Properties

Label 1260.2.bm.a.289.1
Level $1260$
Weight $2$
Character 1260.289
Analytic conductor $10.061$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.1
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 1260.289
Dual form 1260.2.bm.a.109.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.13746 + 0.656712i) q^{5} +(1.13746 + 2.38876i) q^{7} +O(q^{10})\) \(q+(-2.13746 + 0.656712i) q^{5} +(1.13746 + 2.38876i) q^{7} +(-2.63746 - 4.56821i) q^{11} -2.62685i q^{13} +(-0.362541 + 0.209313i) q^{17} +(1.63746 - 2.83616i) q^{19} +(6.77492 + 3.91150i) q^{23} +(4.13746 - 2.80739i) q^{25} +4.27492 q^{29} +(-1.63746 - 2.83616i) q^{31} +(-4.00000 - 4.35890i) q^{35} +(8.63746 + 4.98684i) q^{37} +3.72508 q^{41} +2.15068i q^{43} +(5.63746 + 3.25479i) q^{47} +(-4.41238 + 5.43424i) q^{49} +(-4.91238 + 2.83616i) q^{53} +(8.63746 + 8.03231i) q^{55} +(1.63746 + 2.83616i) q^{59} +(6.77492 - 11.7345i) q^{61} +(1.72508 + 5.61478i) q^{65} +(3.04983 - 1.76082i) q^{67} +4.54983 q^{71} +(-5.63746 + 3.25479i) q^{73} +(7.91238 - 11.4964i) q^{77} +(3.63746 - 6.30026i) q^{79} -7.40437i q^{83} +(0.637459 - 0.685484i) q^{85} +(3.50000 - 6.06218i) q^{89} +(6.27492 - 2.98793i) q^{91} +(-1.63746 + 7.13752i) q^{95} -6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} - 3 q^{7} + O(q^{10}) \) \( 4 q - q^{5} - 3 q^{7} - 3 q^{11} - 9 q^{17} - q^{19} + 12 q^{23} + 9 q^{25} + 2 q^{29} + q^{31} - 16 q^{35} + 27 q^{37} + 30 q^{41} + 15 q^{47} + 5 q^{49} + 3 q^{53} + 27 q^{55} - q^{59} + 12 q^{61} + 22 q^{65} - 18 q^{67} - 12 q^{71} - 15 q^{73} + 9 q^{77} + 7 q^{79} - 5 q^{85} + 14 q^{89} + 10 q^{91} + q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.13746 + 0.656712i −0.955901 + 0.293691i
\(6\) 0 0
\(7\) 1.13746 + 2.38876i 0.429919 + 0.902867i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.63746 4.56821i −0.795224 1.37737i −0.922697 0.385526i \(-0.874020\pi\)
0.127473 0.991842i \(-0.459313\pi\)
\(12\) 0 0
\(13\) 2.62685i 0.728557i −0.931290 0.364278i \(-0.881316\pi\)
0.931290 0.364278i \(-0.118684\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.362541 + 0.209313i −0.0879292 + 0.0507659i −0.543320 0.839526i \(-0.682833\pi\)
0.455391 + 0.890292i \(0.349500\pi\)
\(18\) 0 0
\(19\) 1.63746 2.83616i 0.375659 0.650660i −0.614767 0.788709i \(-0.710750\pi\)
0.990425 + 0.138049i \(0.0440831\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.77492 + 3.91150i 1.41267 + 0.815604i 0.995639 0.0932891i \(-0.0297381\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 4.13746 2.80739i 0.827492 0.561478i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.27492 0.793832 0.396916 0.917855i \(-0.370080\pi\)
0.396916 + 0.917855i \(0.370080\pi\)
\(30\) 0 0
\(31\) −1.63746 2.83616i −0.294096 0.509390i 0.680678 0.732583i \(-0.261685\pi\)
−0.974774 + 0.223193i \(0.928352\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 4.35890i −0.676123 0.736788i
\(36\) 0 0
\(37\) 8.63746 + 4.98684i 1.41999 + 0.819831i 0.996297 0.0859750i \(-0.0274005\pi\)
0.423692 + 0.905806i \(0.360734\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.72508 0.581760 0.290880 0.956760i \(-0.406052\pi\)
0.290880 + 0.956760i \(0.406052\pi\)
\(42\) 0 0
\(43\) 2.15068i 0.327975i 0.986462 + 0.163988i \(0.0524357\pi\)
−0.986462 + 0.163988i \(0.947564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.63746 + 3.25479i 0.822308 + 0.474760i 0.851212 0.524823i \(-0.175868\pi\)
−0.0289038 + 0.999582i \(0.509202\pi\)
\(48\) 0 0
\(49\) −4.41238 + 5.43424i −0.630339 + 0.776320i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.91238 + 2.83616i −0.674767 + 0.389577i −0.797880 0.602816i \(-0.794045\pi\)
0.123114 + 0.992393i \(0.460712\pi\)
\(54\) 0 0
\(55\) 8.63746 + 8.03231i 1.16467 + 1.08308i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.63746 + 2.83616i 0.213179 + 0.369237i 0.952708 0.303888i \(-0.0982849\pi\)
−0.739529 + 0.673125i \(0.764952\pi\)
\(60\) 0 0
\(61\) 6.77492 11.7345i 0.867439 1.50245i 0.00283468 0.999996i \(-0.499098\pi\)
0.864605 0.502453i \(-0.167569\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.72508 + 5.61478i 0.213970 + 0.696428i
\(66\) 0 0
\(67\) 3.04983 1.76082i 0.372597 0.215119i −0.301996 0.953309i \(-0.597653\pi\)
0.674592 + 0.738191i \(0.264319\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.54983 0.539966 0.269983 0.962865i \(-0.412982\pi\)
0.269983 + 0.962865i \(0.412982\pi\)
\(72\) 0 0
\(73\) −5.63746 + 3.25479i −0.659815 + 0.380944i −0.792206 0.610253i \(-0.791068\pi\)
0.132392 + 0.991197i \(0.457734\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.91238 11.4964i 0.901699 1.31014i
\(78\) 0 0
\(79\) 3.63746 6.30026i 0.409246 0.708835i −0.585559 0.810630i \(-0.699125\pi\)
0.994805 + 0.101795i \(0.0324584\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.40437i 0.812736i −0.913710 0.406368i \(-0.866795\pi\)
0.913710 0.406368i \(-0.133205\pi\)
\(84\) 0 0
\(85\) 0.637459 0.685484i 0.0691421 0.0743512i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.50000 6.06218i 0.370999 0.642590i −0.618720 0.785611i \(-0.712349\pi\)
0.989720 + 0.143022i \(0.0456819\pi\)
\(90\) 0 0
\(91\) 6.27492 2.98793i 0.657790 0.313220i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.63746 + 7.13752i −0.168000 + 0.732294i
\(96\) 0 0
\(97\) 6.92820i 0.703452i −0.936103 0.351726i \(-0.885595\pi\)
0.936103 0.351726i \(-0.114405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.77492 11.7345i −0.674129 1.16763i −0.976723 0.214507i \(-0.931186\pi\)
0.302593 0.953120i \(-0.402148\pi\)
\(102\) 0 0
\(103\) 9.77492 + 5.64355i 0.963151 + 0.556076i 0.897141 0.441743i \(-0.145640\pi\)
0.0660098 + 0.997819i \(0.478973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.04983 + 1.76082i 0.294839 + 0.170225i 0.640122 0.768273i \(-0.278884\pi\)
−0.345283 + 0.938499i \(0.612217\pi\)
\(108\) 0 0
\(109\) −5.77492 10.0025i −0.553137 0.958061i −0.998046 0.0624852i \(-0.980097\pi\)
0.444909 0.895576i \(-0.353236\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.30136i 0.404637i 0.979320 + 0.202319i \(0.0648477\pi\)
−0.979320 + 0.202319i \(0.935152\pi\)
\(114\) 0 0
\(115\) −17.0498 3.91150i −1.58991 0.364749i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.912376 0.627940i −0.0836374 0.0575632i
\(120\) 0 0
\(121\) −8.41238 + 14.5707i −0.764761 + 1.32461i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.00000 + 8.71780i −0.626099 + 0.779744i
\(126\) 0 0
\(127\) 15.6460i 1.38836i −0.719802 0.694179i \(-0.755768\pi\)
0.719802 0.694179i \(-0.244232\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.36254 + 9.28819i −0.468527 + 0.811513i −0.999353 0.0359678i \(-0.988549\pi\)
0.530826 + 0.847481i \(0.321882\pi\)
\(132\) 0 0
\(133\) 8.63746 + 0.685484i 0.748963 + 0.0594390i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.4622 10.6592i 1.57733 0.910674i 0.582103 0.813115i \(-0.302230\pi\)
0.995230 0.0975588i \(-0.0311034\pi\)
\(138\) 0 0
\(139\) −13.0997 −1.11110 −0.555550 0.831483i \(-0.687492\pi\)
−0.555550 + 0.831483i \(0.687492\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 + 6.92820i −1.00349 + 0.579365i
\(144\) 0 0
\(145\) −9.13746 + 2.80739i −0.758825 + 0.233141i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.77492 6.53835i 0.309253 0.535642i −0.668946 0.743311i \(-0.733254\pi\)
0.978199 + 0.207669i \(0.0665876\pi\)
\(150\) 0 0
\(151\) 6.36254 + 11.0202i 0.517776 + 0.896815i 0.999787 + 0.0206494i \(0.00657337\pi\)
−0.482011 + 0.876165i \(0.660093\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.36254 + 4.98684i 0.430730 + 0.400553i
\(156\) 0 0
\(157\) −1.91238 + 1.10411i −0.152624 + 0.0881176i −0.574367 0.818598i \(-0.694752\pi\)
0.421743 + 0.906715i \(0.361418\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.63746 + 20.6328i −0.129050 + 1.62610i
\(162\) 0 0
\(163\) 4.91238 + 2.83616i 0.384767 + 0.222145i 0.679890 0.733314i \(-0.262027\pi\)
−0.295123 + 0.955459i \(0.595361\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.476171i 0.0368472i 0.999830 + 0.0184236i \(0.00586474\pi\)
−0.999830 + 0.0184236i \(0.994135\pi\)
\(168\) 0 0
\(169\) 6.09967 0.469205
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −17.7371 10.2405i −1.34853 0.778573i −0.360488 0.932764i \(-0.617390\pi\)
−0.988041 + 0.154190i \(0.950723\pi\)
\(174\) 0 0
\(175\) 11.4124 + 6.69012i 0.862695 + 0.505725i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.63746 + 6.30026i 0.271876 + 0.470904i 0.969342 0.245714i \(-0.0790225\pi\)
−0.697466 + 0.716618i \(0.745689\pi\)
\(180\) 0 0
\(181\) −24.2749 −1.80434 −0.902170 0.431380i \(-0.858027\pi\)
−0.902170 + 0.431380i \(0.858027\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.7371 4.98684i −1.59815 0.366640i
\(186\) 0 0
\(187\) 1.91238 + 1.10411i 0.139847 + 0.0807406i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.0876242 0.151770i 0.00634026 0.0109817i −0.862838 0.505481i \(-0.831315\pi\)
0.869178 + 0.494499i \(0.164648\pi\)
\(192\) 0 0
\(193\) −18.4622 + 10.6592i −1.32894 + 0.767263i −0.985136 0.171778i \(-0.945049\pi\)
−0.343803 + 0.939042i \(0.611715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.60271i 0.612918i −0.951884 0.306459i \(-0.900856\pi\)
0.951884 0.306459i \(-0.0991442\pi\)
\(198\) 0 0
\(199\) 8.63746 + 14.9605i 0.612293 + 1.06052i 0.990853 + 0.134946i \(0.0430861\pi\)
−0.378560 + 0.925577i \(0.623581\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.86254 + 10.2118i 0.341284 + 0.716725i
\(204\) 0 0
\(205\) −7.96221 + 2.44631i −0.556105 + 0.170857i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −17.2749 −1.19493
\(210\) 0 0
\(211\) 25.6495 1.76578 0.882892 0.469576i \(-0.155593\pi\)
0.882892 + 0.469576i \(0.155593\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.41238 4.59698i −0.0963232 0.313512i
\(216\) 0 0
\(217\) 4.91238 7.13752i 0.333474 0.484526i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.549834 + 0.952341i 0.0369859 + 0.0640614i
\(222\) 0 0
\(223\) 8.71780i 0.583787i 0.956451 + 0.291893i \(0.0942853\pi\)
−0.956451 + 0.291893i \(0.905715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9124 9.76436i 1.12251 0.648084i 0.180472 0.983580i \(-0.442237\pi\)
0.942041 + 0.335496i \(0.108904\pi\)
\(228\) 0 0
\(229\) 1.63746 2.83616i 0.108206 0.187419i −0.806837 0.590774i \(-0.798823\pi\)
0.915044 + 0.403355i \(0.132156\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.3625 7.13752i −0.809897 0.467594i 0.0370231 0.999314i \(-0.488212\pi\)
−0.846920 + 0.531720i \(0.821546\pi\)
\(234\) 0 0
\(235\) −14.1873 3.25479i −0.925477 0.212319i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.549834 0.0355658 0.0177829 0.999842i \(-0.494339\pi\)
0.0177829 + 0.999842i \(0.494339\pi\)
\(240\) 0 0
\(241\) −4.91238 8.50848i −0.316434 0.548080i 0.663307 0.748347i \(-0.269152\pi\)
−0.979741 + 0.200267i \(0.935819\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.86254 14.5131i 0.374544 0.927209i
\(246\) 0 0
\(247\) −7.45017 4.30136i −0.474043 0.273689i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.5498 1.29709 0.648547 0.761175i \(-0.275377\pi\)
0.648547 + 0.761175i \(0.275377\pi\)
\(252\) 0 0
\(253\) 41.2657i 2.59435i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.0876 5.82409i −0.629249 0.363297i 0.151212 0.988501i \(-0.451682\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(258\) 0 0
\(259\) −2.08762 + 26.3052i −0.129719 + 1.63452i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.675248 0.389855i 0.0416376 0.0240395i −0.479037 0.877795i \(-0.659014\pi\)
0.520674 + 0.853755i \(0.325681\pi\)
\(264\) 0 0
\(265\) 8.63746 9.28819i 0.530595 0.570569i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.22508 + 12.5142i 0.440521 + 0.763005i 0.997728 0.0673687i \(-0.0214604\pi\)
−0.557207 + 0.830374i \(0.688127\pi\)
\(270\) 0 0
\(271\) −4.91238 + 8.50848i −0.298406 + 0.516854i −0.975771 0.218793i \(-0.929788\pi\)
0.677366 + 0.735646i \(0.263121\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −23.7371 11.4964i −1.43140 0.693260i
\(276\) 0 0
\(277\) 12.3625 7.13752i 0.742793 0.428852i −0.0802909 0.996771i \(-0.525585\pi\)
0.823084 + 0.567920i \(0.192252\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −9.46221 + 5.46301i −0.562470 + 0.324742i −0.754136 0.656718i \(-0.771944\pi\)
0.191666 + 0.981460i \(0.438611\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.23713 + 8.89834i 0.250110 + 0.525252i
\(288\) 0 0
\(289\) −8.41238 + 14.5707i −0.494846 + 0.857098i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) −5.36254 4.98684i −0.312219 0.290345i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.2749 17.7967i 0.594214 1.02921i
\(300\) 0 0
\(301\) −5.13746 + 2.44631i −0.296118 + 0.141003i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.77492 + 29.5312i −0.387931 + 1.69095i
\(306\) 0 0
\(307\) 26.5145i 1.51326i 0.653843 + 0.756631i \(0.273156\pi\)
−0.653843 + 0.756631i \(0.726844\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.91238 8.50848i −0.278555 0.482472i 0.692471 0.721446i \(-0.256522\pi\)
−0.971026 + 0.238974i \(0.923189\pi\)
\(312\) 0 0
\(313\) −29.0120 16.7501i −1.63986 0.946772i −0.980881 0.194609i \(-0.937656\pi\)
−0.658977 0.752163i \(-0.729010\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.1873 + 12.8098i 1.24616 + 0.719472i 0.970342 0.241737i \(-0.0777171\pi\)
0.275821 + 0.961209i \(0.411050\pi\)
\(318\) 0 0
\(319\) −11.2749 19.5287i −0.631274 1.09340i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.37097i 0.0762827i
\(324\) 0 0
\(325\) −7.37459 10.8685i −0.409068 0.602875i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.36254 + 17.1687i −0.0751193 + 0.946543i
\(330\) 0 0
\(331\) −8.91238 + 15.4367i −0.489868 + 0.848477i −0.999932 0.0116596i \(-0.996289\pi\)
0.510064 + 0.860137i \(0.329622\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.36254 + 5.76655i −0.292987 + 0.315060i
\(336\) 0 0
\(337\) 4.30136i 0.234310i −0.993114 0.117155i \(-0.962623\pi\)
0.993114 0.117155i \(-0.0373774\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.63746 + 14.9605i −0.467745 + 0.810157i
\(342\) 0 0
\(343\) −18.0000 4.35890i −0.971909 0.235358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5000 + 6.06218i −0.563670 + 0.325435i −0.754617 0.656165i \(-0.772177\pi\)
0.190947 + 0.981600i \(0.438844\pi\)
\(348\) 0 0
\(349\) 3.72508 0.199399 0.0996996 0.995018i \(-0.468212\pi\)
0.0996996 + 0.995018i \(0.468212\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.08762 4.09204i 0.377236 0.217797i −0.299379 0.954134i \(-0.596779\pi\)
0.676615 + 0.736337i \(0.263446\pi\)
\(354\) 0 0
\(355\) −9.72508 + 2.98793i −0.516154 + 0.158583i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.1873 + 31.5013i −0.959889 + 1.66258i −0.237127 + 0.971479i \(0.576206\pi\)
−0.722762 + 0.691097i \(0.757128\pi\)
\(360\) 0 0
\(361\) 4.13746 + 7.16629i 0.217761 + 0.377173i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.91238 10.6592i 0.518837 0.557926i
\(366\) 0 0
\(367\) −5.22508 + 3.01670i −0.272747 + 0.157471i −0.630135 0.776485i \(-0.717001\pi\)
0.357388 + 0.933956i \(0.383667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.3625 8.50848i −0.641831 0.441739i
\(372\) 0 0
\(373\) 8.63746 + 4.98684i 0.447231 + 0.258209i 0.706660 0.707553i \(-0.250201\pi\)
−0.259429 + 0.965762i \(0.583534\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.2296i 0.578352i
\(378\) 0 0
\(379\) 21.6495 1.11206 0.556030 0.831162i \(-0.312324\pi\)
0.556030 + 0.831162i \(0.312324\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.32475 + 3.07425i 0.272082 + 0.157087i 0.629833 0.776730i \(-0.283123\pi\)
−0.357751 + 0.933817i \(0.616456\pi\)
\(384\) 0 0
\(385\) −9.36254 + 29.7693i −0.477159 + 1.51718i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.1873 28.0372i −0.820728 1.42154i −0.905141 0.425112i \(-0.860235\pi\)
0.0844123 0.996431i \(-0.473099\pi\)
\(390\) 0 0
\(391\) −3.27492 −0.165620
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.63746 + 15.8553i −0.183020 + 0.797767i
\(396\) 0 0
\(397\) −9.36254 5.40547i −0.469892 0.271293i 0.246302 0.969193i \(-0.420784\pi\)
−0.716195 + 0.697901i \(0.754118\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) 0 0
\(403\) −7.45017 + 4.30136i −0.371119 + 0.214266i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 52.6103i 2.60780i
\(408\) 0 0
\(409\) −10.0498 17.4068i −0.496932 0.860712i 0.503061 0.864251i \(-0.332207\pi\)
−0.999994 + 0.00353862i \(0.998874\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.91238 + 7.13752i −0.241722 + 0.351214i
\(414\) 0 0
\(415\) 4.86254 + 15.8265i 0.238693 + 0.776894i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.0997 −0.639961 −0.319980 0.947424i \(-0.603676\pi\)
−0.319980 + 0.947424i \(0.603676\pi\)
\(420\) 0 0
\(421\) −4.27492 −0.208347 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.912376 + 1.88382i −0.0442567 + 0.0913787i
\(426\) 0 0
\(427\) 35.7371 + 2.83616i 1.72944 + 0.137251i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.18729 15.9129i −0.442536 0.766495i 0.555341 0.831623i \(-0.312588\pi\)
−0.997877 + 0.0651276i \(0.979255\pi\)
\(432\) 0 0
\(433\) 18.1578i 0.872606i 0.899800 + 0.436303i \(0.143712\pi\)
−0.899800 + 0.436303i \(0.856288\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.1873 12.8098i 1.06136 0.612778i
\(438\) 0 0
\(439\) 11.9124 20.6328i 0.568547 0.984752i −0.428163 0.903701i \(-0.640839\pi\)
0.996710 0.0810504i \(-0.0258275\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 + 6.06218i 0.498870 + 0.288023i 0.728247 0.685315i \(-0.240335\pi\)
−0.229377 + 0.973338i \(0.573669\pi\)
\(444\) 0 0
\(445\) −3.50000 + 15.2561i −0.165916 + 0.723211i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.17525 −0.149849 −0.0749246 0.997189i \(-0.523872\pi\)
−0.0749246 + 0.997189i \(0.523872\pi\)
\(450\) 0 0
\(451\) −9.82475 17.0170i −0.462629 0.801298i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.4502 + 10.5074i −0.536792 + 0.492594i
\(456\) 0 0
\(457\) 1.18729 + 0.685484i 0.0555392 + 0.0320656i 0.527512 0.849547i \(-0.323125\pi\)
−0.471973 + 0.881613i \(0.656458\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 2.15068i 0.0999505i −0.998750 0.0499752i \(-0.984086\pi\)
0.998750 0.0499752i \(-0.0159142\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.5997 + 7.85177i 0.629318 + 0.363337i 0.780488 0.625171i \(-0.214971\pi\)
−0.151170 + 0.988508i \(0.548304\pi\)
\(468\) 0 0
\(469\) 7.67525 + 5.28247i 0.354410 + 0.243922i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.82475 5.67232i 0.451743 0.260814i
\(474\) 0 0
\(475\) −1.18729 16.3315i −0.0544767 0.749340i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.91238 8.50848i −0.224452 0.388763i 0.731703 0.681624i \(-0.238726\pi\)
−0.956155 + 0.292861i \(0.905393\pi\)
\(480\) 0 0
\(481\) 13.0997 22.6893i 0.597293 1.03454i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.54983 + 14.8087i 0.206597 + 0.672431i
\(486\) 0 0
\(487\) 2.53779 1.46519i 0.114998 0.0663943i −0.441398 0.897312i \(-0.645517\pi\)
0.556396 + 0.830917i \(0.312184\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.5498 1.28844 0.644218 0.764842i \(-0.277183\pi\)
0.644218 + 0.764842i \(0.277183\pi\)
\(492\) 0 0
\(493\) −1.54983 + 0.894797i −0.0698010 + 0.0402996i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.17525 + 10.8685i 0.232142 + 0.487518i
\(498\) 0 0
\(499\) 0.812707 1.40765i 0.0363818 0.0630151i −0.847261 0.531177i \(-0.821750\pi\)
0.883643 + 0.468161i \(0.155083\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.7682i 1.41647i 0.705975 + 0.708236i \(0.250509\pi\)
−0.705975 + 0.708236i \(0.749491\pi\)
\(504\) 0 0
\(505\) 22.1873 + 20.6328i 0.987322 + 0.918149i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.22508 12.5142i 0.320246 0.554683i −0.660293 0.751008i \(-0.729568\pi\)
0.980539 + 0.196326i \(0.0629010\pi\)
\(510\) 0 0
\(511\) −14.1873 9.76436i −0.627609 0.431950i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.5997 5.64355i −1.08399 0.248685i
\(516\) 0 0
\(517\) 34.3375i 1.51016i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.91238 + 8.50848i 0.215215 + 0.372763i 0.953339 0.301902i \(-0.0976214\pi\)
−0.738124 + 0.674665i \(0.764288\pi\)
\(522\) 0 0
\(523\) 6.36254 + 3.67341i 0.278215 + 0.160627i 0.632615 0.774467i \(-0.281982\pi\)
−0.354400 + 0.935094i \(0.615315\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.18729 + 0.685484i 0.0517193 + 0.0298602i
\(528\) 0 0
\(529\) 19.0997 + 33.0816i 0.830420 + 1.43833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.78523i 0.423845i
\(534\) 0 0
\(535\) −7.67525 1.76082i −0.331830 0.0761270i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 36.4622 + 5.82409i 1.57054 + 0.250861i
\(540\) 0 0
\(541\) 8.77492 15.1986i 0.377263 0.653439i −0.613400 0.789773i \(-0.710199\pi\)
0.990663 + 0.136334i \(0.0435319\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.9124 + 17.5874i 0.810117 + 0.753360i
\(546\) 0 0
\(547\) 20.5386i 0.878168i −0.898446 0.439084i \(-0.855303\pi\)
0.898446 0.439084i \(-0.144697\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.00000 12.1244i 0.298210 0.516515i
\(552\) 0 0
\(553\) 19.1873 + 1.52274i 0.815927 + 0.0647534i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.63746 + 4.98684i −0.365981 + 0.211299i −0.671701 0.740822i \(-0.734436\pi\)
0.305720 + 0.952121i \(0.401103\pi\)
\(558\) 0 0
\(559\) 5.64950 0.238949
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.5997 + 11.3159i −0.826028 + 0.476907i −0.852491 0.522743i \(-0.824909\pi\)
0.0264630 + 0.999650i \(0.491576\pi\)
\(564\) 0 0
\(565\) −2.82475 9.19397i −0.118838 0.386793i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.18729 + 7.25260i −0.175540 + 0.304045i −0.940348 0.340214i \(-0.889501\pi\)
0.764808 + 0.644259i \(0.222834\pi\)
\(570\) 0 0
\(571\) −3.63746 6.30026i −0.152223 0.263658i 0.779821 0.626002i \(-0.215310\pi\)
−0.932044 + 0.362344i \(0.881976\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 39.0120 2.83616i 1.62691 0.118276i
\(576\) 0 0
\(577\) −3.36254 + 1.94136i −0.139984 + 0.0808200i −0.568357 0.822782i \(-0.692421\pi\)
0.428372 + 0.903602i \(0.359087\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 17.6873 8.42217i 0.733793 0.349410i
\(582\) 0 0
\(583\) 25.9124 + 14.9605i 1.07318 + 0.619601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8997i 0.862623i −0.902203 0.431311i \(-0.858051\pi\)
0.902203 0.431311i \(-0.141949\pi\)
\(588\) 0 0
\(589\) −10.7251 −0.441919
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.9124 16.6926i −1.18729 0.685482i −0.229600 0.973285i \(-0.573742\pi\)
−0.957689 + 0.287804i \(0.907075\pi\)
\(594\) 0 0
\(595\) 2.36254 + 0.743028i 0.0968548 + 0.0304612i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.63746 4.56821i −0.107764 0.186652i 0.807100 0.590414i \(-0.201036\pi\)
−0.914864 + 0.403762i \(0.867702\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.41238 36.6687i 0.342012 1.49079i
\(606\) 0 0
\(607\) −9.87459 5.70109i −0.400797 0.231400i 0.286031 0.958220i \(-0.407664\pi\)
−0.686828 + 0.726820i \(0.740997\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.54983 14.8087i 0.345889 0.599098i
\(612\) 0 0
\(613\) 24.5619 14.1808i 0.992045 0.572757i 0.0861600 0.996281i \(-0.472540\pi\)
0.905885 + 0.423524i \(0.139207\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.2920i 1.25977i 0.776689 + 0.629884i \(0.216898\pi\)
−0.776689 + 0.629884i \(0.783102\pi\)
\(618\) 0 0
\(619\) −4.46221 7.72877i −0.179351 0.310646i 0.762307 0.647215i \(-0.224067\pi\)
−0.941659 + 0.336570i \(0.890733\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.4622 + 1.46519i 0.739673 + 0.0587017i
\(624\) 0 0
\(625\) 9.23713 23.2309i 0.369485 0.929237i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.17525 −0.166478
\(630\) 0 0
\(631\) 33.0997 1.31768 0.658839 0.752284i \(-0.271048\pi\)
0.658839 + 0.752284i \(0.271048\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.2749 + 33.4427i 0.407748 + 1.32713i
\(636\) 0 0
\(637\) 14.2749 + 11.5906i 0.565593 + 0.459238i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.04983 1.81837i −0.0414660 0.0718212i 0.844548 0.535481i \(-0.179869\pi\)
−0.886014 + 0.463659i \(0.846536\pi\)
\(642\) 0 0
\(643\) 31.4071i 1.23857i 0.785164 + 0.619287i \(0.212578\pi\)
−0.785164 + 0.619287i \(0.787422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.3248 + 13.4666i −0.916991 + 0.529425i −0.882674 0.469986i \(-0.844259\pi\)
−0.0343169 + 0.999411i \(0.510926\pi\)
\(648\) 0 0
\(649\) 8.63746 14.9605i 0.339050 0.587252i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.5619 14.1808i −0.961181 0.554938i −0.0646444 0.997908i \(-0.520591\pi\)
−0.896536 + 0.442970i \(0.853925\pi\)
\(654\) 0 0
\(655\) 5.36254 23.3748i 0.209532 0.913328i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.5498 −1.57960 −0.789799 0.613366i \(-0.789815\pi\)
−0.789799 + 0.613366i \(0.789815\pi\)
\(660\) 0 0
\(661\) 0.225083 + 0.389855i 0.00875471 + 0.0151636i 0.870370 0.492399i \(-0.163880\pi\)
−0.861615 + 0.507563i \(0.830547\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.9124 + 4.20713i −0.733390 + 0.163145i
\(666\) 0 0
\(667\) 28.9622 + 16.7213i 1.12142 + 0.647453i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −71.4743 −2.75923
\(672\) 0 0
\(673\) 31.2920i 1.20622i 0.797659 + 0.603109i \(0.206072\pi\)
−0.797659 + 0.603109i \(0.793928\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.1873 + 23.2021i 1.54452 + 0.891731i 0.998545 + 0.0539317i \(0.0171753\pi\)
0.545979 + 0.837799i \(0.316158\pi\)
\(678\) 0 0
\(679\) 16.5498 7.88054i 0.635124 0.302428i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.5997 9.58382i 0.635169 0.366715i −0.147582 0.989050i \(-0.547149\pi\)
0.782751 + 0.622335i \(0.213816\pi\)
\(684\) 0 0
\(685\) −32.4622 + 34.9079i −1.24032 + 1.33376i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.45017 + 12.9041i 0.283829 + 0.491606i
\(690\) 0 0
\(691\) −15.1873 + 26.3052i −0.577752 + 1.00070i 0.417985 + 0.908454i \(0.362737\pi\)
−0.995737 + 0.0922416i \(0.970597\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.0000 8.60271i 1.06210 0.326319i
\(696\) 0 0
\(697\) −1.35050 + 0.779710i −0.0511537 + 0.0295336i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.82475 −0.333306 −0.166653 0.986016i \(-0.553296\pi\)
−0.166653 + 0.986016i \(0.553296\pi\)
\(702\) 0 0
\(703\) 28.2870 16.3315i 1.06686 0.615954i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.3248 29.5312i 0.764391 1.11063i
\(708\) 0 0
\(709\) −5.22508 + 9.05011i −0.196232 + 0.339884i −0.947304 0.320337i \(-0.896204\pi\)
0.751072 + 0.660221i \(0.229537\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.6197i 0.959465i
\(714\) 0 0
\(715\) 21.0997 22.6893i 0.789083 0.848531i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.1873 26.3052i 0.566390 0.981017i −0.430528 0.902577i \(-0.641673\pi\)
0.996919 0.0784400i \(-0.0249939\pi\)
\(720\) 0 0
\(721\) −2.36254 + 29.7693i −0.0879856 + 1.10867i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 17.6873 12.0014i 0.656890 0.445719i
\(726\) 0 0
\(727\) 3.10302i 0.115085i 0.998343 + 0.0575423i \(0.0183264\pi\)
−0.998343 + 0.0575423i \(0.981674\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.450166 0.779710i −0.0166500 0.0288386i
\(732\) 0 0
\(733\) 32.6375 + 18.8432i 1.20549 + 0.695991i 0.961771 0.273854i \(-0.0882986\pi\)
0.243721 + 0.969845i \(0.421632\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0876 9.28819i −0.592595 0.342135i
\(738\) 0 0
\(739\) −10.4622 18.1211i −0.384859 0.666595i 0.606891 0.794785i \(-0.292416\pi\)
−0.991750 + 0.128190i \(0.959083\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.45203i 0.236702i −0.992972 0.118351i \(-0.962239\pi\)
0.992972 0.118351i \(-0.0377608\pi\)
\(744\) 0 0
\(745\) −3.77492 + 16.4545i −0.138302 + 0.602846i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.737127 + 9.28819i −0.0269341 + 0.339383i
\(750\) 0 0
\(751\) 7.36254 12.7523i 0.268663 0.465338i −0.699854 0.714286i \(-0.746752\pi\)
0.968517 + 0.248948i \(0.0800849\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.8368 19.3770i −0.758329 0.705200i
\(756\) 0 0
\(757\) 35.5934i 1.29366i 0.762633 + 0.646831i \(0.223906\pi\)
−0.762633 + 0.646831i \(0.776094\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.4622 19.8531i 0.415505 0.719675i −0.579977 0.814633i \(-0.696938\pi\)
0.995481 + 0.0949578i \(0.0302716\pi\)
\(762\) 0 0
\(763\) 17.3248 25.1723i 0.627198 0.911298i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.45017 4.30136i 0.269010 0.155313i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.9124 + 20.1567i −1.25571 + 0.724985i −0.972238 0.233995i \(-0.924820\pi\)
−0.283473 + 0.958980i \(0.591487\pi\)
\(774\) 0 0
\(775\) −14.7371 7.13752i −0.529373 0.256387i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.09967 10.5649i 0.218543 0.378528i
\(780\) 0 0
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.36254 3.61587i 0.120014 0.129056i
\(786\) 0 0
\(787\) −1.50000 + 0.866025i −0.0534692 + 0.0308705i −0.526496 0.850177i \(-0.676495\pi\)
0.473027 + 0.881048i \(0.343161\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10.2749 + 4.89261i −0.365334 + 0.173961i
\(792\) 0 0
\(793\) −30.8248 17.7967i −1.09462 0.631979i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.8229i 1.65855i 0.558839 + 0.829276i \(0.311247\pi\)
−0.558839 + 0.829276i \(0.688753\pi\)
\(798\) 0 0
\(799\) −2.72508 −0.0964065
\(800\) 0 0
\(801\) 0 0
\(802\)