i \(0.244519\pi\)
\(614\) 0.630955 8.70935i 0.0254633 0.351481i
\(615\) 0 0
\(616\) −5.83061 + 38.6900i −0.234922 + 1.55887i
\(617\) −22.0702 −0.888513 −0.444256 0.895900i \(-0.646532\pi\)
−0.444256 + 0.895900i \(0.646532\pi\)
\(618\) 0 0
\(619\) 29.1671 1.17232 0.586162 0.810194i \(-0.300638\pi\)
0.586162 + 0.810194i \(0.300638\pi\)
\(620\) −0.751587 + 5.16002i −0.0301845 + 0.207231i
\(621\) 0 0
\(622\) 0.388882 5.36792i 0.0155928 0.215234i
\(623\) 22.5307 1.52048i 0.902672 0.0609169i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 23.3827 + 1.69398i 0.934562 + 0.0677050i
\(627\) 0 0
\(628\) −3.18201 + 21.8461i −0.126976 + 0.871754i
\(629\) 14.3397i 0.571762i
\(630\) 0 0
\(631\) 0.162149i 0.00645504i −0.999995 0.00322752i \(-0.998973\pi\)
0.999995 0.00322752i \(-0.00102735\pi\)
\(632\) −7.41115 1.63362i −0.294800 0.0649820i
\(633\) 0 0
\(634\) 1.13546 15.6733i 0.0450950 0.622467i
\(635\) −10.4834 −0.416020
\(636\) 0 0
\(637\) −4.25612 31.3902i −0.168634 1.24372i
\(638\) −47.7406 3.45860i −1.89007 0.136927i
\(639\) 0 0
\(640\) 9.89470 + 5.48588i 0.391122 + 0.216849i
\(641\) −12.4758 −0.492766 −0.246383 0.969173i \(-0.579242\pi\)
−0.246383 + 0.969173i \(0.579242\pi\)
\(642\) 0 0
\(643\) 28.4881 1.12346 0.561731 0.827320i \(-0.310136\pi\)
0.561731 + 0.827320i \(0.310136\pi\)
\(644\) 4.52982 + 0.350653i 0.178500 + 0.0138177i
\(645\) 0 0
\(646\) 26.6547 + 1.93102i 1.04871 + 0.0759748i
\(647\) −24.4328 −0.960554 −0.480277 0.877117i \(-0.659464\pi\)
−0.480277 + 0.877117i \(0.659464\pi\)
\(648\) 0 0
\(649\) 22.3762i 0.878342i
\(650\) −6.38308 0.462426i −0.250365 0.0181379i
\(651\) 0 0
\(652\) 5.41858 37.2012i 0.212208 1.45691i
\(653\) 39.9022 1.56149 0.780746 0.624848i \(-0.214839\pi\)
0.780746 + 0.624848i \(0.214839\pi\)
\(654\) 0 0
\(655\) 19.0936i 0.746047i
\(656\) −9.94388 + 33.4107i −0.388243 + 1.30447i
\(657\) 0 0
\(658\) −36.7677 0.181504i −1.43336 0.00707575i
\(659\) 2.24981i 0.0876403i −0.999039 0.0438202i \(-0.986047\pi\)
0.999039 0.0438202i \(-0.0139529\pi\)
\(660\) 0 0
\(661\) 26.0267i 1.01232i 0.862439 + 0.506162i \(0.168936\pi\)
−0.862439 + 0.506162i \(0.831064\pi\)
\(662\) −31.6956 2.29621i −1.23188 0.0892447i
\(663\) 0 0
\(664\) −9.91278 + 44.9707i −0.384690 + 1.74520i
\(665\) −7.44358 + 0.502330i −0.288650 + 0.0194795i
\(666\) 0 0
\(667\) 5.55812i 0.215211i
\(668\) −3.74676 0.545738i −0.144967 0.0211152i
\(669\) 0 0
\(670\) 0.462155 6.37933i 0.0178546 0.246455i
\(671\) 55.9737 2.16084
\(672\) 0 0
\(673\) 34.4184 1.32673 0.663365 0.748296i \(-0.269127\pi\)
0.663365 + 0.748296i \(0.269127\pi\)
\(674\) −0.615904 + 8.50160i −0.0237237 + 0.327469i
\(675\) 0 0
\(676\) 14.8013 + 2.15590i 0.569281 + 0.0829191i
\(677\) 37.6392i 1.44659i −0.690538 0.723296i \(-0.742626\pi\)
0.690538 0.723296i \(-0.257374\pi\)
\(678\) 0 0
\(679\) 27.7725 1.87423i 1.06581 0.0719264i
\(680\) −4.08023 + 18.5105i −0.156470 + 0.709846i
\(681\) 0 0
\(682\) 19.2282 + 1.39300i 0.736288 + 0.0533409i
\(683\) 25.5973i 0.979454i −0.871876 0.489727i \(-0.837096\pi\)
0.871876 0.489727i \(-0.162904\pi\)
\(684\) 0 0
\(685\) 5.47214i 0.209080i
\(686\) 25.9712 3.39089i 0.991584 0.129465i
\(687\) 0 0
\(688\) 8.46699 28.4484i 0.322801 1.08459i
\(689\) 16.7122i 0.636682i
\(690\) 0 0
\(691\) −20.4140 −0.776585 −0.388293 0.921536i \(-0.626935\pi\)
−0.388293 + 0.921536i \(0.626935\pi\)
\(692\) −2.71927 + 18.6691i −0.103371 + 0.709693i
\(693\) 0 0
\(694\) 13.5000 + 0.978013i 0.512451 + 0.0371249i
\(695\) 2.83943i 0.107706i
\(696\) 0 0
\(697\) −58.4025 −2.21215
\(698\) −18.2579 1.32271i −0.691073 0.0500653i
\(699\) 0 0
\(700\) 0.408393 5.27572i 0.0154358 0.199403i
\(701\) 7.73141 0.292011 0.146006 0.989284i \(-0.453358\pi\)
0.146006 + 0.989284i \(0.453358\pi\)
\(702\) 0 0
\(703\) 6.03370 0.227565
\(704\) 17.5858 37.9520i 0.662790 1.43037i
\(705\) 0 0
\(706\) −16.3915 1.18750i −0.616903 0.0446920i
\(707\) 10.5019 0.708718i 0.394963 0.0266541i
\(708\) 0 0
\(709\) 29.7793 1.11839 0.559193 0.829038i \(-0.311111\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(710\) 0.739328 10.2053i 0.0277465 0.382997i
\(711\) 0 0
\(712\) −23.5751 5.19661i −0.883515 0.194751i
\(713\) 2.23862i 0.0838369i
\(714\) 0 0
\(715\) 23.6610i 0.884871i
\(716\) −6.18677 + 42.4753i −0.231211 + 1.58738i
\(717\) 0 0
\(718\) 7.65182 + 0.554341i 0.285563 + 0.0206878i
\(719\) −18.4203 −0.686963 −0.343481 0.939160i \(-0.611606\pi\)
−0.343481 + 0.939160i \(0.611606\pi\)
\(720\) 0 0
\(721\) −0.675047 10.0029i −0.0251401 0.372528i
\(722\) −1.12902 + 15.5844i −0.0420178 + 0.579990i
\(723\) 0 0
\(724\) 6.96851 47.8423i 0.258983 1.77804i
\(725\) 6.47333 0.240414
\(726\) 0 0
\(727\) 30.7292 1.13968 0.569842 0.821754i \(-0.307004\pi\)
0.569842 + 0.821754i \(0.307004\pi\)
\(728\) −5.04643 + 33.4865i −0.187033 + 1.24109i
\(729\) 0 0
\(730\) 0.944910 13.0430i 0.0349727 0.482743i
\(731\) 49.7284 1.83927
\(732\) 0 0
\(733\) 5.09061i 0.188026i 0.995571 + 0.0940130i \(0.0299695\pi\)
−0.995571 + 0.0940130i \(0.970030\pi\)
\(734\) 2.90415 40.0873i 0.107194 1.47965i
\(735\) 0 0
\(736\) −4.54298 1.71828i −0.167456 0.0633365i
\(737\) −23.6471 −0.871052
\(738\) 0 0
\(739\) 15.1154i 0.556030i −0.960577 0.278015i \(-0.910323\pi\)
0.960577 0.278015i \(-0.0896765\pi\)
\(740\) −0.616827 + 4.23483i −0.0226750 + 0.155675i
\(741\) 0 0
\(742\) 13.8178 + 0.0682116i 0.507268 + 0.00250413i
\(743\) 42.0496i 1.54265i −0.636440 0.771326i \(-0.719594\pi\)
0.636440 0.771326i \(-0.280406\pi\)
\(744\) 0 0
\(745\) 1.72856i 0.0633295i
\(746\) 2.35971 32.5721i 0.0863951 1.19255i
\(747\) 0 0
\(748\) 69.3471 + 10.1008i 2.53558 + 0.369322i
\(749\) −6.30551 + 0.425527i −0.230398 + 0.0155484i
\(750\) 0 0
\(751\) 24.8965i 0.908487i 0.890877 + 0.454244i \(0.150090\pi\)
−0.890877 + 0.454244i \(0.849910\pi\)
\(752\) 37.6736 + 11.2127i 1.37382 + 0.408884i
\(753\) 0 0
\(754\) −41.3198 2.99344i −1.50478 0.109015i
\(755\) 14.9532 0.544202
\(756\) 0 0
\(757\) −39.7946 −1.44636 −0.723179 0.690661i \(-0.757320\pi\)
−0.723179 + 0.690661i \(0.757320\pi\)
\(758\) 17.0396 + 1.23444i 0.618905 + 0.0448370i
\(759\) 0 0
\(760\) 7.78864 + 1.71683i 0.282524 + 0.0622760i
\(761\) 27.5663i 0.999279i 0.866234 + 0.499639i \(0.166534\pi\)
−0.866234 + 0.499639i \(0.833466\pi\)
\(762\) 0 0
\(763\) −1.03278 15.3039i −0.0373893 0.554038i
\(764\) −5.47199 + 37.5680i −0.197970 + 1.35916i
\(765\) 0 0
\(766\) −0.414468 + 5.72108i −0.0149753 + 0.206711i
\(767\) 19.3667i 0.699292i
\(768\) 0 0
\(769\) 5.38100i 0.194044i 0.995282 + 0.0970219i \(0.0309317\pi\)
−0.995282 + 0.0970219i \(0.969068\pi\)
\(770\) −19.5632 0.0965736i −0.705009 0.00348027i
\(771\) 0 0
\(772\) −52.6155 7.66376i −1.89367 0.275825i
\(773\) 18.8696i 0.678693i −0.940661 0.339347i \(-0.889794\pi\)
0.940661 0.339347i \(-0.110206\pi\)
\(774\) 0 0
\(775\) −2.60723 −0.0936546
\(776\) −29.0600 6.40563i −1.04319 0.229949i
\(777\) 0 0
\(778\) −0.540363 + 7.45887i −0.0193730 + 0.267413i
\(779\) 24.5739i 0.880453i
\(780\) 0 0
\(781\) −37.8292 −1.35364
\(782\) 0.587985 8.11622i 0.0210263 0.290235i
\(783\) 0 0
\(784\) −27.6664 4.30913i −0.988087 0.153898i
\(785\) −11.0383 −0.393974
\(786\) 0 0
\(787\) 36.8177 1.31241 0.656204 0.754583i \(-0.272161\pi\)
0.656204 + 0.754583i \(0.272161\pi\)
\(788\) 45.9171 + 6.68809i 1.63573 + 0.238253i
\(789\) 0 0
\(790\) 0.274179 3.78461i 0.00975485 0.134651i
\(791\) −1.22313 18.1244i −0.0434895 0.644431i
\(792\)