Properties

Label 1260.1.cw.a
Level $1260$
Weight $1$
Character orbit 1260.cw
Analytic conductor $0.629$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1260.cw (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.628821915918\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.79380.2
Artin image: $C_3\times C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{2} + \zeta_{6} q^{3} + q^{4} + \zeta_{6}^{2} q^{5} -\zeta_{6} q^{6} - q^{7} - q^{8} + \zeta_{6}^{2} q^{9} +O(q^{10})\) \( q - q^{2} + \zeta_{6} q^{3} + q^{4} + \zeta_{6}^{2} q^{5} -\zeta_{6} q^{6} - q^{7} - q^{8} + \zeta_{6}^{2} q^{9} -\zeta_{6}^{2} q^{10} + \zeta_{6} q^{12} + q^{14} - q^{15} + q^{16} -\zeta_{6}^{2} q^{18} + \zeta_{6}^{2} q^{20} -\zeta_{6} q^{21} + \zeta_{6}^{2} q^{23} -\zeta_{6} q^{24} -\zeta_{6} q^{25} - q^{27} - q^{28} + 2 \zeta_{6}^{2} q^{29} + q^{30} - q^{32} -\zeta_{6}^{2} q^{35} + \zeta_{6}^{2} q^{36} -\zeta_{6}^{2} q^{40} -2 \zeta_{6} q^{41} + \zeta_{6} q^{42} + \zeta_{6}^{2} q^{43} -\zeta_{6} q^{45} -\zeta_{6}^{2} q^{46} + q^{47} + \zeta_{6} q^{48} + q^{49} + \zeta_{6} q^{50} + q^{54} + q^{56} -2 \zeta_{6}^{2} q^{58} - q^{60} - q^{61} -\zeta_{6}^{2} q^{63} + q^{64} + q^{67} - q^{69} + \zeta_{6}^{2} q^{70} -\zeta_{6}^{2} q^{72} -\zeta_{6}^{2} q^{75} + \zeta_{6}^{2} q^{80} -\zeta_{6} q^{81} + 2 \zeta_{6} q^{82} -2 \zeta_{6}^{2} q^{83} -\zeta_{6} q^{84} -\zeta_{6}^{2} q^{86} -2 q^{87} + \zeta_{6} q^{89} + \zeta_{6} q^{90} + \zeta_{6}^{2} q^{92} - q^{94} -\zeta_{6} q^{96} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + q^{3} + 2q^{4} - q^{5} - q^{6} - 2q^{7} - 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + q^{3} + 2q^{4} - q^{5} - q^{6} - 2q^{7} - 2q^{8} - q^{9} + q^{10} + q^{12} + 2q^{14} - 2q^{15} + 2q^{16} + q^{18} - q^{20} - q^{21} - q^{23} - q^{24} - q^{25} - 2q^{27} - 2q^{28} - 2q^{29} + 2q^{30} - 2q^{32} + q^{35} - q^{36} + q^{40} - 2q^{41} + q^{42} - q^{43} - q^{45} + q^{46} + 2q^{47} + q^{48} + 2q^{49} + q^{50} + 2q^{54} + 2q^{56} + 2q^{58} - 2q^{60} - 2q^{61} + q^{63} + 2q^{64} + 2q^{67} - 2q^{69} - q^{70} + q^{72} + q^{75} - q^{80} - q^{81} + 2q^{82} + 2q^{83} - q^{84} + q^{86} - 4q^{87} + q^{89} + q^{90} - q^{92} - 2q^{94} - q^{96} - 2q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-\zeta_{6}\) \(-1\) \(-1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
499.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 0.500000 0.866025i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 0.866025i 0.500000 + 0.866025i
1159.1 −1.00000 0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
63.h even 3 1 inner
1260.cw odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1260.1.cw.a yes 2
3.b odd 2 1 3780.1.cw.c 2
4.b odd 2 1 1260.1.cw.d yes 2
5.b even 2 1 1260.1.cw.d yes 2
7.c even 3 1 1260.1.bj.c yes 2
9.c even 3 1 1260.1.bj.c yes 2
9.d odd 6 1 3780.1.bj.b 2
12.b even 2 1 3780.1.cw.b 2
15.d odd 2 1 3780.1.cw.b 2
20.d odd 2 1 CM 1260.1.cw.a yes 2
21.h odd 6 1 3780.1.bj.b 2
28.g odd 6 1 1260.1.bj.b 2
35.j even 6 1 1260.1.bj.b 2
36.f odd 6 1 1260.1.bj.b 2
36.h even 6 1 3780.1.bj.d 2
45.h odd 6 1 3780.1.bj.d 2
45.j even 6 1 1260.1.bj.b 2
60.h even 2 1 3780.1.cw.c 2
63.h even 3 1 inner 1260.1.cw.a yes 2
63.j odd 6 1 3780.1.cw.c 2
84.n even 6 1 3780.1.bj.d 2
105.o odd 6 1 3780.1.bj.d 2
140.p odd 6 1 1260.1.bj.c yes 2
180.n even 6 1 3780.1.bj.b 2
180.p odd 6 1 1260.1.bj.c yes 2
252.u odd 6 1 1260.1.cw.d yes 2
252.bb even 6 1 3780.1.cw.b 2
315.r even 6 1 1260.1.cw.d yes 2
315.br odd 6 1 3780.1.cw.b 2
420.ba even 6 1 3780.1.bj.b 2
1260.bx even 6 1 3780.1.cw.c 2
1260.cw odd 6 1 inner 1260.1.cw.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1260.1.bj.b 2 28.g odd 6 1
1260.1.bj.b 2 35.j even 6 1
1260.1.bj.b 2 36.f odd 6 1
1260.1.bj.b 2 45.j even 6 1
1260.1.bj.c yes 2 7.c even 3 1
1260.1.bj.c yes 2 9.c even 3 1
1260.1.bj.c yes 2 140.p odd 6 1
1260.1.bj.c yes 2 180.p odd 6 1
1260.1.cw.a yes 2 1.a even 1 1 trivial
1260.1.cw.a yes 2 20.d odd 2 1 CM
1260.1.cw.a yes 2 63.h even 3 1 inner
1260.1.cw.a yes 2 1260.cw odd 6 1 inner
1260.1.cw.d yes 2 4.b odd 2 1
1260.1.cw.d yes 2 5.b even 2 1
1260.1.cw.d yes 2 252.u odd 6 1
1260.1.cw.d yes 2 315.r even 6 1
3780.1.bj.b 2 9.d odd 6 1
3780.1.bj.b 2 21.h odd 6 1
3780.1.bj.b 2 180.n even 6 1
3780.1.bj.b 2 420.ba even 6 1
3780.1.bj.d 2 36.h even 6 1
3780.1.bj.d 2 45.h odd 6 1
3780.1.bj.d 2 84.n even 6 1
3780.1.bj.d 2 105.o odd 6 1
3780.1.cw.b 2 12.b even 2 1
3780.1.cw.b 2 15.d odd 2 1
3780.1.cw.b 2 252.bb even 6 1
3780.1.cw.b 2 315.br odd 6 1
3780.1.cw.c 2 3.b odd 2 1
3780.1.cw.c 2 60.h even 2 1
3780.1.cw.c 2 63.j odd 6 1
3780.1.cw.c 2 1260.bx even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{23}^{2} + T_{23} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1260, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( T^{2} \)
$19$ \( T^{2} \)
$23$ \( 1 + T + T^{2} \)
$29$ \( 4 + 2 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( 4 + 2 T + T^{2} \)
$43$ \( 1 + T + T^{2} \)
$47$ \( ( -1 + T )^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( 1 + T )^{2} \)
$67$ \( ( -1 + T )^{2} \)
$71$ \( T^{2} \)
$73$ \( T^{2} \)
$79$ \( T^{2} \)
$83$ \( 4 - 2 T + T^{2} \)
$89$ \( 1 - T + T^{2} \)
$97$ \( T^{2} \)
show more
show less