Properties

Label 1260.2.c.d.811.2
Level $1260$
Weight $2$
Character 1260.811
Analytic conductor $10.061$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 3 x^{12} + 2 x^{11} - 7 x^{10} + 12 x^{9} - 28 x^{8} + 24 x^{7} - 28 x^{6} + 16 x^{5} + 48 x^{4} - 128 x^{3} + 192 x^{2} - 256 x + 256\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.2
Root \(1.40936 + 0.117062i\) of defining polynomial
Character \(\chi\) \(=\) 1260.811
Dual form 1260.2.c.d.811.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.40936 + 0.117062i) q^{2} +(1.97259 - 0.329965i) q^{4} -1.00000i q^{5} +(0.776136 + 2.52935i) q^{7} +(-2.74147 + 0.695955i) q^{8} +O(q^{10})\) \(q+(-1.40936 + 0.117062i) q^{2} +(1.97259 - 0.329965i) q^{4} -1.00000i q^{5} +(0.776136 + 2.52935i) q^{7} +(-2.74147 + 0.695955i) q^{8} +(0.117062 + 1.40936i) q^{10} -0.556350i q^{11} -0.182384i q^{13} +(-1.38995 - 3.47391i) q^{14} +(3.78225 - 1.30177i) q^{16} -2.39449i q^{17} +3.08109 q^{19} +(-0.329965 - 1.97259i) q^{20} +(0.0651274 + 0.784098i) q^{22} +3.94362i q^{23} -1.00000 q^{25} +(0.0213502 + 0.257045i) q^{26} +(2.36560 + 4.73328i) q^{28} +3.20026 q^{29} +5.68747 q^{31} +(-5.17816 + 2.27742i) q^{32} +(0.280303 + 3.37469i) q^{34} +(2.52935 - 0.776136i) q^{35} -4.98180 q^{37} +(-4.34237 + 0.360678i) q^{38} +(0.695955 + 2.74147i) q^{40} +9.64809i q^{41} -0.643697i q^{43} +(-0.183576 - 1.09745i) q^{44} +(-0.461647 - 5.55798i) q^{46} +3.63668 q^{47} +(-5.79523 + 3.92624i) q^{49} +(1.40936 - 0.117062i) q^{50} +(-0.0601803 - 0.359769i) q^{52} +6.97060 q^{53} -0.556350 q^{55} +(-3.88806 - 6.39398i) q^{56} +(-4.51031 + 0.374628i) q^{58} +8.79962 q^{59} -14.3787i q^{61} +(-8.01569 + 0.665786i) q^{62} +(7.03129 - 3.81588i) q^{64} -0.182384 q^{65} +10.0692i q^{67} +(-0.790096 - 4.72335i) q^{68} +(-3.47391 + 1.38995i) q^{70} +1.36136i q^{71} +10.1087i q^{73} +(7.02115 - 0.583179i) q^{74} +(6.07774 - 1.01665i) q^{76} +(1.40721 - 0.431803i) q^{77} -13.0596i q^{79} +(-1.30177 - 3.78225i) q^{80} +(-1.12942 - 13.5976i) q^{82} +9.45272 q^{83} -2.39449 q^{85} +(0.0753523 + 0.907200i) q^{86} +(0.387195 + 1.52522i) q^{88} -8.01600i q^{89} +(0.461313 - 0.141555i) q^{91} +(1.30125 + 7.77915i) q^{92} +(-5.12540 + 0.425717i) q^{94} -3.08109i q^{95} +0.445387i q^{97} +(7.70795 - 6.21188i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 2 q^{4} - 4 q^{7} - 2 q^{8} + O(q^{10}) \) \( 16 q - 2 q^{2} - 2 q^{4} - 4 q^{7} - 2 q^{8} + 2 q^{14} + 6 q^{16} - 24 q^{19} - 12 q^{22} - 16 q^{25} + 12 q^{26} + 14 q^{28} - 16 q^{29} + 8 q^{31} + 18 q^{32} + 24 q^{34} + 24 q^{37} - 28 q^{38} + 12 q^{40} + 8 q^{44} - 20 q^{46} - 16 q^{47} - 16 q^{49} + 2 q^{50} - 20 q^{52} + 32 q^{53} - 2 q^{56} - 32 q^{58} - 8 q^{59} - 16 q^{62} - 2 q^{64} + 8 q^{65} - 4 q^{68} + 4 q^{74} + 16 q^{76} + 8 q^{77} + 16 q^{80} - 4 q^{82} - 8 q^{83} - 64 q^{86} - 52 q^{88} + 16 q^{91} - 64 q^{92} + 16 q^{94} + 86 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40936 + 0.117062i −0.996568 + 0.0827753i
\(3\) 0 0
\(4\) 1.97259 0.329965i 0.986297 0.164982i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.776136 + 2.52935i 0.293352 + 0.956005i
\(8\) −2.74147 + 0.695955i −0.969255 + 0.246057i
\(9\) 0 0
\(10\) 0.117062 + 1.40936i 0.0370182 + 0.445679i
\(11\) 0.556350i 0.167746i −0.996476 0.0838730i \(-0.973271\pi\)
0.996476 0.0838730i \(-0.0267290\pi\)
\(12\) 0 0
\(13\) 0.182384i 0.0505842i −0.999680 0.0252921i \(-0.991948\pi\)
0.999680 0.0252921i \(-0.00805158\pi\)
\(14\) −1.38995 3.47391i −0.371479 0.928442i
\(15\) 0 0
\(16\) 3.78225 1.30177i 0.945562 0.325443i
\(17\) 2.39449i 0.580748i −0.956913 0.290374i \(-0.906220\pi\)
0.956913 0.290374i \(-0.0937797\pi\)
\(18\) 0 0
\(19\) 3.08109 0.706851 0.353425 0.935463i \(-0.385017\pi\)
0.353425 + 0.935463i \(0.385017\pi\)
\(20\) −0.329965 1.97259i −0.0737824 0.441085i
\(21\) 0 0
\(22\) 0.0651274 + 0.784098i 0.0138852 + 0.167170i
\(23\) 3.94362i 0.822301i 0.911568 + 0.411150i \(0.134873\pi\)
−0.911568 + 0.411150i \(0.865127\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0.0213502 + 0.257045i 0.00418712 + 0.0504106i
\(27\) 0 0
\(28\) 2.36560 + 4.73328i 0.447056 + 0.894506i
\(29\) 3.20026 0.594273 0.297136 0.954835i \(-0.403968\pi\)
0.297136 + 0.954835i \(0.403968\pi\)
\(30\) 0 0
\(31\) 5.68747 1.02150 0.510750 0.859729i \(-0.329368\pi\)
0.510750 + 0.859729i \(0.329368\pi\)
\(32\) −5.17816 + 2.27742i −0.915378 + 0.402595i
\(33\) 0 0
\(34\) 0.280303 + 3.37469i 0.0480716 + 0.578755i
\(35\) 2.52935 0.776136i 0.427538 0.131191i
\(36\) 0 0
\(37\) −4.98180 −0.819002 −0.409501 0.912310i \(-0.634297\pi\)
−0.409501 + 0.912310i \(0.634297\pi\)
\(38\) −4.34237 + 0.360678i −0.704425 + 0.0585098i
\(39\) 0 0
\(40\) 0.695955 + 2.74147i 0.110040 + 0.433464i
\(41\) 9.64809i 1.50678i 0.657575 + 0.753389i \(0.271582\pi\)
−0.657575 + 0.753389i \(0.728418\pi\)
\(42\) 0 0
\(43\) 0.643697i 0.0981628i −0.998795 0.0490814i \(-0.984371\pi\)
0.998795 0.0490814i \(-0.0156294\pi\)
\(44\) −0.183576 1.09745i −0.0276751 0.165447i
\(45\) 0 0
\(46\) −0.461647 5.55798i −0.0680662 0.819479i
\(47\) 3.63668 0.530465 0.265232 0.964184i \(-0.414551\pi\)
0.265232 + 0.964184i \(0.414551\pi\)
\(48\) 0 0
\(49\) −5.79523 + 3.92624i −0.827890 + 0.560891i
\(50\) 1.40936 0.117062i 0.199314 0.0165551i
\(51\) 0 0
\(52\) −0.0601803 0.359769i −0.00834550 0.0498910i
\(53\) 6.97060 0.957485 0.478743 0.877955i \(-0.341093\pi\)
0.478743 + 0.877955i \(0.341093\pi\)
\(54\) 0 0
\(55\) −0.556350 −0.0750183
\(56\) −3.88806 6.39398i −0.519564 0.854431i
\(57\) 0 0
\(58\) −4.51031 + 0.374628i −0.592233 + 0.0491911i
\(59\) 8.79962 1.14561 0.572807 0.819691i \(-0.305855\pi\)
0.572807 + 0.819691i \(0.305855\pi\)
\(60\) 0 0
\(61\) 14.3787i 1.84100i −0.390743 0.920500i \(-0.627782\pi\)
0.390743 0.920500i \(-0.372218\pi\)
\(62\) −8.01569 + 0.665786i −1.01799 + 0.0845549i
\(63\) 0 0
\(64\) 7.03129 3.81588i 0.878912 0.476984i
\(65\) −0.182384 −0.0226219
\(66\) 0 0
\(67\) 10.0692i 1.23015i 0.788467 + 0.615077i \(0.210875\pi\)
−0.788467 + 0.615077i \(0.789125\pi\)
\(68\) −0.790096 4.72335i −0.0958132 0.572790i
\(69\) 0 0
\(70\) −3.47391 + 1.38995i −0.415212 + 0.166130i
\(71\) 1.36136i 0.161564i 0.996732 + 0.0807821i \(0.0257418\pi\)
−0.996732 + 0.0807821i \(0.974258\pi\)
\(72\) 0 0
\(73\) 10.1087i 1.18314i 0.806255 + 0.591569i \(0.201491\pi\)
−0.806255 + 0.591569i \(0.798509\pi\)
\(74\) 7.02115 0.583179i 0.816192 0.0677931i
\(75\) 0 0
\(76\) 6.07774 1.01665i 0.697164 0.116618i
\(77\) 1.40721 0.431803i 0.160366 0.0492086i
\(78\) 0 0
\(79\) 13.0596i 1.46932i −0.678438 0.734658i \(-0.737343\pi\)
0.678438 0.734658i \(-0.262657\pi\)
\(80\) −1.30177 3.78225i −0.145543 0.422868i
\(81\) 0 0
\(82\) −1.12942 13.5976i −0.124724 1.50161i
\(83\) 9.45272 1.03757 0.518785 0.854905i \(-0.326384\pi\)
0.518785 + 0.854905i \(0.326384\pi\)
\(84\) 0 0
\(85\) −2.39449 −0.259718
\(86\) 0.0753523 + 0.907200i 0.00812545 + 0.0978259i
\(87\) 0 0
\(88\) 0.387195 + 1.52522i 0.0412751 + 0.162589i
\(89\) 8.01600i 0.849694i −0.905265 0.424847i \(-0.860328\pi\)
0.905265 0.424847i \(-0.139672\pi\)
\(90\) 0 0
\(91\) 0.461313 0.141555i 0.0483587 0.0148390i
\(92\) 1.30125 + 7.77915i 0.135665 + 0.811032i
\(93\) 0 0
\(94\) −5.12540 + 0.425717i −0.528645 + 0.0439094i
\(95\) 3.08109i 0.316113i
\(96\) 0 0
\(97\) 0.445387i 0.0452222i 0.999744 + 0.0226111i \(0.00719796\pi\)
−0.999744 + 0.0226111i \(0.992802\pi\)
\(98\) 7.70795 6.21188i 0.778621 0.627495i
\(99\) 0 0
\(100\) −1.97259 + 0.329965i −0.197259 + 0.0329965i
\(101\) 12.8540i 1.27902i 0.768781 + 0.639512i \(0.220864\pi\)
−0.768781 + 0.639512i \(0.779136\pi\)
\(102\) 0 0
\(103\) 14.3031 1.40933 0.704664 0.709542i \(-0.251098\pi\)
0.704664 + 0.709542i \(0.251098\pi\)
\(104\) 0.126931 + 0.500000i 0.0124466 + 0.0490290i
\(105\) 0 0
\(106\) −9.82408 + 0.815991i −0.954199 + 0.0792561i
\(107\) 18.3230i 1.77136i 0.464301 + 0.885678i \(0.346306\pi\)
−0.464301 + 0.885678i \(0.653694\pi\)
\(108\) 0 0
\(109\) −4.03790 −0.386760 −0.193380 0.981124i \(-0.561945\pi\)
−0.193380 + 0.981124i \(0.561945\pi\)
\(110\) 0.784098 0.0651274i 0.0747608 0.00620966i
\(111\) 0 0
\(112\) 6.22818 + 8.55627i 0.588507 + 0.808492i
\(113\) −3.14680 −0.296026 −0.148013 0.988985i \(-0.547288\pi\)
−0.148013 + 0.988985i \(0.547288\pi\)
\(114\) 0 0
\(115\) 3.94362 0.367744
\(116\) 6.31280 1.05597i 0.586129 0.0980445i
\(117\) 0 0
\(118\) −12.4018 + 1.03010i −1.14168 + 0.0948284i
\(119\) 6.05649 1.85845i 0.555198 0.170363i
\(120\) 0 0
\(121\) 10.6905 0.971861
\(122\) 1.68319 + 20.2647i 0.152389 + 1.83468i
\(123\) 0 0
\(124\) 11.2191 1.87666i 1.00750 0.168529i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 11.8445i 1.05103i 0.850784 + 0.525516i \(0.176128\pi\)
−0.850784 + 0.525516i \(0.823872\pi\)
\(128\) −9.46293 + 6.20104i −0.836413 + 0.548100i
\(129\) 0 0
\(130\) 0.257045 0.0213502i 0.0225443 0.00187254i
\(131\) 16.6337 1.45329 0.726647 0.687011i \(-0.241078\pi\)
0.726647 + 0.687011i \(0.241078\pi\)
\(132\) 0 0
\(133\) 2.39134 + 7.79316i 0.207356 + 0.675753i
\(134\) −1.17872 14.1912i −0.101826 1.22593i
\(135\) 0 0
\(136\) 1.66645 + 6.56441i 0.142897 + 0.562893i
\(137\) −9.88658 −0.844667 −0.422334 0.906440i \(-0.638789\pi\)
−0.422334 + 0.906440i \(0.638789\pi\)
\(138\) 0 0
\(139\) 20.5861 1.74609 0.873047 0.487636i \(-0.162141\pi\)
0.873047 + 0.487636i \(0.162141\pi\)
\(140\) 4.73328 2.36560i 0.400035 0.199929i
\(141\) 0 0
\(142\) −0.159364 1.91865i −0.0133735 0.161010i
\(143\) −0.101469 −0.00848529
\(144\) 0 0
\(145\) 3.20026i 0.265767i
\(146\) −1.18335 14.2468i −0.0979345 1.17908i
\(147\) 0 0
\(148\) −9.82706 + 1.64382i −0.807779 + 0.135121i
\(149\) −7.28607 −0.596898 −0.298449 0.954426i \(-0.596469\pi\)
−0.298449 + 0.954426i \(0.596469\pi\)
\(150\) 0 0
\(151\) 15.1807i 1.23539i 0.786418 + 0.617694i \(0.211933\pi\)
−0.786418 + 0.617694i \(0.788067\pi\)
\(152\) −8.44671 + 2.14430i −0.685119 + 0.173926i
\(153\) 0 0
\(154\) −1.93271 + 0.773297i −0.155742 + 0.0623140i
\(155\) 5.68747i 0.456829i
\(156\) 0 0
\(157\) 10.7177i 0.855366i 0.903929 + 0.427683i \(0.140670\pi\)
−0.903929 + 0.427683i \(0.859330\pi\)
\(158\) 1.52878 + 18.4056i 0.121623 + 1.46427i
\(159\) 0 0
\(160\) 2.27742 + 5.17816i 0.180046 + 0.409370i
\(161\) −9.97479 + 3.06078i −0.786123 + 0.241223i
\(162\) 0 0
\(163\) 20.7486i 1.62515i −0.582853 0.812577i \(-0.698064\pi\)
0.582853 0.812577i \(-0.301936\pi\)
\(164\) 3.18353 + 19.0318i 0.248592 + 1.48613i
\(165\) 0 0
\(166\) −13.3223 + 1.10655i −1.03401 + 0.0858852i
\(167\) 8.37483 0.648064 0.324032 0.946046i \(-0.394961\pi\)
0.324032 + 0.946046i \(0.394961\pi\)
\(168\) 0 0
\(169\) 12.9667 0.997441
\(170\) 3.37469 0.280303i 0.258827 0.0214983i
\(171\) 0 0
\(172\) −0.212397 1.26975i −0.0161951 0.0968176i
\(173\) 21.8554i 1.66163i −0.556546 0.830817i \(-0.687874\pi\)
0.556546 0.830817i \(-0.312126\pi\)
\(174\) 0 0
\(175\) −0.776136 2.52935i −0.0586703 0.191201i
\(176\) −0.724242 2.10425i −0.0545918 0.158614i
\(177\) 0 0
\(178\) 0.938368 + 11.2974i 0.0703337 + 0.846778i
\(179\) 18.3538i 1.37182i −0.727684 0.685912i \(-0.759403\pi\)
0.727684 0.685912i \(-0.240597\pi\)
\(180\) 0 0
\(181\) 12.7452i 0.947341i −0.880702 0.473670i \(-0.842929\pi\)
0.880702 0.473670i \(-0.157071\pi\)
\(182\) −0.633585 + 0.253504i −0.0469645 + 0.0187909i
\(183\) 0 0
\(184\) −2.74458 10.8113i −0.202333 0.797019i
\(185\) 4.98180i 0.366269i
\(186\) 0 0
\(187\) −1.33217 −0.0974181
\(188\) 7.17370 1.19998i 0.523196 0.0875174i
\(189\) 0 0
\(190\) 0.360678 + 4.34237i 0.0261664 + 0.315028i
\(191\) 21.4663i 1.55324i 0.629967 + 0.776622i \(0.283068\pi\)
−0.629967 + 0.776622i \(0.716932\pi\)
\(192\) 0 0
\(193\) 5.27923 0.380008 0.190004 0.981783i \(-0.439150\pi\)
0.190004 + 0.981783i \(0.439150\pi\)
\(194\) −0.0521379 0.627711i −0.00374328 0.0450670i
\(195\) 0 0
\(196\) −10.1361 + 9.65709i −0.724007 + 0.689792i
\(197\) 8.44807 0.601900 0.300950 0.953640i \(-0.402696\pi\)
0.300950 + 0.953640i \(0.402696\pi\)
\(198\) 0 0
\(199\) −18.5300 −1.31356 −0.656778 0.754084i \(-0.728081\pi\)
−0.656778 + 0.754084i \(0.728081\pi\)
\(200\) 2.74147 0.695955i 0.193851 0.0492114i
\(201\) 0 0
\(202\) −1.50472 18.1160i −0.105872 1.27463i
\(203\) 2.48383 + 8.09457i 0.174331 + 0.568127i
\(204\) 0 0
\(205\) 9.64809 0.673852
\(206\) −20.1582 + 1.67435i −1.40449 + 0.116657i
\(207\) 0 0
\(208\) −0.237422 0.689821i −0.0164623 0.0478305i
\(209\) 1.71417i 0.118571i
\(210\) 0 0
\(211\) 17.4456i 1.20101i 0.799622 + 0.600504i \(0.205033\pi\)
−0.799622 + 0.600504i \(0.794967\pi\)
\(212\) 13.7502 2.30005i 0.944364 0.157968i
\(213\) 0 0
\(214\) −2.14493 25.8238i −0.146624 1.76528i
\(215\) −0.643697 −0.0438997
\(216\) 0 0
\(217\) 4.41425 + 14.3856i 0.299659 + 0.976558i
\(218\) 5.69085 0.472684i 0.385433 0.0320142i
\(219\) 0 0
\(220\) −1.09745 + 0.183576i −0.0739903 + 0.0123767i
\(221\) −0.436716 −0.0293767
\(222\) 0 0
\(223\) −11.9173 −0.798038 −0.399019 0.916943i \(-0.630649\pi\)
−0.399019 + 0.916943i \(0.630649\pi\)
\(224\) −9.77936 11.3298i −0.653411 0.757004i
\(225\) 0 0
\(226\) 4.43498 0.368371i 0.295010 0.0245037i
\(227\) 2.13795 0.141901 0.0709505 0.997480i \(-0.477397\pi\)
0.0709505 + 0.997480i \(0.477397\pi\)
\(228\) 0 0
\(229\) 7.10530i 0.469531i −0.972052 0.234766i \(-0.924568\pi\)
0.972052 0.234766i \(-0.0754323\pi\)
\(230\) −5.55798 + 0.461647i −0.366482 + 0.0304401i
\(231\) 0 0
\(232\) −8.77340 + 2.22723i −0.576002 + 0.146225i
\(233\) −10.8641 −0.711732 −0.355866 0.934537i \(-0.615814\pi\)
−0.355866 + 0.934537i \(0.615814\pi\)
\(234\) 0 0
\(235\) 3.63668i 0.237231i
\(236\) 17.3581 2.90357i 1.12991 0.189006i
\(237\) 0 0
\(238\) −8.31823 + 3.32820i −0.539191 + 0.215735i
\(239\) 15.3760i 0.994592i −0.867581 0.497296i \(-0.834326\pi\)
0.867581 0.497296i \(-0.165674\pi\)
\(240\) 0 0
\(241\) 0.518574i 0.0334043i 0.999861 + 0.0167022i \(0.00531671\pi\)
−0.999861 + 0.0167022i \(0.994683\pi\)
\(242\) −15.0667 + 1.25145i −0.968526 + 0.0804461i
\(243\) 0 0
\(244\) −4.74445 28.3633i −0.303733 1.81577i
\(245\) 3.92624 + 5.79523i 0.250838 + 0.370243i
\(246\) 0 0
\(247\) 0.561941i 0.0357555i
\(248\) −15.5920 + 3.95822i −0.990094 + 0.251347i
\(249\) 0 0
\(250\) −0.117062 1.40936i −0.00740364 0.0891358i
\(251\) −19.8979 −1.25594 −0.627972 0.778236i \(-0.716115\pi\)
−0.627972 + 0.778236i \(0.716115\pi\)
\(252\) 0 0
\(253\) 2.19403 0.137938
\(254\) −1.38654 16.6932i −0.0869995 1.04743i
\(255\) 0 0
\(256\) 12.6108 9.84725i 0.788174 0.615453i
\(257\) 30.1252i 1.87916i −0.342335 0.939578i \(-0.611218\pi\)
0.342335 0.939578i \(-0.388782\pi\)
\(258\) 0 0
\(259\) −3.86655 12.6007i −0.240256 0.782970i
\(260\) −0.359769 + 0.0601803i −0.0223119 + 0.00373222i
\(261\) 0 0
\(262\) −23.4429 + 1.94717i −1.44831 + 0.120297i
\(263\) 4.44397i 0.274027i −0.990569 0.137013i \(-0.956250\pi\)
0.990569 0.137013i \(-0.0437503\pi\)
\(264\) 0 0
\(265\) 6.97060i 0.428200i
\(266\) −4.28255 10.7034i −0.262580 0.656270i
\(267\) 0 0
\(268\) 3.32250 + 19.8625i 0.202954 + 1.21330i
\(269\) 8.40266i 0.512319i 0.966634 + 0.256160i \(0.0824573\pi\)
−0.966634 + 0.256160i \(0.917543\pi\)
\(270\) 0 0
\(271\) −28.7730 −1.74783 −0.873916 0.486077i \(-0.838428\pi\)
−0.873916 + 0.486077i \(0.838428\pi\)
\(272\) −3.11708 9.05653i −0.189000 0.549133i
\(273\) 0 0
\(274\) 13.9338 1.15734i 0.841769 0.0699176i
\(275\) 0.556350i 0.0335492i
\(276\) 0 0
\(277\) −3.93122 −0.236204 −0.118102 0.993001i \(-0.537681\pi\)
−0.118102 + 0.993001i \(0.537681\pi\)
\(278\) −29.0133 + 2.40985i −1.74010 + 0.144533i
\(279\) 0 0
\(280\) −6.39398 + 3.88806i −0.382113 + 0.232356i
\(281\) −17.8653 −1.06575 −0.532876 0.846193i \(-0.678889\pi\)
−0.532876 + 0.846193i \(0.678889\pi\)
\(282\) 0 0
\(283\) 4.34129 0.258063 0.129031 0.991641i \(-0.458813\pi\)
0.129031 + 0.991641i \(0.458813\pi\)
\(284\) 0.449202 + 2.68542i 0.0266552 + 0.159350i
\(285\) 0 0
\(286\) 0.143007 0.0118782i 0.00845617 0.000702372i
\(287\) −24.4034 + 7.48823i −1.44049 + 0.442016i
\(288\) 0 0
\(289\) 11.2664 0.662732
\(290\) 0.374628 + 4.51031i 0.0219989 + 0.264855i
\(291\) 0 0
\(292\) 3.33553 + 19.9404i 0.195197 + 1.16692i
\(293\) 0.535106i 0.0312612i −0.999878 0.0156306i \(-0.995024\pi\)
0.999878 0.0156306i \(-0.00497558\pi\)
\(294\) 0 0
\(295\) 8.79962i 0.512334i
\(296\) 13.6574 3.46711i 0.793822 0.201521i
\(297\) 0 0
\(298\) 10.2687 0.852922i 0.594850 0.0494084i
\(299\) 0.719252 0.0415954
\(300\) 0 0
\(301\) 1.62813 0.499596i 0.0938441 0.0287962i
\(302\) −1.77708 21.3951i −0.102260 1.23115i
\(303\) 0 0
\(304\) 11.6534 4.01088i 0.668371 0.230040i
\(305\) −14.3787 −0.823320
\(306\) 0 0
\(307\) −20.4818 −1.16896 −0.584478 0.811409i \(-0.698701\pi\)
−0.584478 + 0.811409i \(0.698701\pi\)
\(308\) 2.63336 1.31610i 0.150050 0.0749918i
\(309\) 0 0
\(310\) 0.665786 + 8.01569i 0.0378141 + 0.455261i
\(311\) −29.6598 −1.68185 −0.840927 0.541149i \(-0.817990\pi\)
−0.840927 + 0.541149i \(0.817990\pi\)
\(312\) 0 0
\(313\) 11.7015i 0.661406i −0.943735 0.330703i \(-0.892714\pi\)
0.943735 0.330703i \(-0.107286\pi\)
\(314\) −1.25464 15.1051i −0.0708032 0.852431i
\(315\) 0 0
\(316\) −4.30920 25.7612i −0.242411 1.44918i
\(317\) 16.0488 0.901388 0.450694 0.892678i \(-0.351177\pi\)
0.450694 + 0.892678i \(0.351177\pi\)
\(318\) 0 0
\(319\) 1.78046i 0.0996868i
\(320\) −3.81588 7.03129i −0.213314 0.393061i
\(321\) 0 0
\(322\) 13.6998 5.48141i 0.763458 0.305467i
\(323\) 7.37763i 0.410502i
\(324\) 0 0
\(325\) 0.182384i 0.0101168i
\(326\) 2.42887 + 29.2422i 0.134523 + 1.61958i
\(327\) 0 0
\(328\) −6.71464 26.4499i −0.370754 1.46045i
\(329\) 2.82256 + 9.19845i 0.155613 + 0.507127i
\(330\) 0 0
\(331\) 10.9660i 0.602746i 0.953506 + 0.301373i \(0.0974450\pi\)
−0.953506 + 0.301373i \(0.902555\pi\)
\(332\) 18.6464 3.11906i 1.02335 0.171181i
\(333\) 0 0
\(334\) −11.8032 + 0.980374i −0.645840 + 0.0536437i
\(335\) 10.0692 0.550142
\(336\) 0 0
\(337\) −7.87907 −0.429200 −0.214600 0.976702i \(-0.568845\pi\)
−0.214600 + 0.976702i \(0.568845\pi\)
\(338\) −18.2748 + 1.51791i −0.994018 + 0.0825635i
\(339\) 0 0
\(340\) −4.72335 + 0.790096i −0.256159 + 0.0428490i
\(341\) 3.16423i 0.171352i
\(342\) 0 0
\(343\) −14.4287 11.6109i −0.779077 0.626928i
\(344\) 0.447984 + 1.76467i 0.0241537 + 0.0951448i
\(345\) 0 0
\(346\) 2.55843 + 30.8021i 0.137542 + 1.65593i
\(347\) 14.2548i 0.765240i −0.923906 0.382620i \(-0.875022\pi\)
0.923906 0.382620i \(-0.124978\pi\)
\(348\) 0 0
\(349\) 6.69632i 0.358446i 0.983809 + 0.179223i \(0.0573583\pi\)
−0.983809 + 0.179223i \(0.942642\pi\)
\(350\) 1.38995 + 3.47391i 0.0742957 + 0.185688i
\(351\) 0 0
\(352\) 1.26705 + 2.88087i 0.0675338 + 0.153551i
\(353\) 18.6741i 0.993920i 0.867773 + 0.496960i \(0.165551\pi\)
−0.867773 + 0.496960i \(0.834449\pi\)
\(354\) 0 0
\(355\) 1.36136 0.0722537
\(356\) −2.64500 15.8123i −0.140185 0.838051i
\(357\) 0 0
\(358\) 2.14853 + 25.8671i 0.113553 + 1.36712i
\(359\) 20.9659i 1.10654i −0.833003 0.553269i \(-0.813380\pi\)
0.833003 0.553269i \(-0.186620\pi\)
\(360\) 0 0
\(361\) −9.50688 −0.500362
\(362\) 1.49197 + 17.9625i 0.0784164 + 0.944090i
\(363\) 0 0
\(364\) 0.863274 0.431447i 0.0452479 0.0226139i
\(365\) 10.1087 0.529115
\(366\) 0 0
\(367\) −21.4633 −1.12038 −0.560189 0.828365i \(-0.689271\pi\)
−0.560189 + 0.828365i \(0.689271\pi\)
\(368\) 5.13369 + 14.9157i 0.267612 + 0.777536i
\(369\) 0 0
\(370\) −0.583179 7.02115i −0.0303180 0.365012i
\(371\) 5.41013 + 17.6311i 0.280880 + 0.915360i
\(372\) 0 0
\(373\) −36.3356 −1.88139 −0.940693 0.339260i \(-0.889823\pi\)
−0.940693 + 0.339260i \(0.889823\pi\)
\(374\) 1.87751 0.155947i 0.0970838 0.00806381i
\(375\) 0 0
\(376\) −9.96985 + 2.53097i −0.514156 + 0.130525i
\(377\) 0.583675i 0.0300608i
\(378\) 0 0
\(379\) 11.1047i 0.570412i 0.958466 + 0.285206i \(0.0920621\pi\)
−0.958466 + 0.285206i \(0.907938\pi\)
\(380\) −1.01665 6.07774i −0.0521531 0.311781i
\(381\) 0 0
\(382\) −2.51288 30.2537i −0.128570 1.54791i
\(383\) −23.6321 −1.20754 −0.603772 0.797157i \(-0.706336\pi\)
−0.603772 + 0.797157i \(0.706336\pi\)
\(384\) 0 0
\(385\) −0.431803 1.40721i −0.0220067 0.0717178i
\(386\) −7.44034 + 0.617997i −0.378704 + 0.0314552i
\(387\) 0 0
\(388\) 0.146962 + 0.878568i 0.00746087 + 0.0446025i
\(389\) 22.7913 1.15557 0.577783 0.816190i \(-0.303918\pi\)
0.577783 + 0.816190i \(0.303918\pi\)
\(390\) 0 0
\(391\) 9.44293 0.477549
\(392\) 13.1549 14.7969i 0.664425 0.747355i
\(393\) 0 0
\(394\) −11.9064 + 0.988947i −0.599834 + 0.0498224i
\(395\) −13.0596 −0.657098
\(396\) 0 0
\(397\) 10.5426i 0.529118i −0.964370 0.264559i \(-0.914774\pi\)
0.964370 0.264559i \(-0.0852264\pi\)
\(398\) 26.1154 2.16916i 1.30905 0.108730i
\(399\) 0 0
\(400\) −3.78225 + 1.30177i −0.189112 + 0.0650886i
\(401\) 28.1602 1.40625 0.703126 0.711065i \(-0.251787\pi\)
0.703126 + 0.711065i \(0.251787\pi\)
\(402\) 0 0
\(403\) 1.03730i 0.0516717i
\(404\) 4.24138 + 25.3558i 0.211017 + 1.26150i
\(405\) 0 0
\(406\) −4.44818 11.1174i −0.220759 0.551747i
\(407\) 2.77163i 0.137384i
\(408\) 0 0
\(409\) 23.3091i 1.15256i 0.817253 + 0.576280i \(0.195496\pi\)
−0.817253 + 0.576280i \(0.804504\pi\)
\(410\) −13.5976 + 1.12942i −0.671540 + 0.0557783i
\(411\) 0 0
\(412\) 28.2142 4.71952i 1.39001 0.232514i
\(413\) 6.82970 + 22.2573i 0.336068 + 1.09521i
\(414\) 0 0
\(415\) 9.45272i 0.464016i
\(416\) 0.415365 + 0.944413i 0.0203650 + 0.0463037i
\(417\) 0 0
\(418\) 0.200664 + 2.41588i 0.00981478 + 0.118164i
\(419\) −22.9252 −1.11997 −0.559984 0.828503i \(-0.689193\pi\)
−0.559984 + 0.828503i \(0.689193\pi\)
\(420\) 0 0
\(421\) −30.2880 −1.47614 −0.738072 0.674722i \(-0.764264\pi\)
−0.738072 + 0.674722i \(0.764264\pi\)
\(422\) −2.04222 24.5872i −0.0994137 1.19689i
\(423\) 0 0
\(424\) −19.1097 + 4.85122i −0.928048 + 0.235596i
\(425\) 2.39449i 0.116150i
\(426\) 0 0
\(427\) 36.3687 11.1598i 1.76000 0.540060i
\(428\) 6.04596 + 36.1439i 0.292242 + 1.74708i
\(429\) 0 0
\(430\) 0.907200 0.0753523i 0.0437491 0.00363381i
\(431\) 17.6787i 0.851551i 0.904829 + 0.425776i \(0.139999\pi\)
−0.904829 + 0.425776i \(0.860001\pi\)
\(432\) 0 0
\(433\) 30.2797i 1.45515i −0.686029 0.727574i \(-0.740648\pi\)
0.686029 0.727574i \(-0.259352\pi\)
\(434\) −7.90527 19.7578i −0.379465 0.948403i
\(435\) 0 0
\(436\) −7.96513 + 1.33236i −0.381460 + 0.0638086i
\(437\) 12.1506i 0.581244i
\(438\) 0 0
\(439\) −3.51474 −0.167749 −0.0838747 0.996476i \(-0.526730\pi\)
−0.0838747 + 0.996476i \(0.526730\pi\)
\(440\) 1.52522 0.387195i 0.0727119 0.0184588i
\(441\) 0 0
\(442\) 0.615490 0.0511228i 0.0292759 0.00243166i
\(443\) 3.34004i 0.158690i −0.996847 0.0793450i \(-0.974717\pi\)
0.996847 0.0793450i \(-0.0252829\pi\)
\(444\) 0 0
\(445\) −8.01600 −0.379995
\(446\) 16.7957 1.39506i 0.795300 0.0660578i
\(447\) 0 0
\(448\) 15.1089 + 14.8230i 0.713830 + 0.700319i
\(449\) 30.3020 1.43004 0.715019 0.699105i \(-0.246418\pi\)
0.715019 + 0.699105i \(0.246418\pi\)
\(450\) 0 0
\(451\) 5.36772 0.252756
\(452\) −6.20736 + 1.03833i −0.291970 + 0.0488391i
\(453\) 0 0
\(454\) −3.01315 + 0.250273i −0.141414 + 0.0117459i
\(455\) −0.141555 0.461313i −0.00663618 0.0216267i
\(456\) 0 0
\(457\) −7.65632 −0.358148 −0.179074 0.983836i \(-0.557310\pi\)
−0.179074 + 0.983836i \(0.557310\pi\)
\(458\) 0.831760 + 10.0139i 0.0388656 + 0.467920i
\(459\) 0 0
\(460\) 7.77915 1.30125i 0.362705 0.0606713i
\(461\) 7.75351i 0.361117i −0.983564 0.180559i \(-0.942209\pi\)
0.983564 0.180559i \(-0.0577905\pi\)
\(462\) 0 0
\(463\) 21.4187i 0.995410i −0.867346 0.497705i \(-0.834176\pi\)
0.867346 0.497705i \(-0.165824\pi\)
\(464\) 12.1042 4.16600i 0.561921 0.193402i
\(465\) 0 0
\(466\) 15.3114 1.27177i 0.709289 0.0589138i
\(467\) −11.8414 −0.547954 −0.273977 0.961736i \(-0.588339\pi\)
−0.273977 + 0.961736i \(0.588339\pi\)
\(468\) 0 0
\(469\) −25.4686 + 7.81510i −1.17603 + 0.360868i
\(470\) 0.425717 + 5.12540i 0.0196369 + 0.236417i
\(471\) 0 0
\(472\) −24.1239 + 6.12414i −1.11039 + 0.281886i
\(473\) −0.358121 −0.0164664
\(474\) 0 0
\(475\) −3.08109 −0.141370
\(476\) 11.3338 5.66439i 0.519483 0.259627i
\(477\) 0 0
\(478\) 1.79995 + 21.6704i 0.0823276 + 0.991179i
\(479\) 19.5650 0.893948 0.446974 0.894547i \(-0.352502\pi\)
0.446974 + 0.894547i \(0.352502\pi\)
\(480\) 0 0
\(481\) 0.908600i 0.0414286i
\(482\) −0.0607053 0.730858i −0.00276505 0.0332897i
\(483\) 0 0
\(484\) 21.0880 3.52748i 0.958543 0.160340i
\(485\) 0.445387 0.0202240
\(486\) 0 0
\(487\) 2.69121i 0.121950i 0.998139 + 0.0609752i \(0.0194210\pi\)
−0.998139 + 0.0609752i \(0.980579\pi\)
\(488\) 10.0069 + 39.4187i 0.452991 + 1.78440i
\(489\) 0 0
\(490\) −6.21188 7.70795i −0.280624 0.348210i
\(491\) 0.816644i 0.0368546i −0.999830 0.0184273i \(-0.994134\pi\)
0.999830 0.0184273i \(-0.00586593\pi\)
\(492\) 0 0
\(493\) 7.66297i 0.345123i
\(494\) 0.0657819 + 0.791978i 0.00295967 + 0.0356328i
\(495\) 0 0
\(496\) 21.5114 7.40379i 0.965891 0.332440i
\(497\) −3.44337 + 1.05660i −0.154456 + 0.0473951i
\(498\) 0 0
\(499\) 6.19049i 0.277124i 0.990354 + 0.138562i \(0.0442481\pi\)
−0.990354 + 0.138562i \(0.955752\pi\)
\(500\) 0.329965 + 1.97259i 0.0147565 + 0.0882170i
\(501\) 0 0
\(502\) 28.0433 2.32928i 1.25163 0.103961i
\(503\) −23.4882 −1.04729 −0.523643 0.851938i \(-0.675427\pi\)
−0.523643 + 0.851938i \(0.675427\pi\)
\(504\) 0 0
\(505\) 12.8540 0.571997
\(506\) −3.09218 + 0.256838i −0.137464 + 0.0114178i
\(507\) 0 0
\(508\) 3.90828 + 23.3644i 0.173402 + 1.03663i
\(509\) 31.9990i 1.41833i −0.705042 0.709165i \(-0.749072\pi\)
0.705042 0.709165i \(-0.250928\pi\)
\(510\) 0 0
\(511\) −25.5685 + 7.84575i −1.13108 + 0.347075i
\(512\) −16.6204 + 15.3546i −0.734524 + 0.678582i
\(513\) 0 0
\(514\) 3.52651 + 42.4572i 0.155548 + 1.87271i
\(515\) 14.3031i 0.630270i
\(516\) 0 0
\(517\) 2.02327i 0.0889834i
\(518\) 6.92443 + 17.3063i 0.304242 + 0.760396i
\(519\) 0 0
\(520\) 0.500000 0.126931i 0.0219264 0.00556629i
\(521\) 38.3707i 1.68105i −0.541773 0.840525i \(-0.682247\pi\)
0.541773 0.840525i \(-0.317753\pi\)
\(522\) 0 0
\(523\) 27.0855 1.18437 0.592183 0.805804i \(-0.298266\pi\)
0.592183 + 0.805804i \(0.298266\pi\)
\(524\) 32.8115 5.48854i 1.43338 0.239768i
\(525\) 0 0
\(526\) 0.520219 + 6.26315i 0.0226826 + 0.273086i
\(527\) 13.6186i 0.593234i
\(528\) 0 0
\(529\) 7.44790 0.323822
\(530\) 0.815991 + 9.82408i 0.0354444 + 0.426731i
\(531\) 0 0
\(532\) 7.28862 + 14.5837i 0.316002 + 0.632282i
\(533\) 1.75966 0.0762192
\(534\) 0 0
\(535\) 18.3230 0.792174
\(536\) −7.00774 27.6045i −0.302688 1.19233i
\(537\) 0 0
\(538\) −0.983632 11.8424i −0.0424074 0.510561i
\(539\) 2.18436 + 3.22418i 0.0940872 + 0.138875i
\(540\) 0 0
\(541\) 12.3048 0.529024 0.264512 0.964382i \(-0.414789\pi\)
0.264512 + 0.964382i \(0.414789\pi\)
\(542\) 40.5515 3.36822i 1.74183 0.144677i
\(543\) 0 0
\(544\) 5.45326 + 12.3990i 0.233806 + 0.531604i
\(545\) 4.03790i 0.172964i
\(546\) 0 0
\(547\) 7.41113i 0.316877i −0.987369 0.158438i \(-0.949354\pi\)
0.987369 0.158438i \(-0.0506460\pi\)
\(548\) −19.5022 + 3.26222i −0.833093 + 0.139355i
\(549\) 0 0
\(550\) −0.0651274 0.784098i −0.00277704 0.0334341i
\(551\) 9.86028 0.420062
\(552\) 0 0
\(553\) 33.0322 10.1360i 1.40467 0.431026i
\(554\) 5.54051 0.460196i 0.235394 0.0195519i
\(555\) 0 0
\(556\) 40.6081 6.79270i 1.72217 0.288075i
\(557\) 0.317738 0.0134630 0.00673149 0.999977i \(-0.497857\pi\)
0.00673149 + 0.999977i \(0.497857\pi\)
\(558\) 0 0
\(559\) −0.117400 −0.00496549
\(560\) 8.55627 6.22818i 0.361569 0.263188i
\(561\) 0 0
\(562\) 25.1786 2.09134i 1.06210 0.0882179i
\(563\) 2.50413 0.105537 0.0527683 0.998607i \(-0.483196\pi\)
0.0527683 + 0.998607i \(0.483196\pi\)
\(564\) 0 0
\(565\) 3.14680i 0.132387i
\(566\) −6.11844 + 0.508200i −0.257177 + 0.0213612i
\(567\) 0 0
\(568\) −0.947448 3.73214i −0.0397540 0.156597i
\(569\) −25.4990 −1.06897 −0.534487 0.845177i \(-0.679495\pi\)
−0.534487 + 0.845177i \(0.679495\pi\)
\(570\) 0 0
\(571\) 43.8357i 1.83447i 0.398350 + 0.917233i \(0.369583\pi\)
−0.398350 + 0.917233i \(0.630417\pi\)
\(572\) −0.200158 + 0.0334813i −0.00836902 + 0.00139992i
\(573\) 0 0
\(574\) 33.5166 13.4103i 1.39896 0.559736i
\(575\) 3.94362i 0.164460i
\(576\) 0 0
\(577\) 4.18046i 0.174035i −0.996207 0.0870175i \(-0.972266\pi\)
0.996207 0.0870175i \(-0.0277336\pi\)
\(578\) −15.8785 + 1.31887i −0.660457 + 0.0548578i
\(579\) 0 0
\(580\) −1.05597 6.31280i −0.0438468 0.262125i
\(581\) 7.33659 + 23.9092i 0.304373 + 0.991922i
\(582\) 0 0
\(583\) 3.87810i 0.160614i
\(584\) −7.03522 27.7128i −0.291119 1.14676i
\(585\) 0 0
\(586\) 0.0626405 + 0.754157i 0.00258766 + 0.0311540i
\(587\) 34.7799 1.43552 0.717761 0.696290i \(-0.245167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(588\) 0 0
\(589\) 17.5236 0.722048
\(590\) 1.03010 + 12.4018i 0.0424086 + 0.510576i
\(591\) 0 0
\(592\) −18.8424 + 6.48517i −0.774417 + 0.266539i
\(593\) 5.30521i 0.217859i 0.994049 + 0.108929i \(0.0347423\pi\)
−0.994049 + 0.108929i \(0.965258\pi\)
\(594\) 0 0
\(595\) −1.85845 6.05649i −0.0761888 0.248292i
\(596\) −14.3725 + 2.40415i −0.588719 + 0.0984777i
\(597\) 0 0
\(598\) −1.01369 + 0.0841970i −0.0414527 + 0.00344307i
\(599\) 1.76214i 0.0719991i 0.999352 + 0.0359996i \(0.0114615\pi\)
−0.999352 + 0.0359996i \(0.988539\pi\)
\(600\) 0 0
\(601\) 20.8508i 0.850523i 0.905071 + 0.425262i \(0.139818\pi\)
−0.905071 + 0.425262i \(0.860182\pi\)
\(602\) −2.23614 + 0.894703i −0.0911384 + 0.0364654i
\(603\) 0 0
\(604\) 5.00910 + 29.9454i 0.203817 + 1.21846i
\(605\) 10.6905i 0.434630i
\(606\) 0 0
\(607\) 5.84505 0.237243 0.118622 0.992940i \(-0.462152\pi\)
0.118622 + 0.992940i \(0.462152\pi\)
\(608\) −15.9544 + 7.01695i −0.647036 + 0.284575i
\(609\) 0 0
\(610\) 20.2647 1.68319i 0.820495 0.0681505i
\(611\) 0.663273i 0.0268331i
\(612\) 0 0
\(613\) 10.6913 0.431816 0.215908 0.976414i \(-0.430729\pi\)
0.215908 + 0.976414i \(0.430729\pi\)
\(614\) 28.8662 2.39764i 1.16495 0.0967607i
\(615\) 0 0
\(616\) −3.55729 + 2.16313i −0.143327 + 0.0871549i
\(617\) −31.3037 −1.26024 −0.630120 0.776497i \(-0.716994\pi\)
−0.630120 + 0.776497i \(0.716994\pi\)
\(618\) 0 0
\(619\) −13.7799 −0.553861 −0.276930 0.960890i \(-0.589317\pi\)
−0.276930 + 0.960890i \(0.589317\pi\)
\(620\) −1.87666 11.2191i −0.0753687 0.450568i
\(621\) 0 0
\(622\) 41.8014 3.47203i 1.67608 0.139216i
\(623\) 20.2753 6.22150i 0.812312 0.249259i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 1.36980 + 16.4916i 0.0547481 + 0.659137i
\(627\) 0 0
\(628\) 3.53647 + 21.1417i 0.141120 + 0.843645i
\(629\) 11.9288i 0.475634i
\(630\) 0 0
\(631\) 15.3886i 0.612610i −0.951933 0.306305i \(-0.900907\pi\)
0.951933 0.306305i \(-0.0990928\pi\)
\(632\) 9.08887 + 35.8024i 0.361536 + 1.42414i
\(633\) 0 0
\(634\) −22.6185 + 1.87870i −0.898295 + 0.0746126i
\(635\) 11.8445 0.470036
\(636\) 0 0
\(637\) 0.716082 + 1.05696i 0.0283722 + 0.0418781i
\(638\) 0.208424 + 2.50931i 0.00825160 + 0.0993447i
\(639\) 0 0
\(640\) 6.20104 + 9.46293i 0.245118 + 0.374055i
\(641\) 4.57385 0.180656 0.0903282 0.995912i \(-0.471208\pi\)
0.0903282 + 0.995912i \(0.471208\pi\)
\(642\) 0 0
\(643\) 40.9959 1.61672 0.808360 0.588689i \(-0.200356\pi\)
0.808360 + 0.588689i \(0.200356\pi\)
\(644\) −18.6662 + 9.32900i −0.735553 + 0.367614i
\(645\) 0 0
\(646\) 0.863639 + 10.3977i 0.0339794 + 0.409093i
\(647\) −6.26797 −0.246419 −0.123210 0.992381i \(-0.539319\pi\)
−0.123210 + 0.992381i \(0.539319\pi\)
\(648\) 0 0
\(649\) 4.89567i 0.192172i
\(650\) −0.0213502 0.257045i −0.000837424 0.0100821i
\(651\) 0 0
\(652\) −6.84630 40.9285i −0.268122 1.60288i
\(653\) −27.6655 −1.08263 −0.541316 0.840819i \(-0.682074\pi\)
−0.541316 + 0.840819i \(0.682074\pi\)
\(654\) 0 0
\(655\) 16.6337i 0.649932i
\(656\) 12.5596 + 36.4915i 0.490371 + 1.42475i
\(657\) 0 0
\(658\) −5.05479 12.6335i −0.197056 0.492506i
\(659\) 33.8406i 1.31824i 0.752036 + 0.659122i \(0.229072\pi\)
−0.752036 + 0.659122i \(0.770928\pi\)
\(660\) 0 0
\(661\) 15.9944i 0.622109i 0.950392 + 0.311054i \(0.100682\pi\)
−0.950392 + 0.311054i \(0.899318\pi\)
\(662\) −1.28370 15.4551i −0.0498925 0.600678i
\(663\) 0 0
\(664\) −25.9143 + 6.57866i −1.00567 + 0.255302i
\(665\) 7.79316 2.39134i 0.302206 0.0927324i
\(666\) 0 0
\(667\) 12.6206i 0.488671i
\(668\) 16.5201 2.76340i 0.639183 0.106919i
\(669\) 0 0
\(670\) −14.1912 + 1.17872i −0.548254 + 0.0455381i
\(671\) −7.99958 −0.308820
\(672\) 0 0
\(673\) 1.91279 0.0737326 0.0368663 0.999320i \(-0.488262\pi\)
0.0368663 + 0.999320i \(0.488262\pi\)
\(674\) 11.1045 0.922339i 0.427728 0.0355272i
\(675\) 0 0
\(676\) 25.5781 4.27857i 0.983773 0.164560i
\(677\) 7.67384i 0.294930i 0.989067 + 0.147465i \(0.0471113\pi\)
−0.989067 + 0.147465i \(0.952889\pi\)
\(678\) 0 0
\(679\) −1.12654 + 0.345681i −0.0432327 + 0.0132660i
\(680\) 6.56441 1.66645i 0.251733 0.0639056i
\(681\) 0 0
\(682\) 0.370410 + 4.45954i 0.0141837 + 0.170764i
\(683\) 21.8303i 0.835314i −0.908605 0.417657i \(-0.862851\pi\)
0.908605 0.417657i \(-0.137149\pi\)
\(684\) 0 0
\(685\) 9.88658i 0.377747i
\(686\) 21.6944 + 14.6748i 0.828298 + 0.560288i
\(687\) 0 0
\(688\) −0.837947 2.43462i −0.0319464 0.0928190i
\(689\) 1.27132i 0.0484336i
\(690\) 0 0
\(691\) −19.9109 −0.757446 −0.378723 0.925510i \(-0.623637\pi\)
−0.378723 + 0.925510i \(0.623637\pi\)
\(692\) −7.21151 43.1118i −0.274140 1.63886i
\(693\) 0 0
\(694\) 1.66870 + 20.0902i 0.0633429 + 0.762614i
\(695\) 20.5861i 0.780877i
\(696\) 0 0
\(697\) 23.1022 0.875059
\(698\) −0.783884 9.43752i −0.0296704 0.357215i
\(699\) 0 0
\(700\) −2.36560 4.73328i −0.0894111 0.178901i
\(701\) −41.1901 −1.55573 −0.777864 0.628433i \(-0.783697\pi\)
−0.777864 + 0.628433i \(0.783697\pi\)
\(702\) 0 0
\(703\) −15.3494 −0.578912
\(704\) −2.12296 3.91186i −0.0800122 0.147434i
\(705\) 0 0
\(706\) −2.18602 26.3185i −0.0822720 0.990509i
\(707\) −32.5124 + 9.97647i −1.22275 + 0.375204i
\(708\) 0 0
\(709\) −5.89330 −0.221327 −0.110664 0.993858i \(-0.535298\pi\)
−0.110664 + 0.993858i \(0.535298\pi\)
\(710\) −1.91865 + 0.159364i −0.0720057 + 0.00598082i
\(711\) 0 0
\(712\) 5.57877 + 21.9756i 0.209073 + 0.823571i
\(713\) 22.4292i 0.839980i
\(714\) 0 0
\(715\) 0.101469i 0.00379474i
\(716\) −6.05610 36.2045i −0.226327 1.35303i
\(717\) 0 0
\(718\) 2.45431 + 29.5485i 0.0915940 + 1.10274i
\(719\) −35.2121 −1.31319 −0.656595 0.754243i \(-0.728004\pi\)
−0.656595 + 0.754243i \(0.728004\pi\)
\(720\) 0 0
\(721\) 11.1012 + 36.1776i 0.413429 + 1.34732i
\(722\) 13.3986 1.11289i 0.498645 0.0414176i
\(723\) 0 0
\(724\) −4.20546 25.1410i −0.156295 0.934359i
\(725\) −3.20026 −0.118855
\(726\) 0 0
\(727\) −44.9984 −1.66890 −0.834449 0.551085i \(-0.814214\pi\)
−0.834449 + 0.551085i \(0.814214\pi\)
\(728\) −1.16616 + 0.709120i −0.0432207 + 0.0262817i
\(729\) 0 0
\(730\) −14.2468 + 1.18335i −0.527299 + 0.0437976i
\(731\) −1.54132 −0.0570079
\(732\) 0 0
\(733\) 4.38540i 0.161978i 0.996715 + 0.0809892i \(0.0258079\pi\)
−0.996715 + 0.0809892i \(0.974192\pi\)
\(734\) 30.2496 2.51254i 1.11653 0.0927395i
\(735\) 0 0
\(736\) −8.98128 20.4207i −0.331054 0.752716i
\(737\) 5.60203 0.206353
\(738\) 0 0
\(739\) 29.0684i 1.06930i 0.845075 + 0.534648i \(0.179556\pi\)
−0.845075 + 0.534648i \(0.820444\pi\)
\(740\) 1.64382 + 9.82706i 0.0604279 + 0.361250i
\(741\) 0 0
\(742\) −9.68875 24.2152i −0.355685 0.888969i
\(743\) 21.0881i 0.773647i 0.922154 + 0.386824i \(0.126428\pi\)
−0.922154 + 0.386824i \(0.873572\pi\)
\(744\) 0 0
\(745\) 7.28607i 0.266941i
\(746\) 51.2099 4.25351i 1.87493 0.155732i
\(747\) 0 0
\(748\) −2.62784 + 0.439570i −0.0960832 + 0.0160723i
\(749\) −46.3454 + 14.2212i −1.69342 + 0.519630i
\(750\) 0 0
\(751\) 41.9734i 1.53163i 0.643061 + 0.765815i \(0.277664\pi\)
−0.643061 + 0.765815i \(0.722336\pi\)
\(752\) 13.7548 4.73414i 0.501587 0.172636i
\(753\) 0 0
\(754\) 0.0683261 + 0.822608i 0.00248829 + 0.0299576i
\(755\) 15.1807 0.552483
\(756\) 0 0
\(757\) 3.52848 0.128245 0.0641224 0.997942i \(-0.479575\pi\)
0.0641224 + 0.997942i \(0.479575\pi\)
\(758\) −1.29994 15.6506i −0.0472160 0.568455i
\(759\) 0 0
\(760\) 2.14430 + 8.44671i 0.0777819 + 0.306394i
\(761\) 43.3157i 1.57019i −0.619374 0.785096i \(-0.712613\pi\)
0.619374 0.785096i \(-0.287387\pi\)
\(762\) 0 0
\(763\) −3.13396 10.2133i −0.113457 0.369745i
\(764\) 7.08311 + 42.3442i 0.256258 + 1.53196i
\(765\) 0 0
\(766\) 33.3061 2.76642i 1.20340 0.0999548i
\(767\) 1.60491i 0.0579499i
\(768\) 0 0
\(769\) 36.5255i 1.31714i −0.752518 0.658572i \(-0.771161\pi\)
0.752518 0.658572i \(-0.228839\pi\)
\(770\) 0.773297 + 1.93271i 0.0278677 + 0.0696501i
\(771\) 0 0
\(772\) 10.4138 1.74196i 0.374800 0.0626946i
\(773\) 38.9312i 1.40026i −0.714017 0.700128i \(-0.753126\pi\)
0.714017 0.700128i \(-0.246874\pi\)
\(774\) 0 0
\(775\) −5.68747 −0.204300
\(776\) −0.309969 1.22102i −0.0111273 0.0438319i
\(777\) 0 0
\(778\) −32.1212 + 2.66800i −1.15160 + 0.0956524i
\(779\) 29.7266i 1.06507i
\(780\) 0 0
\(781\) 0.757395 0.0271017
\(782\) −13.3085 + 1.10541i −0.475911 + 0.0395293i
\(783\) 0 0
\(784\) −16.8079 + 22.3941i −0.600282 + 0.799788i
\(785\) 10.7177 0.382531
\(786\) 0 0
\(787\) 36.3954 1.29736 0.648679 0.761063i \(-0.275322\pi\)
0.648679 + 0.761063i \(0.275322\pi\)
\(788\) 16.6646 2.78756i 0.593652 0.0993029i
\(789\) 0 0
\(790\) 18.4056 1.52878i 0.654843 0.0543915i
\(791\) −2.44235 7.95937i −0.0868398 0.283003i
\(792\)