Newspace parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.eb (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.628821915918\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{12})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(S_{4}\) |
Projective field: | Galois closure of 4.2.1134000.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).
\(n\) | \(281\) | \(631\) | \(757\) | \(1081\) |
\(\chi(n)\) | \(\zeta_{24}^{8}\) | \(-1\) | \(-\zeta_{24}^{6}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
223.1 |
|
0.866025 | + | 0.500000i | −0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | −0.965926 | − | 0.258819i | −0.258819 | − | 0.965926i | 0.258819 | + | 0.965926i | 1.00000i | 1.00000i | −0.707107 | − | 0.707107i | ||||||||||||||||||||||||||||
223.2 | 0.866025 | + | 0.500000i | 0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | 0.965926 | + | 0.258819i | 0.258819 | + | 0.965926i | −0.258819 | − | 0.965926i | 1.00000i | 1.00000i | 0.707107 | + | 0.707107i | |||||||||||||||||||||||||||||
643.1 | −0.866025 | + | 0.500000i | −0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | 0.258819 | + | 0.965926i | 0.965926 | + | 0.258819i | −0.965926 | − | 0.258819i | 1.00000i | 1.00000i | −0.707107 | − | 0.707107i | |||||||||||||||||||||||||||||
643.2 | −0.866025 | + | 0.500000i | 0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | −0.258819 | − | 0.965926i | −0.965926 | − | 0.258819i | 0.965926 | + | 0.258819i | 1.00000i | 1.00000i | 0.707107 | + | 0.707107i | |||||||||||||||||||||||||||||
727.1 | −0.866025 | − | 0.500000i | −0.707107 | + | 0.707107i | 0.500000 | + | 0.866025i | 0.258819 | − | 0.965926i | 0.965926 | − | 0.258819i | −0.965926 | + | 0.258819i | − | 1.00000i | − | 1.00000i | −0.707107 | + | 0.707107i | |||||||||||||||||||||||||||
727.2 | −0.866025 | − | 0.500000i | 0.707107 | − | 0.707107i | 0.500000 | + | 0.866025i | −0.258819 | + | 0.965926i | −0.965926 | + | 0.258819i | 0.965926 | − | 0.258819i | − | 1.00000i | − | 1.00000i | 0.707107 | − | 0.707107i | |||||||||||||||||||||||||||
1147.1 | 0.866025 | − | 0.500000i | −0.707107 | + | 0.707107i | 0.500000 | − | 0.866025i | −0.965926 | + | 0.258819i | −0.258819 | + | 0.965926i | 0.258819 | − | 0.965926i | − | 1.00000i | − | 1.00000i | −0.707107 | + | 0.707107i | |||||||||||||||||||||||||||
1147.2 | 0.866025 | − | 0.500000i | 0.707107 | − | 0.707107i | 0.500000 | − | 0.866025i | 0.965926 | − | 0.258819i | 0.258819 | − | 0.965926i | −0.258819 | + | 0.965926i | − | 1.00000i | − | 1.00000i | 0.707107 | − | 0.707107i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
20.e | even | 4 | 1 | inner |
63.l | odd | 6 | 1 | inner |
140.j | odd | 4 | 1 | inner |
180.x | even | 12 | 1 | inner |
1260.eb | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.1.eb.b | yes | 8 |
3.b | odd | 2 | 1 | 3780.1.ee.a | 8 | ||
4.b | odd | 2 | 1 | 1260.1.eb.a | ✓ | 8 | |
5.c | odd | 4 | 1 | 1260.1.eb.a | ✓ | 8 | |
7.b | odd | 2 | 1 | inner | 1260.1.eb.b | yes | 8 |
9.c | even | 3 | 1 | inner | 1260.1.eb.b | yes | 8 |
9.d | odd | 6 | 1 | 3780.1.ee.a | 8 | ||
12.b | even | 2 | 1 | 3780.1.ee.b | 8 | ||
15.e | even | 4 | 1 | 3780.1.ee.b | 8 | ||
20.e | even | 4 | 1 | inner | 1260.1.eb.b | yes | 8 |
21.c | even | 2 | 1 | 3780.1.ee.a | 8 | ||
28.d | even | 2 | 1 | 1260.1.eb.a | ✓ | 8 | |
35.f | even | 4 | 1 | 1260.1.eb.a | ✓ | 8 | |
36.f | odd | 6 | 1 | 1260.1.eb.a | ✓ | 8 | |
36.h | even | 6 | 1 | 3780.1.ee.b | 8 | ||
45.k | odd | 12 | 1 | 1260.1.eb.a | ✓ | 8 | |
45.l | even | 12 | 1 | 3780.1.ee.b | 8 | ||
60.l | odd | 4 | 1 | 3780.1.ee.a | 8 | ||
63.l | odd | 6 | 1 | inner | 1260.1.eb.b | yes | 8 |
63.o | even | 6 | 1 | 3780.1.ee.a | 8 | ||
84.h | odd | 2 | 1 | 3780.1.ee.b | 8 | ||
105.k | odd | 4 | 1 | 3780.1.ee.b | 8 | ||
140.j | odd | 4 | 1 | inner | 1260.1.eb.b | yes | 8 |
180.v | odd | 12 | 1 | 3780.1.ee.a | 8 | ||
180.x | even | 12 | 1 | inner | 1260.1.eb.b | yes | 8 |
252.s | odd | 6 | 1 | 3780.1.ee.b | 8 | ||
252.bi | even | 6 | 1 | 1260.1.eb.a | ✓ | 8 | |
315.cb | even | 12 | 1 | 1260.1.eb.a | ✓ | 8 | |
315.cf | odd | 12 | 1 | 3780.1.ee.b | 8 | ||
420.w | even | 4 | 1 | 3780.1.ee.a | 8 | ||
1260.do | even | 12 | 1 | 3780.1.ee.a | 8 | ||
1260.eb | odd | 12 | 1 | inner | 1260.1.eb.b | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.1.eb.a | ✓ | 8 | 4.b | odd | 2 | 1 | |
1260.1.eb.a | ✓ | 8 | 5.c | odd | 4 | 1 | |
1260.1.eb.a | ✓ | 8 | 28.d | even | 2 | 1 | |
1260.1.eb.a | ✓ | 8 | 35.f | even | 4 | 1 | |
1260.1.eb.a | ✓ | 8 | 36.f | odd | 6 | 1 | |
1260.1.eb.a | ✓ | 8 | 45.k | odd | 12 | 1 | |
1260.1.eb.a | ✓ | 8 | 252.bi | even | 6 | 1 | |
1260.1.eb.a | ✓ | 8 | 315.cb | even | 12 | 1 | |
1260.1.eb.b | yes | 8 | 1.a | even | 1 | 1 | trivial |
1260.1.eb.b | yes | 8 | 7.b | odd | 2 | 1 | inner |
1260.1.eb.b | yes | 8 | 9.c | even | 3 | 1 | inner |
1260.1.eb.b | yes | 8 | 20.e | even | 4 | 1 | inner |
1260.1.eb.b | yes | 8 | 63.l | odd | 6 | 1 | inner |
1260.1.eb.b | yes | 8 | 140.j | odd | 4 | 1 | inner |
1260.1.eb.b | yes | 8 | 180.x | even | 12 | 1 | inner |
1260.1.eb.b | yes | 8 | 1260.eb | odd | 12 | 1 | inner |
3780.1.ee.a | 8 | 3.b | odd | 2 | 1 | ||
3780.1.ee.a | 8 | 9.d | odd | 6 | 1 | ||
3780.1.ee.a | 8 | 21.c | even | 2 | 1 | ||
3780.1.ee.a | 8 | 60.l | odd | 4 | 1 | ||
3780.1.ee.a | 8 | 63.o | even | 6 | 1 | ||
3780.1.ee.a | 8 | 180.v | odd | 12 | 1 | ||
3780.1.ee.a | 8 | 420.w | even | 4 | 1 | ||
3780.1.ee.a | 8 | 1260.do | even | 12 | 1 | ||
3780.1.ee.b | 8 | 12.b | even | 2 | 1 | ||
3780.1.ee.b | 8 | 15.e | even | 4 | 1 | ||
3780.1.ee.b | 8 | 36.h | even | 6 | 1 | ||
3780.1.ee.b | 8 | 45.l | even | 12 | 1 | ||
3780.1.ee.b | 8 | 84.h | odd | 2 | 1 | ||
3780.1.ee.b | 8 | 105.k | odd | 4 | 1 | ||
3780.1.ee.b | 8 | 252.s | odd | 6 | 1 | ||
3780.1.ee.b | 8 | 315.cf | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{43}^{4} - 2T_{43}^{3} + 2T_{43}^{2} - 4T_{43} + 4 \)
acting on \(S_{1}^{\mathrm{new}}(1260, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{2} \)
$3$
\( (T^{4} + 1)^{2} \)
$5$
\( T^{8} - T^{4} + 1 \)
$7$
\( T^{8} - T^{4} + 1 \)
$11$
\( (T^{4} - T^{2} + 1)^{2} \)
$13$
\( T^{8} - T^{4} + 1 \)
$17$
\( (T^{4} + 1)^{2} \)
$19$
\( (T^{2} + 2)^{4} \)
$23$
\( T^{8} \)
$29$
\( T^{8} \)
$31$
\( T^{8} \)
$37$
\( T^{8} \)
$41$
\( T^{8} \)
$43$
\( (T^{4} - 2 T^{3} + 2 T^{2} - 4 T + 4)^{2} \)
$47$
\( T^{8} - T^{4} + 1 \)
$53$
\( (T^{2} - 2 T + 2)^{4} \)
$59$
\( T^{8} \)
$61$
\( (T^{4} - 2 T^{2} + 4)^{2} \)
$67$
\( T^{8} \)
$71$
\( (T^{2} + 1)^{4} \)
$73$
\( (T^{4} + 1)^{2} \)
$79$
\( (T^{2} + T + 1)^{4} \)
$83$
\( T^{8} - T^{4} + 1 \)
$89$
\( T^{8} \)
$97$
\( T^{8} - T^{4} + 1 \)
show more
show less