Newspace parameters
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.de (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.628821915918\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{6}\) |
Projective field: | Galois closure of 6.2.661624362000.11 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).
\(n\) | \(281\) | \(631\) | \(757\) | \(1081\) |
\(\chi(n)\) | \(\zeta_{12}^{2}\) | \(-1\) | \(-1\) | \(-\zeta_{12}^{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 |
|
−0.866025 | − | 0.500000i | −0.866025 | − | 0.500000i | 0.500000 | + | 0.866025i | −1.00000 | 0.500000 | + | 0.866025i | 0.866025 | − | 0.500000i | − | 1.00000i | 0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | |||||||||||||||
59.2 | 0.866025 | + | 0.500000i | 0.866025 | + | 0.500000i | 0.500000 | + | 0.866025i | −1.00000 | 0.500000 | + | 0.866025i | −0.866025 | + | 0.500000i | 1.00000i | 0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | |||||||||||||||||
299.1 | −0.866025 | + | 0.500000i | −0.866025 | + | 0.500000i | 0.500000 | − | 0.866025i | −1.00000 | 0.500000 | − | 0.866025i | 0.866025 | + | 0.500000i | 1.00000i | 0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | |||||||||||||||||
299.2 | 0.866025 | − | 0.500000i | 0.866025 | − | 0.500000i | 0.500000 | − | 0.866025i | −1.00000 | 0.500000 | − | 0.866025i | −0.866025 | − | 0.500000i | − | 1.00000i | 0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | ||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-5}) \) |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
63.s | even | 6 | 1 | inner |
252.bn | odd | 6 | 1 | inner |
315.u | even | 6 | 1 | inner |
1260.de | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.1.de.a | yes | 4 |
3.b | odd | 2 | 1 | 3780.1.de.b | 4 | ||
4.b | odd | 2 | 1 | inner | 1260.1.de.a | yes | 4 |
5.b | even | 2 | 1 | inner | 1260.1.de.a | yes | 4 |
7.d | odd | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
9.c | even | 3 | 1 | 3780.1.br.b | 4 | ||
9.d | odd | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
12.b | even | 2 | 1 | 3780.1.de.b | 4 | ||
15.d | odd | 2 | 1 | 3780.1.de.b | 4 | ||
20.d | odd | 2 | 1 | CM | 1260.1.de.a | yes | 4 |
21.g | even | 6 | 1 | 3780.1.br.b | 4 | ||
28.f | even | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
35.i | odd | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
36.f | odd | 6 | 1 | 3780.1.br.b | 4 | ||
36.h | even | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
45.h | odd | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
45.j | even | 6 | 1 | 3780.1.br.b | 4 | ||
60.h | even | 2 | 1 | 3780.1.de.b | 4 | ||
63.k | odd | 6 | 1 | 3780.1.de.b | 4 | ||
63.s | even | 6 | 1 | inner | 1260.1.de.a | yes | 4 |
84.j | odd | 6 | 1 | 3780.1.br.b | 4 | ||
105.p | even | 6 | 1 | 3780.1.br.b | 4 | ||
140.s | even | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
180.n | even | 6 | 1 | 1260.1.br.a | ✓ | 4 | |
180.p | odd | 6 | 1 | 3780.1.br.b | 4 | ||
252.n | even | 6 | 1 | 3780.1.de.b | 4 | ||
252.bn | odd | 6 | 1 | inner | 1260.1.de.a | yes | 4 |
315.u | even | 6 | 1 | inner | 1260.1.de.a | yes | 4 |
315.bn | odd | 6 | 1 | 3780.1.de.b | 4 | ||
420.be | odd | 6 | 1 | 3780.1.br.b | 4 | ||
1260.bc | even | 6 | 1 | 3780.1.de.b | 4 | ||
1260.de | odd | 6 | 1 | inner | 1260.1.de.a | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.1.br.a | ✓ | 4 | 7.d | odd | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 9.d | odd | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 28.f | even | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 35.i | odd | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 36.h | even | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 45.h | odd | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 140.s | even | 6 | 1 | |
1260.1.br.a | ✓ | 4 | 180.n | even | 6 | 1 | |
1260.1.de.a | yes | 4 | 1.a | even | 1 | 1 | trivial |
1260.1.de.a | yes | 4 | 4.b | odd | 2 | 1 | inner |
1260.1.de.a | yes | 4 | 5.b | even | 2 | 1 | inner |
1260.1.de.a | yes | 4 | 20.d | odd | 2 | 1 | CM |
1260.1.de.a | yes | 4 | 63.s | even | 6 | 1 | inner |
1260.1.de.a | yes | 4 | 252.bn | odd | 6 | 1 | inner |
1260.1.de.a | yes | 4 | 315.u | even | 6 | 1 | inner |
1260.1.de.a | yes | 4 | 1260.de | odd | 6 | 1 | inner |
3780.1.br.b | 4 | 9.c | even | 3 | 1 | ||
3780.1.br.b | 4 | 21.g | even | 6 | 1 | ||
3780.1.br.b | 4 | 36.f | odd | 6 | 1 | ||
3780.1.br.b | 4 | 45.j | even | 6 | 1 | ||
3780.1.br.b | 4 | 84.j | odd | 6 | 1 | ||
3780.1.br.b | 4 | 105.p | even | 6 | 1 | ||
3780.1.br.b | 4 | 180.p | odd | 6 | 1 | ||
3780.1.br.b | 4 | 420.be | odd | 6 | 1 | ||
3780.1.de.b | 4 | 3.b | odd | 2 | 1 | ||
3780.1.de.b | 4 | 12.b | even | 2 | 1 | ||
3780.1.de.b | 4 | 15.d | odd | 2 | 1 | ||
3780.1.de.b | 4 | 60.h | even | 2 | 1 | ||
3780.1.de.b | 4 | 63.k | odd | 6 | 1 | ||
3780.1.de.b | 4 | 252.n | even | 6 | 1 | ||
3780.1.de.b | 4 | 315.bn | odd | 6 | 1 | ||
3780.1.de.b | 4 | 1260.bc | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{23}^{2} + 4 \)
acting on \(S_{1}^{\mathrm{new}}(1260, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - T^{2} + 1 \)
$3$
\( T^{4} - T^{2} + 1 \)
$5$
\( (T + 1)^{4} \)
$7$
\( T^{4} - T^{2} + 1 \)
$11$
\( T^{4} \)
$13$
\( T^{4} \)
$17$
\( T^{4} \)
$19$
\( T^{4} \)
$23$
\( (T^{2} + 4)^{2} \)
$29$
\( (T^{2} - 3 T + 3)^{2} \)
$31$
\( T^{4} \)
$37$
\( T^{4} \)
$41$
\( (T^{2} - T + 1)^{2} \)
$43$
\( T^{4} + 3T^{2} + 9 \)
$47$
\( T^{4} + 3T^{2} + 9 \)
$53$
\( T^{4} \)
$59$
\( T^{4} \)
$61$
\( T^{4} \)
$67$
\( T^{4} \)
$71$
\( T^{4} \)
$73$
\( T^{4} \)
$79$
\( T^{4} \)
$83$
\( T^{4} + 3T^{2} + 9 \)
$89$
\( (T^{2} + 2 T + 4)^{2} \)
$97$
\( T^{4} \)
show more
show less