Properties

Label 126.8.g.k
Level $126$
Weight $8$
Character orbit 126.g
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 22015x^{4} - 28740x^{3} + 484660225x^{2} - 316355550x + 206496900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 \beta_1 q^{2} + (64 \beta_1 - 64) q^{4} + (\beta_{4} - 23 \beta_1) q^{5} + (\beta_{5} + \beta_{4} + \beta_{3} + \cdots - 54) q^{7} - 512 q^{8} + (8 \beta_{4} + 8 \beta_{2} + \cdots + 184) q^{10}+ \cdots + ( - 2488 \beta_{5} - 14608 \beta_{4} + \cdots + 1399632) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{2} - 192 q^{4} - 70 q^{5} - 895 q^{7} - 3072 q^{8} + 560 q^{10} + 2428 q^{11} - 3838 q^{13} + 3272 q^{14} - 12288 q^{16} + 24508 q^{17} + 1353 q^{19} + 8960 q^{20} + 38848 q^{22} + 96628 q^{23}+ \cdots - 605952 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 22015x^{4} - 28740x^{3} + 484660225x^{2} - 316355550x + 206496900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 22015\nu^{3} + 14370\nu^{2} - 484660225\nu + 316355550 ) / 316355550 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} - 95\nu^{3} - 22015\nu^{2} + 14370\nu - 321418780 ) / 968660 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7331 \nu^{5} + 21555 \nu^{4} + 160227995 \nu^{3} + 211009080 \nu^{2} + 3551627119700 \nu + 4662091145100 ) / 6959822100 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -7331\nu^{5} - 160709390\nu^{3} + 263524245\nu^{2} - 3538017220850\nu + 2309393934300 ) / 6959822100 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 14684 \nu^{5} - 7185 \nu^{4} + 324381935 \nu^{3} - 685542405 \nu^{2} + 7142478791900 \nu - 6980570943000 ) / 6959822100 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4\beta_{5} + 13\beta_{4} + 5\beta_{3} + 11\beta_{2} + 4\beta _1 - 5 ) / 42 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -475\beta_{5} + 803\beta_{4} - 95\beta_{3} + 190\beta_{2} - 616279\beta _1 + 95 ) / 42 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3145\beta_{5} - 6290\beta_{4} - 12580\beta_{3} - 40885\beta_{2} + 3145\beta _1 + 98800 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 8423180 \beta_{5} - 13308385 \beta_{4} + 10528975 \beta_{3} - 17519975 \beta_{2} + 13565348240 \beta _1 - 13567454035 ) / 42 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 2430126875 \beta_{5} - 5319723365 \beta_{4} - 486025375 \beta_{3} + 972050750 \beta_{2} + \cdots + 486025375 ) / 42 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
74.0235 + 128.213i
−74.3499 128.778i
0.326375 + 0.565298i
74.0235 128.213i
−74.3499 + 128.778i
0.326375 0.565298i
4.00000 6.92820i 0 −32.0000 55.4256i −253.777 + 439.555i 0 −673.468 + 608.263i −512.000 0 2030.22 + 3516.44i
37.2 4.00000 6.92820i 0 −32.0000 55.4256i 64.3732 111.498i 0 −291.106 859.535i −512.000 0 −514.986 891.982i
37.3 4.00000 6.92820i 0 −32.0000 55.4256i 154.404 267.436i 0 517.075 + 745.773i −512.000 0 −1235.23 2139.49i
109.1 4.00000 + 6.92820i 0 −32.0000 + 55.4256i −253.777 439.555i 0 −673.468 608.263i −512.000 0 2030.22 3516.44i
109.2 4.00000 + 6.92820i 0 −32.0000 + 55.4256i 64.3732 + 111.498i 0 −291.106 + 859.535i −512.000 0 −514.986 + 891.982i
109.3 4.00000 + 6.92820i 0 −32.0000 + 55.4256i 154.404 + 267.436i 0 517.075 745.773i −512.000 0 −1235.23 + 2139.49i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.8.g.k 6
3.b odd 2 1 42.8.e.d 6
7.c even 3 1 inner 126.8.g.k 6
21.c even 2 1 294.8.e.z 6
21.g even 6 1 294.8.a.x 3
21.g even 6 1 294.8.e.z 6
21.h odd 6 1 42.8.e.d 6
21.h odd 6 1 294.8.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.e.d 6 3.b odd 2 1
42.8.e.d 6 21.h odd 6 1
126.8.g.k 6 1.a even 1 1 trivial
126.8.g.k 6 7.c even 3 1 inner
294.8.a.x 3 21.g even 6 1
294.8.a.y 3 21.h odd 6 1
294.8.e.z 6 21.c even 2 1
294.8.e.z 6 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 70T_{5}^{5} + 187225T_{5}^{4} - 53121450T_{5}^{3} + 31829851125T_{5}^{2} - 3679199988750T_{5} + 407206166422500 \) acting on \(S_{8}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8 T + 64)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 407206166422500 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 55\!\cdots\!07 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 49\!\cdots\!16 \) Copy content Toggle raw display
$13$ \( (T^{3} + 1919 T^{2} + \cdots + 58693162752)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 54\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 36\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 15\!\cdots\!76)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 21\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 24\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 11\!\cdots\!32)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots + 95\!\cdots\!84)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 89\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 64\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 27\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 14\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots + 62\!\cdots\!36)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 32\!\cdots\!89 \) Copy content Toggle raw display
$83$ \( (T^{3} + \cdots - 11\!\cdots\!18)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 21\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 18\!\cdots\!06)^{2} \) Copy content Toggle raw display
show more
show less