# Properties

 Label 1260.2.a.c.1.1 Level $1260$ Weight $2$ Character 1260.1 Self dual yes Analytic conductor $10.061$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1260.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$10.0611506547$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1260.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} +1.00000 q^{7} +O(q^{10})$$ $$q-1.00000 q^{5} +1.00000 q^{7} -3.00000 q^{11} -1.00000 q^{13} +3.00000 q^{17} +2.00000 q^{19} +6.00000 q^{23} +1.00000 q^{25} +9.00000 q^{29} +8.00000 q^{31} -1.00000 q^{35} -10.0000 q^{37} +2.00000 q^{43} +3.00000 q^{47} +1.00000 q^{49} +3.00000 q^{55} -12.0000 q^{59} +8.00000 q^{61} +1.00000 q^{65} +8.00000 q^{67} +14.0000 q^{73} -3.00000 q^{77} +5.00000 q^{79} +12.0000 q^{83} -3.00000 q^{85} -12.0000 q^{89} -1.00000 q^{91} -2.00000 q^{95} +17.0000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 −0.447214
$$6$$ 0 0
$$7$$ 1.00000 0.377964
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −3.00000 −0.904534 −0.452267 0.891883i $$-0.649385\pi$$
−0.452267 + 0.891883i $$0.649385\pi$$
$$12$$ 0 0
$$13$$ −1.00000 −0.277350 −0.138675 0.990338i $$-0.544284\pi$$
−0.138675 + 0.990338i $$0.544284\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 3.00000 0.727607 0.363803 0.931476i $$-0.381478\pi$$
0.363803 + 0.931476i $$0.381478\pi$$
$$18$$ 0 0
$$19$$ 2.00000 0.458831 0.229416 0.973329i $$-0.426318\pi$$
0.229416 + 0.973329i $$0.426318\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 6.00000 1.25109 0.625543 0.780189i $$-0.284877\pi$$
0.625543 + 0.780189i $$0.284877\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 9.00000 1.67126 0.835629 0.549294i $$-0.185103\pi$$
0.835629 + 0.549294i $$0.185103\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −1.00000 −0.169031
$$36$$ 0 0
$$37$$ −10.0000 −1.64399 −0.821995 0.569495i $$-0.807139\pi$$
−0.821995 + 0.569495i $$0.807139\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ 2.00000 0.304997 0.152499 0.988304i $$-0.451268\pi$$
0.152499 + 0.988304i $$0.451268\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 3.00000 0.437595 0.218797 0.975770i $$-0.429787\pi$$
0.218797 + 0.975770i $$0.429787\pi$$
$$48$$ 0 0
$$49$$ 1.00000 0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$54$$ 0 0
$$55$$ 3.00000 0.404520
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ 8.00000 1.02430 0.512148 0.858898i $$-0.328850\pi$$
0.512148 + 0.858898i $$0.328850\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 1.00000 0.124035
$$66$$ 0 0
$$67$$ 8.00000 0.977356 0.488678 0.872464i $$-0.337479\pi$$
0.488678 + 0.872464i $$0.337479\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 14.0000 1.63858 0.819288 0.573382i $$-0.194369\pi$$
0.819288 + 0.573382i $$0.194369\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −3.00000 −0.341882
$$78$$ 0 0
$$79$$ 5.00000 0.562544 0.281272 0.959628i $$-0.409244\pi$$
0.281272 + 0.959628i $$0.409244\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 12.0000 1.31717 0.658586 0.752506i $$-0.271155\pi$$
0.658586 + 0.752506i $$0.271155\pi$$
$$84$$ 0 0
$$85$$ −3.00000 −0.325396
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −12.0000 −1.27200 −0.635999 0.771690i $$-0.719412\pi$$
−0.635999 + 0.771690i $$0.719412\pi$$
$$90$$ 0 0
$$91$$ −1.00000 −0.104828
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −2.00000 −0.205196
$$96$$ 0 0
$$97$$ 17.0000 1.72609 0.863044 0.505128i $$-0.168555\pi$$
0.863044 + 0.505128i $$0.168555\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 6.00000 0.597022 0.298511 0.954406i $$-0.403510\pi$$
0.298511 + 0.954406i $$0.403510\pi$$
$$102$$ 0 0
$$103$$ −7.00000 −0.689730 −0.344865 0.938652i $$-0.612075\pi$$
−0.344865 + 0.938652i $$0.612075\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 6.00000 0.580042 0.290021 0.957020i $$-0.406338\pi$$
0.290021 + 0.957020i $$0.406338\pi$$
$$108$$ 0 0
$$109$$ −19.0000 −1.81987 −0.909935 0.414751i $$-0.863869\pi$$
−0.909935 + 0.414751i $$0.863869\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 6.00000 0.564433 0.282216 0.959351i $$-0.408930\pi$$
0.282216 + 0.959351i $$0.408930\pi$$
$$114$$ 0 0
$$115$$ −6.00000 −0.559503
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 3.00000 0.275010
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −1.00000 −0.0894427
$$126$$ 0 0
$$127$$ 20.0000 1.77471 0.887357 0.461084i $$-0.152539\pi$$
0.887357 + 0.461084i $$0.152539\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 18.0000 1.57267 0.786334 0.617802i $$-0.211977\pi$$
0.786334 + 0.617802i $$0.211977\pi$$
$$132$$ 0 0
$$133$$ 2.00000 0.173422
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −12.0000 −1.02523 −0.512615 0.858619i $$-0.671323\pi$$
−0.512615 + 0.858619i $$0.671323\pi$$
$$138$$ 0 0
$$139$$ 2.00000 0.169638 0.0848189 0.996396i $$-0.472969\pi$$
0.0848189 + 0.996396i $$0.472969\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 3.00000 0.250873
$$144$$ 0 0
$$145$$ −9.00000 −0.747409
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −18.0000 −1.47462 −0.737309 0.675556i $$-0.763904\pi$$
−0.737309 + 0.675556i $$0.763904\pi$$
$$150$$ 0 0
$$151$$ −19.0000 −1.54620 −0.773099 0.634285i $$-0.781294\pi$$
−0.773099 + 0.634285i $$0.781294\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −8.00000 −0.642575
$$156$$ 0 0
$$157$$ −22.0000 −1.75579 −0.877896 0.478852i $$-0.841053\pi$$
−0.877896 + 0.478852i $$0.841053\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 6.00000 0.472866
$$162$$ 0 0
$$163$$ 2.00000 0.156652 0.0783260 0.996928i $$-0.475042\pi$$
0.0783260 + 0.996928i $$0.475042\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −9.00000 −0.696441 −0.348220 0.937413i $$-0.613214\pi$$
−0.348220 + 0.937413i $$0.613214\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 3.00000 0.228086 0.114043 0.993476i $$-0.463620\pi$$
0.114043 + 0.993476i $$0.463620\pi$$
$$174$$ 0 0
$$175$$ 1.00000 0.0755929
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ 8.00000 0.594635 0.297318 0.954779i $$-0.403908\pi$$
0.297318 + 0.954779i $$0.403908\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 10.0000 0.735215
$$186$$ 0 0
$$187$$ −9.00000 −0.658145
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −3.00000 −0.217072 −0.108536 0.994092i $$-0.534616\pi$$
−0.108536 + 0.994092i $$0.534616\pi$$
$$192$$ 0 0
$$193$$ −4.00000 −0.287926 −0.143963 0.989583i $$-0.545985\pi$$
−0.143963 + 0.989583i $$0.545985\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ 20.0000 1.41776 0.708881 0.705328i $$-0.249200\pi$$
0.708881 + 0.705328i $$0.249200\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 9.00000 0.631676
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −6.00000 −0.415029
$$210$$ 0 0
$$211$$ 5.00000 0.344214 0.172107 0.985078i $$-0.444942\pi$$
0.172107 + 0.985078i $$0.444942\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −2.00000 −0.136399
$$216$$ 0 0
$$217$$ 8.00000 0.543075
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −3.00000 −0.201802
$$222$$ 0 0
$$223$$ 17.0000 1.13840 0.569202 0.822198i $$-0.307252\pi$$
0.569202 + 0.822198i $$0.307252\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 27.0000 1.79205 0.896026 0.444001i $$-0.146441\pi$$
0.896026 + 0.444001i $$0.146441\pi$$
$$228$$ 0 0
$$229$$ −16.0000 −1.05731 −0.528655 0.848837i $$-0.677303\pi$$
−0.528655 + 0.848837i $$0.677303\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −24.0000 −1.57229 −0.786146 0.618041i $$-0.787927\pi$$
−0.786146 + 0.618041i $$0.787927\pi$$
$$234$$ 0 0
$$235$$ −3.00000 −0.195698
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −9.00000 −0.582162 −0.291081 0.956698i $$-0.594015\pi$$
−0.291081 + 0.956698i $$0.594015\pi$$
$$240$$ 0 0
$$241$$ −10.0000 −0.644157 −0.322078 0.946713i $$-0.604381\pi$$
−0.322078 + 0.946713i $$0.604381\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −1.00000 −0.0638877
$$246$$ 0 0
$$247$$ −2.00000 −0.127257
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −6.00000 −0.378717 −0.189358 0.981908i $$-0.560641\pi$$
−0.189358 + 0.981908i $$0.560641\pi$$
$$252$$ 0 0
$$253$$ −18.0000 −1.13165
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 6.00000 0.374270 0.187135 0.982334i $$-0.440080\pi$$
0.187135 + 0.982334i $$0.440080\pi$$
$$258$$ 0 0
$$259$$ −10.0000 −0.621370
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 30.0000 1.84988 0.924940 0.380114i $$-0.124115\pi$$
0.924940 + 0.380114i $$0.124115\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −18.0000 −1.09748 −0.548740 0.835993i $$-0.684892\pi$$
−0.548740 + 0.835993i $$0.684892\pi$$
$$270$$ 0 0
$$271$$ −16.0000 −0.971931 −0.485965 0.873978i $$-0.661532\pi$$
−0.485965 + 0.873978i $$0.661532\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −3.00000 −0.180907
$$276$$ 0 0
$$277$$ −22.0000 −1.32185 −0.660926 0.750451i $$-0.729836\pi$$
−0.660926 + 0.750451i $$0.729836\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 21.0000 1.25275 0.626377 0.779520i $$-0.284537\pi$$
0.626377 + 0.779520i $$0.284537\pi$$
$$282$$ 0 0
$$283$$ 11.0000 0.653882 0.326941 0.945045i $$-0.393982\pi$$
0.326941 + 0.945045i $$0.393982\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −8.00000 −0.470588
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 15.0000 0.876309 0.438155 0.898900i $$-0.355632\pi$$
0.438155 + 0.898900i $$0.355632\pi$$
$$294$$ 0 0
$$295$$ 12.0000 0.698667
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −6.00000 −0.346989
$$300$$ 0 0
$$301$$ 2.00000 0.115278
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −8.00000 −0.458079
$$306$$ 0 0
$$307$$ −13.0000 −0.741949 −0.370975 0.928643i $$-0.620976\pi$$
−0.370975 + 0.928643i $$0.620976\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −18.0000 −1.02069 −0.510343 0.859971i $$-0.670482\pi$$
−0.510343 + 0.859971i $$0.670482\pi$$
$$312$$ 0 0
$$313$$ −13.0000 −0.734803 −0.367402 0.930062i $$-0.619753\pi$$
−0.367402 + 0.930062i $$0.619753\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 18.0000 1.01098 0.505490 0.862832i $$-0.331312\pi$$
0.505490 + 0.862832i $$0.331312\pi$$
$$318$$ 0 0
$$319$$ −27.0000 −1.51171
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 6.00000 0.333849
$$324$$ 0 0
$$325$$ −1.00000 −0.0554700
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 3.00000 0.165395
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ 2.00000 0.108947 0.0544735 0.998515i $$-0.482652\pi$$
0.0544735 + 0.998515i $$0.482652\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −24.0000 −1.29967
$$342$$ 0 0
$$343$$ 1.00000 0.0539949
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −30.0000 −1.61048 −0.805242 0.592946i $$-0.797965\pi$$
−0.805242 + 0.592946i $$0.797965\pi$$
$$348$$ 0 0
$$349$$ −10.0000 −0.535288 −0.267644 0.963518i $$-0.586245\pi$$
−0.267644 + 0.963518i $$0.586245\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 15.0000 0.798369 0.399185 0.916871i $$-0.369293\pi$$
0.399185 + 0.916871i $$0.369293\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −15.0000 −0.789474
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −14.0000 −0.732793
$$366$$ 0 0
$$367$$ 5.00000 0.260998 0.130499 0.991448i $$-0.458342\pi$$
0.130499 + 0.991448i $$0.458342\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −4.00000 −0.207112 −0.103556 0.994624i $$-0.533022\pi$$
−0.103556 + 0.994624i $$0.533022\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −9.00000 −0.463524
$$378$$ 0 0
$$379$$ −4.00000 −0.205466 −0.102733 0.994709i $$-0.532759\pi$$
−0.102733 + 0.994709i $$0.532759\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −36.0000 −1.83951 −0.919757 0.392488i $$-0.871614\pi$$
−0.919757 + 0.392488i $$0.871614\pi$$
$$384$$ 0 0
$$385$$ 3.00000 0.152894
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −9.00000 −0.456318 −0.228159 0.973624i $$-0.573271\pi$$
−0.228159 + 0.973624i $$0.573271\pi$$
$$390$$ 0 0
$$391$$ 18.0000 0.910299
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −5.00000 −0.251577
$$396$$ 0 0
$$397$$ 5.00000 0.250943 0.125471 0.992097i $$-0.459956\pi$$
0.125471 + 0.992097i $$0.459956\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 15.0000 0.749064 0.374532 0.927214i $$-0.377803\pi$$
0.374532 + 0.927214i $$0.377803\pi$$
$$402$$ 0 0
$$403$$ −8.00000 −0.398508
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 30.0000 1.48704
$$408$$ 0 0
$$409$$ 26.0000 1.28562 0.642809 0.766027i $$-0.277769\pi$$
0.642809 + 0.766027i $$0.277769\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −12.0000 −0.590481
$$414$$ 0 0
$$415$$ −12.0000 −0.589057
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 24.0000 1.17248 0.586238 0.810139i $$-0.300608\pi$$
0.586238 + 0.810139i $$0.300608\pi$$
$$420$$ 0 0
$$421$$ 29.0000 1.41337 0.706687 0.707527i $$-0.250189\pi$$
0.706687 + 0.707527i $$0.250189\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 3.00000 0.145521
$$426$$ 0 0
$$427$$ 8.00000 0.387147
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −15.0000 −0.722525 −0.361262 0.932464i $$-0.617654\pi$$
−0.361262 + 0.932464i $$0.617654\pi$$
$$432$$ 0 0
$$433$$ 14.0000 0.672797 0.336399 0.941720i $$-0.390791\pi$$
0.336399 + 0.941720i $$0.390791\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 12.0000 0.574038
$$438$$ 0 0
$$439$$ −10.0000 −0.477274 −0.238637 0.971109i $$-0.576701\pi$$
−0.238637 + 0.971109i $$0.576701\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 6.00000 0.285069 0.142534 0.989790i $$-0.454475\pi$$
0.142534 + 0.989790i $$0.454475\pi$$
$$444$$ 0 0
$$445$$ 12.0000 0.568855
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −15.0000 −0.707894 −0.353947 0.935266i $$-0.615161\pi$$
−0.353947 + 0.935266i $$0.615161\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 1.00000 0.0468807
$$456$$ 0 0
$$457$$ −28.0000 −1.30978 −0.654892 0.755722i $$-0.727286\pi$$
−0.654892 + 0.755722i $$0.727286\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −15.0000 −0.694117 −0.347059 0.937843i $$-0.612820\pi$$
−0.347059 + 0.937843i $$0.612820\pi$$
$$468$$ 0 0
$$469$$ 8.00000 0.369406
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −6.00000 −0.275880
$$474$$ 0 0
$$475$$ 2.00000 0.0917663
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −6.00000 −0.274147 −0.137073 0.990561i $$-0.543770\pi$$
−0.137073 + 0.990561i $$0.543770\pi$$
$$480$$ 0 0
$$481$$ 10.0000 0.455961
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −17.0000 −0.771930
$$486$$ 0 0
$$487$$ −10.0000 −0.453143 −0.226572 0.973995i $$-0.572752\pi$$
−0.226572 + 0.973995i $$0.572752\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 15.0000 0.676941 0.338470 0.940977i $$-0.390091\pi$$
0.338470 + 0.940977i $$0.390091\pi$$
$$492$$ 0 0
$$493$$ 27.0000 1.21602
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −25.0000 −1.11915 −0.559577 0.828778i $$-0.689036\pi$$
−0.559577 + 0.828778i $$0.689036\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 33.0000 1.47140 0.735699 0.677309i $$-0.236854\pi$$
0.735699 + 0.677309i $$0.236854\pi$$
$$504$$ 0 0
$$505$$ −6.00000 −0.266996
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −18.0000 −0.797836 −0.398918 0.916987i $$-0.630614\pi$$
−0.398918 + 0.916987i $$0.630614\pi$$
$$510$$ 0 0
$$511$$ 14.0000 0.619324
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 7.00000 0.308457
$$516$$ 0 0
$$517$$ −9.00000 −0.395820
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 30.0000 1.31432 0.657162 0.753749i $$-0.271757\pi$$
0.657162 + 0.753749i $$0.271757\pi$$
$$522$$ 0 0
$$523$$ 20.0000 0.874539 0.437269 0.899331i $$-0.355946\pi$$
0.437269 + 0.899331i $$0.355946\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 24.0000 1.04546
$$528$$ 0 0
$$529$$ 13.0000 0.565217
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −6.00000 −0.259403
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −3.00000 −0.129219
$$540$$ 0 0
$$541$$ −25.0000 −1.07483 −0.537417 0.843317i $$-0.680600\pi$$
−0.537417 + 0.843317i $$0.680600\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 19.0000 0.813871
$$546$$ 0 0
$$547$$ 8.00000 0.342055 0.171028 0.985266i $$-0.445291\pi$$
0.171028 + 0.985266i $$0.445291\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 18.0000 0.766826
$$552$$ 0 0
$$553$$ 5.00000 0.212622
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$558$$ 0 0
$$559$$ −2.00000 −0.0845910
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 12.0000 0.505740 0.252870 0.967500i $$-0.418626\pi$$
0.252870 + 0.967500i $$0.418626\pi$$
$$564$$ 0 0
$$565$$ −6.00000 −0.252422
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 6.00000 0.251533 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$570$$ 0 0
$$571$$ −4.00000 −0.167395 −0.0836974 0.996491i $$-0.526673\pi$$
−0.0836974 + 0.996491i $$0.526673\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 6.00000 0.250217
$$576$$ 0 0
$$577$$ 47.0000 1.95664 0.978318 0.207109i $$-0.0664056\pi$$
0.978318 + 0.207109i $$0.0664056\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 12.0000 0.497844
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 24.0000 0.990586 0.495293 0.868726i $$-0.335061\pi$$
0.495293 + 0.868726i $$0.335061\pi$$
$$588$$ 0 0
$$589$$ 16.0000 0.659269
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 33.0000 1.35515 0.677574 0.735455i $$-0.263031\pi$$
0.677574 + 0.735455i $$0.263031\pi$$
$$594$$ 0 0
$$595$$ −3.00000 −0.122988
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 9.00000 0.367730 0.183865 0.982952i $$-0.441139\pi$$
0.183865 + 0.982952i $$0.441139\pi$$
$$600$$ 0 0
$$601$$ −22.0000 −0.897399 −0.448699 0.893683i $$-0.648113\pi$$
−0.448699 + 0.893683i $$0.648113\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 2.00000 0.0813116
$$606$$ 0 0
$$607$$ −1.00000 −0.0405887 −0.0202944 0.999794i $$-0.506460\pi$$
−0.0202944 + 0.999794i $$0.506460\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −3.00000 −0.121367
$$612$$ 0 0
$$613$$ 2.00000 0.0807792 0.0403896 0.999184i $$-0.487140\pi$$
0.0403896 + 0.999184i $$0.487140\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −30.0000 −1.20775 −0.603877 0.797077i $$-0.706378\pi$$
−0.603877 + 0.797077i $$0.706378\pi$$
$$618$$ 0 0
$$619$$ −10.0000 −0.401934 −0.200967 0.979598i $$-0.564408\pi$$
−0.200967 + 0.979598i $$0.564408\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −12.0000 −0.480770
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −30.0000 −1.19618
$$630$$ 0 0
$$631$$ −25.0000 −0.995234 −0.497617 0.867397i $$-0.665792\pi$$
−0.497617 + 0.867397i $$0.665792\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −20.0000 −0.793676
$$636$$ 0 0
$$637$$ −1.00000 −0.0396214
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 30.0000 1.18493 0.592464 0.805597i $$-0.298155\pi$$
0.592464 + 0.805597i $$0.298155\pi$$
$$642$$ 0 0
$$643$$ 41.0000 1.61688 0.808441 0.588577i $$-0.200312\pi$$
0.808441 + 0.588577i $$0.200312\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −48.0000 −1.88707 −0.943537 0.331266i $$-0.892524\pi$$
−0.943537 + 0.331266i $$0.892524\pi$$
$$648$$ 0 0
$$649$$ 36.0000 1.41312
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000 0.234798 0.117399 0.993085i $$-0.462544\pi$$
0.117399 + 0.993085i $$0.462544\pi$$
$$654$$ 0 0
$$655$$ −18.0000 −0.703318
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 33.0000 1.28550 0.642749 0.766077i $$-0.277794\pi$$
0.642749 + 0.766077i $$0.277794\pi$$
$$660$$ 0 0
$$661$$ 8.00000 0.311164 0.155582 0.987823i $$-0.450275\pi$$
0.155582 + 0.987823i $$0.450275\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −2.00000 −0.0775567
$$666$$ 0 0
$$667$$ 54.0000 2.09089
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −24.0000 −0.926510
$$672$$ 0 0
$$673$$ 20.0000 0.770943 0.385472 0.922720i $$-0.374039\pi$$
0.385472 + 0.922720i $$0.374039\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −15.0000 −0.576497 −0.288248 0.957556i $$-0.593073\pi$$
−0.288248 + 0.957556i $$0.593073\pi$$
$$678$$ 0 0
$$679$$ 17.0000 0.652400
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −24.0000 −0.918334 −0.459167 0.888350i $$-0.651852\pi$$
−0.459167 + 0.888350i $$0.651852\pi$$
$$684$$ 0 0
$$685$$ 12.0000 0.458496
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −28.0000 −1.06517 −0.532585 0.846376i $$-0.678779\pi$$
−0.532585 + 0.846376i $$0.678779\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −2.00000 −0.0758643
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −3.00000 −0.113308 −0.0566542 0.998394i $$-0.518043\pi$$
−0.0566542 + 0.998394i $$0.518043\pi$$
$$702$$ 0 0
$$703$$ −20.0000 −0.754314
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 6.00000 0.225653
$$708$$ 0 0
$$709$$ −1.00000 −0.0375558 −0.0187779 0.999824i $$-0.505978\pi$$
−0.0187779 + 0.999824i $$0.505978\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 48.0000 1.79761
$$714$$ 0 0
$$715$$ −3.00000 −0.112194
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 18.0000 0.671287 0.335643 0.941989i $$-0.391046\pi$$
0.335643 + 0.941989i $$0.391046\pi$$
$$720$$ 0 0
$$721$$ −7.00000 −0.260694
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 9.00000 0.334252
$$726$$ 0 0
$$727$$ 32.0000 1.18681 0.593407 0.804902i $$-0.297782\pi$$
0.593407 + 0.804902i $$0.297782\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 6.00000 0.221918
$$732$$ 0 0
$$733$$ −13.0000 −0.480166 −0.240083 0.970752i $$-0.577175\pi$$
−0.240083 + 0.970752i $$0.577175\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −24.0000 −0.884051
$$738$$ 0 0
$$739$$ 11.0000 0.404642 0.202321 0.979319i $$-0.435152\pi$$
0.202321 + 0.979319i $$0.435152\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −48.0000 −1.76095 −0.880475 0.474093i $$-0.842776\pi$$
−0.880475 + 0.474093i $$0.842776\pi$$
$$744$$ 0 0
$$745$$ 18.0000 0.659469
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 6.00000 0.219235
$$750$$ 0 0
$$751$$ 53.0000 1.93400 0.966999 0.254781i $$-0.0820034\pi$$
0.966999 + 0.254781i $$0.0820034\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 19.0000 0.691481
$$756$$ 0 0
$$757$$ −16.0000 −0.581530 −0.290765 0.956795i $$-0.593910\pi$$
−0.290765 + 0.956795i $$0.593910\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 42.0000 1.52250 0.761249 0.648459i $$-0.224586\pi$$
0.761249 + 0.648459i $$0.224586\pi$$
$$762$$ 0 0
$$763$$ −19.0000 −0.687846
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 12.0000 0.433295
$$768$$ 0 0
$$769$$ 2.00000 0.0721218 0.0360609 0.999350i $$-0.488519\pi$$
0.0360609 + 0.999350i $$0.488519\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −15.0000 −0.539513 −0.269756 0.962929i $$-0.586943\pi$$
−0.269756 + 0.962929i $$0.586943\pi$$
$$774$$ 0 0
$$775$$ 8.00000 0.287368
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 22.0000 0.785214
$$786$$ 0 0
$$787$$ 5.00000 0.178231 0.0891154 0.996021i $$-0.471596\pi$$
0.0891154 + 0.996021i $$0.471596\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 6.00000 0.213335
$$792$$ 0 0
$$793$$ −8.00000 −0.284088
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 3.00000 0.106265 0.0531327 0.998587i $$-0.483079\pi$$
0.0531327 + 0.998587i $$0.483079\pi$$
$$798$$ 0 0
$$799$$ 9.00000 0.318397
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −42.0000 −1.48215
$$804$$ 0 0
$$805$$ −6.00000 −0.211472
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −9.00000 −0.316423 −0.158212 0.987405i $$-0.550573\pi$$
−0.158212 + 0.987405i $$0.550573\pi$$
$$810$$ 0 0
$$811$$ −34.0000 −1.19390 −0.596951 0.802278i $$-0.703621\pi$$
−0.596951 + 0.802278i $$0.703621\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −2.00000 −0.0700569
$$816$$ 0 0
$$817$$ 4.00000 0.139942
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 15.0000 0.523504 0.261752 0.965135i $$-0.415700\pi$$
0.261752 + 0.965135i $$0.415700\pi$$
$$822$$ 0 0
$$823$$ −40.0000 −1.39431 −0.697156 0.716919i $$-0.745552\pi$$
−0.697156 + 0.716919i $$0.745552\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 42.0000 1.46048 0.730242 0.683189i $$-0.239408\pi$$
0.730242 + 0.683189i $$0.239408\pi$$
$$828$$ 0 0
$$829$$ −40.0000 −1.38926 −0.694629 0.719368i $$-0.744431\pi$$
−0.694629 + 0.719368i $$0.744431\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 3.00000 0.103944
$$834$$ 0 0
$$835$$ 9.00000 0.311458
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ −18.0000 −0.621429 −0.310715 0.950503i $$-0.600568\pi$$
−0.310715 + 0.950503i $$0.600568\pi$$
$$840$$ 0 0
$$841$$ 52.0000 1.79310
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 12.0000 0.412813
$$846$$ 0 0
$$847$$ −2.00000 −0.0687208
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −60.0000 −2.05677
$$852$$ 0 0
$$853$$ −22.0000 −0.753266 −0.376633 0.926363i $$-0.622918\pi$$
−0.376633 + 0.926363i $$0.622918\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −6.00000 −0.204956 −0.102478 0.994735i $$-0.532677\pi$$
−0.102478 + 0.994735i $$0.532677\pi$$
$$858$$ 0 0
$$859$$ −4.00000 −0.136478 −0.0682391 0.997669i $$-0.521738\pi$$
−0.0682391 + 0.997669i $$0.521738\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −12.0000 −0.408485 −0.204242 0.978920i $$-0.565473\pi$$
−0.204242 + 0.978920i $$0.565473\pi$$
$$864$$ 0 0
$$865$$ −3.00000 −0.102003
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −15.0000 −0.508840
$$870$$ 0 0
$$871$$ −8.00000 −0.271070
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ −1.00000 −0.0338062
$$876$$ 0 0
$$877$$ −22.0000 −0.742887 −0.371444 0.928456i $$-0.621137\pi$$
−0.371444 + 0.928456i $$0.621137\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −48.0000 −1.61716 −0.808581 0.588386i $$-0.799764\pi$$
−0.808581 + 0.588386i $$0.799764\pi$$
$$882$$ 0 0
$$883$$ 20.0000 0.673054 0.336527 0.941674i $$-0.390748\pi$$
0.336527 + 0.941674i $$0.390748\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 48.0000 1.61168 0.805841 0.592132i $$-0.201714\pi$$
0.805841 + 0.592132i $$0.201714\pi$$
$$888$$ 0 0
$$889$$ 20.0000 0.670778
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 6.00000 0.200782
$$894$$ 0 0
$$895$$ 12.0000 0.401116
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 72.0000 2.40133
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −8.00000 −0.265929
$$906$$ 0 0
$$907$$ −22.0000 −0.730498 −0.365249 0.930910i $$-0.619016\pi$$
−0.365249 + 0.930910i $$0.619016\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ −36.0000 −1.19143
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 18.0000 0.594412
$$918$$ 0 0
$$919$$ 41.0000 1.35247 0.676233 0.736688i $$-0.263611\pi$$
0.676233 + 0.736688i $$0.263611\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −10.0000 −0.328798
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 24.0000 0.787414 0.393707 0.919236i $$-0.371192\pi$$
0.393707 + 0.919236i $$0.371192\pi$$
$$930$$ 0 0
$$931$$ 2.00000 0.0655474
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 9.00000 0.294331
$$936$$ 0 0
$$937$$ −7.00000 −0.228680 −0.114340 0.993442i $$-0.536475\pi$$
−0.114340 + 0.993442i $$0.536475\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −36.0000 −1.16984 −0.584921 0.811090i $$-0.698875\pi$$
−0.584921 + 0.811090i $$0.698875\pi$$
$$948$$ 0 0
$$949$$ −14.0000 −0.454459
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −36.0000 −1.16615 −0.583077 0.812417i $$-0.698151\pi$$
−0.583077 + 0.812417i $$0.698151\pi$$
$$954$$ 0 0
$$955$$ 3.00000 0.0970777
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −12.0000 −0.387500
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 4.00000 0.128765
$$966$$ 0 0
$$967$$ −34.0000 −1.09337 −0.546683 0.837340i $$-0.684110\pi$$
−0.546683 + 0.837340i $$0.684110\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 0 0
$$973$$ 2.00000 0.0641171
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 18.0000 0.575871 0.287936 0.957650i $$-0.407031\pi$$
0.287936 + 0.957650i $$0.407031\pi$$
$$978$$ 0 0
$$979$$ 36.0000 1.15056
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 33.0000 1.05254 0.526268 0.850319i $$-0.323591\pi$$
0.526268 + 0.850319i $$0.323591\pi$$
$$984$$ 0 0
$$985$$ 12.0000 0.382352
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 12.0000 0.381578
$$990$$ 0 0
$$991$$ −16.0000 −0.508257 −0.254128 0.967170i $$-0.581789\pi$$
−0.254128 + 0.967170i $$0.581789\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −20.0000 −0.634043
$$996$$ 0 0
$$997$$ 17.0000 0.538395 0.269198 0.963085i $$-0.413241\pi$$
0.269198 + 0.963085i $$0.413241\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.a.c.1.1 1
3.2 odd 2 140.2.a.a.1.1 1
4.3 odd 2 5040.2.a.h.1.1 1
5.2 odd 4 6300.2.k.c.6049.2 2
5.3 odd 4 6300.2.k.c.6049.1 2
5.4 even 2 6300.2.a.d.1.1 1
7.6 odd 2 8820.2.a.r.1.1 1
12.11 even 2 560.2.a.c.1.1 1
15.2 even 4 700.2.e.c.449.1 2
15.8 even 4 700.2.e.c.449.2 2
15.14 odd 2 700.2.a.d.1.1 1
21.2 odd 6 980.2.i.d.361.1 2
21.5 even 6 980.2.i.h.361.1 2
21.11 odd 6 980.2.i.d.961.1 2
21.17 even 6 980.2.i.h.961.1 2
21.20 even 2 980.2.a.c.1.1 1
24.5 odd 2 2240.2.a.g.1.1 1
24.11 even 2 2240.2.a.r.1.1 1
60.23 odd 4 2800.2.g.j.449.1 2
60.47 odd 4 2800.2.g.j.449.2 2
60.59 even 2 2800.2.a.y.1.1 1
84.83 odd 2 3920.2.a.u.1.1 1
105.62 odd 4 4900.2.e.l.2549.2 2
105.83 odd 4 4900.2.e.l.2549.1 2
105.104 even 2 4900.2.a.p.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.a.a.1.1 1 3.2 odd 2
560.2.a.c.1.1 1 12.11 even 2
700.2.a.d.1.1 1 15.14 odd 2
700.2.e.c.449.1 2 15.2 even 4
700.2.e.c.449.2 2 15.8 even 4
980.2.a.c.1.1 1 21.20 even 2
980.2.i.d.361.1 2 21.2 odd 6
980.2.i.d.961.1 2 21.11 odd 6
980.2.i.h.361.1 2 21.5 even 6
980.2.i.h.961.1 2 21.17 even 6
1260.2.a.c.1.1 1 1.1 even 1 trivial
2240.2.a.g.1.1 1 24.5 odd 2
2240.2.a.r.1.1 1 24.11 even 2
2800.2.a.y.1.1 1 60.59 even 2
2800.2.g.j.449.1 2 60.23 odd 4
2800.2.g.j.449.2 2 60.47 odd 4
3920.2.a.u.1.1 1 84.83 odd 2
4900.2.a.p.1.1 1 105.104 even 2
4900.2.e.l.2549.1 2 105.83 odd 4
4900.2.e.l.2549.2 2 105.62 odd 4
5040.2.a.h.1.1 1 4.3 odd 2
6300.2.a.d.1.1 1 5.4 even 2
6300.2.k.c.6049.1 2 5.3 odd 4
6300.2.k.c.6049.2 2 5.2 odd 4
8820.2.a.r.1.1 1 7.6 odd 2