Properties

Label 126.8.g.j.37.1
Level $126$
Weight $8$
Character 126.37
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1111x^{4} + 2838x^{3} + 1231236x^{2} + 959040x + 746496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(17.0987 + 29.6158i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.8.g.j.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-270.204 + 468.008i) q^{5} +(659.910 + 622.946i) q^{7} -512.000 q^{8} +(2161.63 + 3744.06i) q^{10} +(338.422 + 586.164i) q^{11} +6647.80 q^{13} +(6955.54 - 2080.21i) q^{14} +(-2048.00 + 3547.24i) q^{16} +(-17575.9 - 30442.3i) q^{17} +(-10974.1 + 19007.6i) q^{19} +34586.2 q^{20} +5414.75 q^{22} +(-39175.3 + 67853.6i) q^{23} +(-106958. - 185257. i) q^{25} +(26591.2 - 46057.3i) q^{26} +(13410.0 - 56510.2i) q^{28} -73873.3 q^{29} +(-56981.5 - 98694.8i) q^{31} +(16384.0 + 28377.9i) q^{32} -281214. q^{34} +(-469854. + 140520. i) q^{35} +(-55212.8 + 95631.3i) q^{37} +(87792.5 + 152061. i) q^{38} +(138345. - 239620. i) q^{40} -162278. q^{41} +398919. q^{43} +(21659.0 - 37514.5i) q^{44} +(313402. + 542829. i) q^{46} +(80171.0 - 138860. i) q^{47} +(47419.7 + 822177. i) q^{49} -1.71133e6 q^{50} +(-212730. - 368458. i) q^{52} +(285179. + 493944. i) q^{53} -365772. q^{55} +(-337874. - 318948. i) q^{56} +(-295493. + 511809. i) q^{58} +(-1.28729e6 - 2.22966e6i) q^{59} +(1.29277e6 - 2.23915e6i) q^{61} -911704. q^{62} +262144. q^{64} +(-1.79626e6 + 3.11122e6i) q^{65} +(-468389. - 811274. i) q^{67} +(-1.12486e6 + 1.94831e6i) q^{68} +(-905863. + 3.81733e6i) q^{70} -3.67843e6 q^{71} +(-2.06289e6 - 3.57304e6i) q^{73} +(441702. + 765051. i) q^{74} +1.40468e6 q^{76} +(-141820. + 597634. i) q^{77} +(-3.69473e6 + 6.39946e6i) q^{79} +(-1.10676e6 - 1.91696e6i) q^{80} +(-649114. + 1.12430e6i) q^{82} -6.43368e6 q^{83} +1.89963e7 q^{85} +(1.59568e6 - 2.76379e6i) q^{86} +(-173272. - 300116. i) q^{88} +(-3.18608e6 + 5.51845e6i) q^{89} +(4.38695e6 + 4.14122e6i) q^{91} +5.01444e6 q^{92} +(-641368. - 1.11088e6i) q^{94} +(-5.93048e6 - 1.02719e7i) q^{95} -1.59546e7 q^{97} +(5.88589e6 + 2.96017e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{2} - 192 q^{4} - 718 q^{5} - 1471 q^{7} - 3072 q^{8} + 5744 q^{10} + 208 q^{11} + 19394 q^{13} - 4504 q^{14} - 12288 q^{16} - 19244 q^{17} - 25419 q^{19} + 91904 q^{20} + 3328 q^{22} - 67400 q^{23}+ \cdots + 20461248 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −270.204 + 468.008i −0.966712 + 1.67440i −0.261771 + 0.965130i \(0.584306\pi\)
−0.704942 + 0.709265i \(0.749027\pi\)
\(6\) 0 0
\(7\) 659.910 + 622.946i 0.727180 + 0.686447i
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 2161.63 + 3744.06i 0.683569 + 1.18398i
\(11\) 338.422 + 586.164i 0.0766627 + 0.132784i 0.901808 0.432137i \(-0.142240\pi\)
−0.825145 + 0.564920i \(0.808907\pi\)
\(12\) 0 0
\(13\) 6647.80 0.839220 0.419610 0.907704i \(-0.362167\pi\)
0.419610 + 0.907704i \(0.362167\pi\)
\(14\) 6955.54 2080.21i 0.677458 0.202609i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −17575.9 30442.3i −0.867652 1.50282i −0.864390 0.502822i \(-0.832295\pi\)
−0.00326212 0.999995i \(-0.501038\pi\)
\(18\) 0 0
\(19\) −10974.1 + 19007.6i −0.367054 + 0.635756i −0.989104 0.147222i \(-0.952967\pi\)
0.622049 + 0.782978i \(0.286300\pi\)
\(20\) 34586.2 0.966712
\(21\) 0 0
\(22\) 5414.75 0.108417
\(23\) −39175.3 + 67853.6i −0.671374 + 1.16285i 0.306140 + 0.951986i \(0.400962\pi\)
−0.977515 + 0.210868i \(0.932371\pi\)
\(24\) 0 0
\(25\) −106958. 185257.i −1.36907 2.37129i
\(26\) 26591.2 46057.3i 0.296709 0.513915i
\(27\) 0 0
\(28\) 13410.0 56510.2i 0.115446 0.486490i
\(29\) −73873.3 −0.562464 −0.281232 0.959640i \(-0.590743\pi\)
−0.281232 + 0.959640i \(0.590743\pi\)
\(30\) 0 0
\(31\) −56981.5 98694.8i −0.343533 0.595016i 0.641553 0.767078i \(-0.278290\pi\)
−0.985086 + 0.172062i \(0.944957\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −281214. −1.22705
\(35\) −469854. + 140520.i −1.85236 + 0.553989i
\(36\) 0 0
\(37\) −55212.8 + 95631.3i −0.179198 + 0.310380i −0.941606 0.336716i \(-0.890684\pi\)
0.762408 + 0.647097i \(0.224017\pi\)
\(38\) 87792.5 + 152061.i 0.259546 + 0.449548i
\(39\) 0 0
\(40\) 138345. 239620.i 0.341784 0.591988i
\(41\) −162278. −0.367720 −0.183860 0.982952i \(-0.558859\pi\)
−0.183860 + 0.982952i \(0.558859\pi\)
\(42\) 0 0
\(43\) 398919. 0.765147 0.382574 0.923925i \(-0.375038\pi\)
0.382574 + 0.923925i \(0.375038\pi\)
\(44\) 21659.0 37514.5i 0.0383313 0.0663918i
\(45\) 0 0
\(46\) 313402. + 542829.i 0.474733 + 0.822262i
\(47\) 80171.0 138860.i 0.112635 0.195090i −0.804197 0.594363i \(-0.797404\pi\)
0.916832 + 0.399273i \(0.130737\pi\)
\(48\) 0 0
\(49\) 47419.7 + 822177.i 0.0575801 + 0.998341i
\(50\) −1.71133e6 −1.93615
\(51\) 0 0
\(52\) −212730. 368458.i −0.209805 0.363393i
\(53\) 285179. + 493944.i 0.263119 + 0.455735i 0.967069 0.254514i \(-0.0819155\pi\)
−0.703950 + 0.710249i \(0.748582\pi\)
\(54\) 0 0
\(55\) −365772. −0.296443
\(56\) −337874. 318948.i −0.257097 0.242696i
\(57\) 0 0
\(58\) −295493. + 511809.i −0.198861 + 0.344437i
\(59\) −1.28729e6 2.22966e6i −0.816011 1.41337i −0.908600 0.417668i \(-0.862848\pi\)
0.0925891 0.995704i \(-0.470486\pi\)
\(60\) 0 0
\(61\) 1.29277e6 2.23915e6i 0.729235 1.26307i −0.227971 0.973668i \(-0.573209\pi\)
0.957207 0.289405i \(-0.0934574\pi\)
\(62\) −911704. −0.485828
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −1.79626e6 + 3.11122e6i −0.811285 + 1.40519i
\(66\) 0 0
\(67\) −468389. 811274.i −0.190259 0.329538i 0.755077 0.655636i \(-0.227599\pi\)
−0.945336 + 0.326098i \(0.894266\pi\)
\(68\) −1.12486e6 + 1.94831e6i −0.433826 + 0.751409i
\(69\) 0 0
\(70\) −905863. + 3.81733e6i −0.315660 + 1.33020i
\(71\) −3.67843e6 −1.21972 −0.609858 0.792511i \(-0.708773\pi\)
−0.609858 + 0.792511i \(0.708773\pi\)
\(72\) 0 0
\(73\) −2.06289e6 3.57304e6i −0.620650 1.07500i −0.989365 0.145455i \(-0.953535\pi\)
0.368714 0.929543i \(-0.379798\pi\)
\(74\) 441702. + 765051.i 0.126712 + 0.219472i
\(75\) 0 0
\(76\) 1.40468e6 0.367054
\(77\) −141820. + 597634.i −0.0354014 + 0.149182i
\(78\) 0 0
\(79\) −3.69473e6 + 6.39946e6i −0.843117 + 1.46032i 0.0441286 + 0.999026i \(0.485949\pi\)
−0.887246 + 0.461296i \(0.847384\pi\)
\(80\) −1.10676e6 1.91696e6i −0.241678 0.418599i
\(81\) 0 0
\(82\) −649114. + 1.12430e6i −0.130009 + 0.225182i
\(83\) −6.43368e6 −1.23505 −0.617527 0.786549i \(-0.711865\pi\)
−0.617527 + 0.786549i \(0.711865\pi\)
\(84\) 0 0
\(85\) 1.89963e7 3.35508
\(86\) 1.59568e6 2.76379e6i 0.270520 0.468555i
\(87\) 0 0
\(88\) −173272. 300116.i −0.0271043 0.0469461i
\(89\) −3.18608e6 + 5.51845e6i −0.479062 + 0.829760i −0.999712 0.0240106i \(-0.992356\pi\)
0.520650 + 0.853770i \(0.325690\pi\)
\(90\) 0 0
\(91\) 4.38695e6 + 4.14122e6i 0.610264 + 0.576081i
\(92\) 5.01444e6 0.671374
\(93\) 0 0
\(94\) −641368. 1.11088e6i −0.0796453 0.137950i
\(95\) −5.93048e6 1.02719e7i −0.709672 1.22919i
\(96\) 0 0
\(97\) −1.59546e7 −1.77494 −0.887472 0.460861i \(-0.847541\pi\)
−0.887472 + 0.460861i \(0.847541\pi\)
\(98\) 5.88589e6 + 2.96017e6i 0.631714 + 0.317706i
\(99\) 0 0
\(100\) −6.84533e6 + 1.18565e7i −0.684533 + 1.18565i
\(101\) 3.21720e6 + 5.57235e6i 0.310708 + 0.538163i 0.978516 0.206171i \(-0.0661004\pi\)
−0.667808 + 0.744334i \(0.732767\pi\)
\(102\) 0 0
\(103\) 7.78162e6 1.34782e7i 0.701681 1.21535i −0.266195 0.963919i \(-0.585766\pi\)
0.967876 0.251428i \(-0.0809002\pi\)
\(104\) −3.40367e6 −0.296709
\(105\) 0 0
\(106\) 4.56286e6 0.372106
\(107\) −6.23535e6 + 1.07999e7i −0.492059 + 0.852272i −0.999958 0.00914507i \(-0.997089\pi\)
0.507899 + 0.861417i \(0.330422\pi\)
\(108\) 0 0
\(109\) −6.53171e6 1.13132e7i −0.483097 0.836748i 0.516715 0.856157i \(-0.327155\pi\)
−0.999812 + 0.0194096i \(0.993821\pi\)
\(110\) −1.46309e6 + 2.53414e6i −0.104808 + 0.181534i
\(111\) 0 0
\(112\) −3.56123e6 + 1.06507e6i −0.239518 + 0.0716331i
\(113\) 6.21455e6 0.405168 0.202584 0.979265i \(-0.435066\pi\)
0.202584 + 0.979265i \(0.435066\pi\)
\(114\) 0 0
\(115\) −2.11707e7 3.66687e7i −1.29805 2.24829i
\(116\) 2.36395e6 + 4.09447e6i 0.140616 + 0.243554i
\(117\) 0 0
\(118\) −2.05967e7 −1.15401
\(119\) 7.36541e6 3.10380e7i 0.400666 1.68842i
\(120\) 0 0
\(121\) 9.51453e6 1.64796e7i 0.488246 0.845666i
\(122\) −1.03422e7 1.79132e7i −0.515647 0.893127i
\(123\) 0 0
\(124\) −3.64682e6 + 6.31647e6i −0.171766 + 0.297508i
\(125\) 7.33830e7 3.36055
\(126\) 0 0
\(127\) 5.98610e6 0.259317 0.129659 0.991559i \(-0.458612\pi\)
0.129659 + 0.991559i \(0.458612\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.43701e7 + 2.48898e7i 0.573665 + 0.993617i
\(131\) 9.86353e6 1.70841e7i 0.383339 0.663962i −0.608199 0.793785i \(-0.708108\pi\)
0.991537 + 0.129823i \(0.0414409\pi\)
\(132\) 0 0
\(133\) −1.90826e7 + 5.70708e6i −0.703327 + 0.210346i
\(134\) −7.49423e6 −0.269067
\(135\) 0 0
\(136\) 8.99884e6 + 1.55865e7i 0.306761 + 0.531326i
\(137\) 1.47037e7 + 2.54676e7i 0.488546 + 0.846187i 0.999913 0.0131753i \(-0.00419396\pi\)
−0.511367 + 0.859363i \(0.670861\pi\)
\(138\) 0 0
\(139\) 3.84080e7 1.21303 0.606513 0.795073i \(-0.292568\pi\)
0.606513 + 0.795073i \(0.292568\pi\)
\(140\) 2.28238e7 + 2.15453e7i 0.702974 + 0.663597i
\(141\) 0 0
\(142\) −1.47137e7 + 2.54849e7i −0.431235 + 0.746920i
\(143\) 2.24976e6 + 3.89670e6i 0.0643369 + 0.111435i
\(144\) 0 0
\(145\) 1.99609e7 3.45733e7i 0.543741 0.941787i
\(146\) −3.30063e7 −0.877732
\(147\) 0 0
\(148\) 7.06723e6 0.179198
\(149\) −2.03665e6 + 3.52758e6i −0.0504387 + 0.0873624i −0.890142 0.455682i \(-0.849395\pi\)
0.839704 + 0.543045i \(0.182729\pi\)
\(150\) 0 0
\(151\) 2.23327e7 + 3.86814e7i 0.527865 + 0.914289i 0.999472 + 0.0324802i \(0.0103406\pi\)
−0.471608 + 0.881809i \(0.656326\pi\)
\(152\) 5.61872e6 9.73191e6i 0.129773 0.224774i
\(153\) 0 0
\(154\) 3.57325e6 + 3.37310e6i 0.0788389 + 0.0744228i
\(155\) 6.15866e7 1.32839
\(156\) 0 0
\(157\) 3.40899e7 + 5.90454e7i 0.703034 + 1.21769i 0.967396 + 0.253268i \(0.0815054\pi\)
−0.264362 + 0.964424i \(0.585161\pi\)
\(158\) 2.95579e7 + 5.11957e7i 0.596174 + 1.03260i
\(159\) 0 0
\(160\) −1.77081e7 −0.341784
\(161\) −6.81213e7 + 2.03732e7i −1.28645 + 0.384741i
\(162\) 0 0
\(163\) −1.02401e6 + 1.77364e6i −0.0185203 + 0.0320781i −0.875137 0.483875i \(-0.839229\pi\)
0.856617 + 0.515953i \(0.172562\pi\)
\(164\) 5.19291e6 + 8.99438e6i 0.0919300 + 0.159227i
\(165\) 0 0
\(166\) −2.57347e7 + 4.45738e7i −0.436658 + 0.756313i
\(167\) 3.34977e7 0.556553 0.278277 0.960501i \(-0.410237\pi\)
0.278277 + 0.960501i \(0.410237\pi\)
\(168\) 0 0
\(169\) −1.85553e7 −0.295709
\(170\) 7.59852e7 1.31610e8i 1.18620 2.05456i
\(171\) 0 0
\(172\) −1.27654e7 2.21103e7i −0.191287 0.331319i
\(173\) 2.97722e7 5.15669e7i 0.437168 0.757198i −0.560301 0.828289i \(-0.689315\pi\)
0.997470 + 0.0710908i \(0.0226480\pi\)
\(174\) 0 0
\(175\) 4.48224e7 1.88882e8i 0.632210 2.66415i
\(176\) −2.77235e6 −0.0383313
\(177\) 0 0
\(178\) 2.54886e7 + 4.41476e7i 0.338748 + 0.586729i
\(179\) −2.48179e7 4.29858e7i −0.323429 0.560195i 0.657764 0.753224i \(-0.271502\pi\)
−0.981193 + 0.193029i \(0.938169\pi\)
\(180\) 0 0
\(181\) −1.25232e8 −1.56978 −0.784892 0.619633i \(-0.787281\pi\)
−0.784892 + 0.619633i \(0.787281\pi\)
\(182\) 4.62390e7 1.38288e7i 0.568537 0.170034i
\(183\) 0 0
\(184\) 2.00577e7 3.47410e7i 0.237367 0.411131i
\(185\) −2.98375e7 5.16800e7i −0.346466 0.600097i
\(186\) 0 0
\(187\) 1.18961e7 2.06047e7i 0.133033 0.230420i
\(188\) −1.02619e7 −0.112635
\(189\) 0 0
\(190\) −9.48877e7 −1.00363
\(191\) −8.51812e7 + 1.47538e8i −0.884560 + 1.53210i −0.0383425 + 0.999265i \(0.512208\pi\)
−0.846217 + 0.532838i \(0.821126\pi\)
\(192\) 0 0
\(193\) 4.03341e7 + 6.98608e7i 0.403852 + 0.699492i 0.994187 0.107666i \(-0.0343377\pi\)
−0.590335 + 0.807158i \(0.701004\pi\)
\(194\) −6.38184e7 + 1.10537e8i −0.627538 + 1.08693i
\(195\) 0 0
\(196\) 4.40522e7 2.89379e7i 0.417899 0.274518i
\(197\) −6.88422e7 −0.641539 −0.320769 0.947157i \(-0.603941\pi\)
−0.320769 + 0.947157i \(0.603941\pi\)
\(198\) 0 0
\(199\) 7.99422e7 + 1.38464e8i 0.719102 + 1.24552i 0.961356 + 0.275308i \(0.0887798\pi\)
−0.242255 + 0.970213i \(0.577887\pi\)
\(200\) 5.47626e7 + 9.48517e7i 0.484038 + 0.838378i
\(201\) 0 0
\(202\) 5.14752e7 0.439408
\(203\) −4.87497e7 4.60191e7i −0.409012 0.386102i
\(204\) 0 0
\(205\) 4.38483e7 7.59476e7i 0.355480 0.615709i
\(206\) −6.22530e7 1.07825e8i −0.496164 0.859380i
\(207\) 0 0
\(208\) −1.36147e7 + 2.35813e7i −0.104903 + 0.181697i
\(209\) −1.48555e7 −0.112557
\(210\) 0 0
\(211\) −2.11016e8 −1.54642 −0.773208 0.634152i \(-0.781349\pi\)
−0.773208 + 0.634152i \(0.781349\pi\)
\(212\) 1.82515e7 3.16124e7i 0.131559 0.227868i
\(213\) 0 0
\(214\) 4.98828e7 + 8.63995e7i 0.347938 + 0.602647i
\(215\) −1.07790e8 + 1.86697e8i −0.739678 + 1.28116i
\(216\) 0 0
\(217\) 2.38789e7 1.00626e8i 0.158637 0.668500i
\(218\) −1.04507e8 −0.683202
\(219\) 0 0
\(220\) 1.17047e7 + 2.02732e7i 0.0741108 + 0.128364i
\(221\) −1.16841e8 2.02374e8i −0.728151 1.26119i
\(222\) 0 0
\(223\) 1.54881e7 0.0935259 0.0467629 0.998906i \(-0.485109\pi\)
0.0467629 + 0.998906i \(0.485109\pi\)
\(224\) −6.86594e6 + 2.89332e7i −0.0408162 + 0.172000i
\(225\) 0 0
\(226\) 2.48582e7 4.30557e7i 0.143249 0.248114i
\(227\) 1.12793e8 + 1.95363e8i 0.640017 + 1.10854i 0.985428 + 0.170091i \(0.0544062\pi\)
−0.345411 + 0.938452i \(0.612260\pi\)
\(228\) 0 0
\(229\) −2.94394e7 + 5.09905e7i −0.161996 + 0.280585i −0.935584 0.353103i \(-0.885126\pi\)
0.773588 + 0.633688i \(0.218460\pi\)
\(230\) −3.38731e8 −1.83572
\(231\) 0 0
\(232\) 3.78231e7 0.198861
\(233\) −1.85008e7 + 3.20443e7i −0.0958173 + 0.165960i −0.909949 0.414719i \(-0.863880\pi\)
0.814132 + 0.580680i \(0.197213\pi\)
\(234\) 0 0
\(235\) 4.33251e7 + 7.50413e7i 0.217772 + 0.377192i
\(236\) −8.23868e7 + 1.42698e8i −0.408005 + 0.706686i
\(237\) 0 0
\(238\) −1.85576e8 1.75181e8i −0.892282 0.842302i
\(239\) 3.52275e8 1.66913 0.834564 0.550911i \(-0.185720\pi\)
0.834564 + 0.550911i \(0.185720\pi\)
\(240\) 0 0
\(241\) −5.05482e7 8.75520e7i −0.232619 0.402909i 0.725959 0.687738i \(-0.241396\pi\)
−0.958578 + 0.284830i \(0.908063\pi\)
\(242\) −7.61162e7 1.31837e8i −0.345242 0.597976i
\(243\) 0 0
\(244\) −1.65475e8 −0.729235
\(245\) −3.97598e8 1.99963e8i −1.72728 0.868697i
\(246\) 0 0
\(247\) −7.29534e7 + 1.26359e8i −0.308039 + 0.533540i
\(248\) 2.91745e7 + 5.05318e7i 0.121457 + 0.210370i
\(249\) 0 0
\(250\) 2.93532e8 5.08412e8i 1.18813 2.05791i
\(251\) −9.75552e7 −0.389397 −0.194698 0.980863i \(-0.562373\pi\)
−0.194698 + 0.980863i \(0.562373\pi\)
\(252\) 0 0
\(253\) −5.30311e7 −0.205877
\(254\) 2.39444e7 4.14729e7i 0.0916824 0.158799i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −8.75026e7 + 1.51559e8i −0.321555 + 0.556949i −0.980809 0.194971i \(-0.937539\pi\)
0.659254 + 0.751920i \(0.270872\pi\)
\(258\) 0 0
\(259\) −9.60086e7 + 2.87135e7i −0.343369 + 0.102692i
\(260\) 2.29922e8 0.811285
\(261\) 0 0
\(262\) −7.89082e7 1.36673e8i −0.271061 0.469492i
\(263\) −3.04800e7 5.27930e7i −0.103317 0.178950i 0.809733 0.586799i \(-0.199612\pi\)
−0.913049 + 0.407849i \(0.866279\pi\)
\(264\) 0 0
\(265\) −3.08226e8 −1.01744
\(266\) −3.67907e7 + 1.55037e8i −0.119854 + 0.505067i
\(267\) 0 0
\(268\) −2.99769e7 + 5.19215e7i −0.0951295 + 0.164769i
\(269\) −5.40032e7 9.35362e7i −0.169156 0.292986i 0.768968 0.639288i \(-0.220771\pi\)
−0.938123 + 0.346302i \(0.887437\pi\)
\(270\) 0 0
\(271\) −2.86823e7 + 4.96791e7i −0.0875429 + 0.151629i −0.906472 0.422266i \(-0.861235\pi\)
0.818929 + 0.573895i \(0.194568\pi\)
\(272\) 1.43981e8 0.433826
\(273\) 0 0
\(274\) 2.35260e8 0.690909
\(275\) 7.23940e7 1.25390e8i 0.209913 0.363579i
\(276\) 0 0
\(277\) 1.96515e8 + 3.40374e8i 0.555542 + 0.962226i 0.997861 + 0.0653689i \(0.0208224\pi\)
−0.442319 + 0.896858i \(0.645844\pi\)
\(278\) 1.53632e8 2.66099e8i 0.428870 0.742824i
\(279\) 0 0
\(280\) 2.40565e8 7.19464e7i 0.654907 0.195865i
\(281\) −1.85300e8 −0.498198 −0.249099 0.968478i \(-0.580135\pi\)
−0.249099 + 0.968478i \(0.580135\pi\)
\(282\) 0 0
\(283\) 2.04039e8 + 3.53406e8i 0.535132 + 0.926875i 0.999157 + 0.0410533i \(0.0130713\pi\)
−0.464025 + 0.885822i \(0.653595\pi\)
\(284\) 1.17710e8 + 2.03879e8i 0.304929 + 0.528152i
\(285\) 0 0
\(286\) 3.59962e7 0.0909861
\(287\) −1.07089e8 1.01091e8i −0.267398 0.252420i
\(288\) 0 0
\(289\) −4.12653e8 + 7.14736e8i −1.00564 + 1.74182i
\(290\) −1.59687e8 2.76586e8i −0.384483 0.665944i
\(291\) 0 0
\(292\) −1.32025e8 + 2.28674e8i −0.310325 + 0.537499i
\(293\) 2.80589e8 0.651679 0.325839 0.945425i \(-0.394353\pi\)
0.325839 + 0.945425i \(0.394353\pi\)
\(294\) 0 0
\(295\) 1.39133e9 3.15539
\(296\) 2.82689e7 4.89632e7i 0.0633561 0.109736i
\(297\) 0 0
\(298\) 1.62932e7 + 2.82206e7i 0.0356655 + 0.0617745i
\(299\) −2.60429e8 + 4.51077e8i −0.563431 + 0.975891i
\(300\) 0 0
\(301\) 2.63251e8 + 2.48505e8i 0.556400 + 0.525233i
\(302\) 3.57324e8 0.746514
\(303\) 0 0
\(304\) −4.49498e7 7.78553e7i −0.0917635 0.158939i
\(305\) 6.98626e8 + 1.21006e9i 1.40992 + 2.44206i
\(306\) 0 0
\(307\) −6.07300e8 −1.19790 −0.598948 0.800788i \(-0.704414\pi\)
−0.598948 + 0.800788i \(0.704414\pi\)
\(308\) 3.76625e7 1.12638e7i 0.0734482 0.0219663i
\(309\) 0 0
\(310\) 2.46346e8 4.26684e8i 0.469656 0.813469i
\(311\) −4.72511e8 8.18413e8i −0.890739 1.54281i −0.838991 0.544145i \(-0.816854\pi\)
−0.0517476 0.998660i \(-0.516479\pi\)
\(312\) 0 0
\(313\) −6.12314e7 + 1.06056e8i −0.112867 + 0.195492i −0.916925 0.399059i \(-0.869337\pi\)
0.804058 + 0.594551i \(0.202670\pi\)
\(314\) 5.45438e8 0.994241
\(315\) 0 0
\(316\) 4.72926e8 0.843117
\(317\) 5.53647e8 9.58945e8i 0.976170 1.69078i 0.300151 0.953892i \(-0.402963\pi\)
0.676019 0.736885i \(-0.263704\pi\)
\(318\) 0 0
\(319\) −2.50003e7 4.33018e7i −0.0431200 0.0746860i
\(320\) −7.08325e7 + 1.22685e8i −0.120839 + 0.209299i
\(321\) 0 0
\(322\) −1.31336e8 + 5.53451e8i −0.219223 + 0.923812i
\(323\) 7.71515e8 1.27390
\(324\) 0 0
\(325\) −7.11037e8 1.23155e9i −1.14895 1.99004i
\(326\) 8.19208e6 + 1.41891e7i 0.0130958 + 0.0226826i
\(327\) 0 0
\(328\) 8.30866e7 0.130009
\(329\) 1.39408e8 4.16931e7i 0.215825 0.0645474i
\(330\) 0 0
\(331\) −2.85435e8 + 4.94388e8i −0.432622 + 0.749324i −0.997098 0.0761256i \(-0.975745\pi\)
0.564476 + 0.825450i \(0.309078\pi\)
\(332\) 2.05878e8 + 3.56591e8i 0.308764 + 0.534794i
\(333\) 0 0
\(334\) 1.33991e8 2.32079e8i 0.196771 0.340818i
\(335\) 5.06243e8 0.735703
\(336\) 0 0
\(337\) −3.47533e8 −0.494643 −0.247322 0.968933i \(-0.579550\pi\)
−0.247322 + 0.968933i \(0.579550\pi\)
\(338\) −7.42212e7 + 1.28555e8i −0.104549 + 0.181084i
\(339\) 0 0
\(340\) −6.07882e8 1.05288e9i −0.838770 1.45279i
\(341\) 3.85676e7 6.68010e7i 0.0526722 0.0912310i
\(342\) 0 0
\(343\) −4.80879e8 + 5.72103e8i −0.643437 + 0.765499i
\(344\) −2.04247e8 −0.270520
\(345\) 0 0
\(346\) −2.38177e8 4.12535e8i −0.309125 0.535420i
\(347\) 9.03031e7 + 1.56409e8i 0.116024 + 0.200960i 0.918189 0.396143i \(-0.129652\pi\)
−0.802164 + 0.597103i \(0.796318\pi\)
\(348\) 0 0
\(349\) −4.21856e8 −0.531222 −0.265611 0.964080i \(-0.585574\pi\)
−0.265611 + 0.964080i \(0.585574\pi\)
\(350\) −1.12933e9 1.06607e9i −1.40793 1.32907i
\(351\) 0 0
\(352\) −1.10894e7 + 1.92074e7i −0.0135522 + 0.0234731i
\(353\) 2.45274e8 + 4.24828e8i 0.296784 + 0.514045i 0.975398 0.220450i \(-0.0707525\pi\)
−0.678614 + 0.734495i \(0.737419\pi\)
\(354\) 0 0
\(355\) 9.93928e8 1.72153e9i 1.17911 2.04229i
\(356\) 4.07818e8 0.479062
\(357\) 0 0
\(358\) −3.97086e8 −0.457397
\(359\) 5.36048e8 9.28462e8i 0.611467 1.05909i −0.379526 0.925181i \(-0.623913\pi\)
0.990993 0.133911i \(-0.0427536\pi\)
\(360\) 0 0
\(361\) 2.06076e8 + 3.56933e8i 0.230543 + 0.399312i
\(362\) −5.00927e8 + 8.67632e8i −0.555002 + 0.961292i
\(363\) 0 0
\(364\) 8.91473e7 3.75668e8i 0.0968843 0.408272i
\(365\) 2.22961e9 2.39996
\(366\) 0 0
\(367\) −1.35304e8 2.34353e8i −0.142882 0.247480i 0.785698 0.618610i \(-0.212304\pi\)
−0.928581 + 0.371130i \(0.878970\pi\)
\(368\) −1.60462e8 2.77928e8i −0.167844 0.290714i
\(369\) 0 0
\(370\) −4.77399e8 −0.489977
\(371\) −1.19508e8 + 5.03610e8i −0.121504 + 0.512019i
\(372\) 0 0
\(373\) −3.30141e8 + 5.71821e8i −0.329396 + 0.570531i −0.982392 0.186831i \(-0.940178\pi\)
0.652996 + 0.757361i \(0.273512\pi\)
\(374\) −9.51689e7 1.64837e8i −0.0940685 0.162931i
\(375\) 0 0
\(376\) −4.10476e7 + 7.10965e7i −0.0398226 + 0.0689748i
\(377\) −4.91095e8 −0.472031
\(378\) 0 0
\(379\) −1.97748e8 −0.186584 −0.0932922 0.995639i \(-0.529739\pi\)
−0.0932922 + 0.995639i \(0.529739\pi\)
\(380\) −3.79551e8 + 6.57401e8i −0.354836 + 0.614594i
\(381\) 0 0
\(382\) 6.81450e8 + 1.18031e9i 0.625478 + 1.08336i
\(383\) −5.42851e8 + 9.40246e8i −0.493725 + 0.855157i −0.999974 0.00723074i \(-0.997698\pi\)
0.506249 + 0.862387i \(0.331032\pi\)
\(384\) 0 0
\(385\) −2.41377e8 2.27856e8i −0.215567 0.203493i
\(386\) 6.45346e8 0.571133
\(387\) 0 0
\(388\) 5.10547e8 + 8.84294e8i 0.443736 + 0.768574i
\(389\) 2.92406e8 + 5.06463e8i 0.251862 + 0.436238i 0.964039 0.265762i \(-0.0856236\pi\)
−0.712176 + 0.702001i \(0.752290\pi\)
\(390\) 0 0
\(391\) 2.75416e9 2.33008
\(392\) −2.42789e7 4.20954e8i −0.0203576 0.352967i
\(393\) 0 0
\(394\) −2.75369e8 + 4.76953e8i −0.226818 + 0.392861i
\(395\) −1.99667e9 3.45833e9i −1.63010 2.82342i
\(396\) 0 0
\(397\) −7.91480e8 + 1.37088e9i −0.634853 + 1.09960i 0.351694 + 0.936115i \(0.385606\pi\)
−0.986546 + 0.163482i \(0.947727\pi\)
\(398\) 1.27907e9 1.01696
\(399\) 0 0
\(400\) 8.76202e8 0.684533
\(401\) −4.75005e8 + 8.22733e8i −0.367869 + 0.637168i −0.989232 0.146355i \(-0.953246\pi\)
0.621363 + 0.783523i \(0.286579\pi\)
\(402\) 0 0
\(403\) −3.78801e8 6.56103e8i −0.288300 0.499349i
\(404\) 2.05901e8 3.56630e8i 0.155354 0.269081i
\(405\) 0 0
\(406\) −5.13828e8 + 1.53672e8i −0.381046 + 0.113960i
\(407\) −7.47408e7 −0.0549512
\(408\) 0 0
\(409\) 3.44514e8 + 5.96716e8i 0.248986 + 0.431257i 0.963245 0.268625i \(-0.0865692\pi\)
−0.714258 + 0.699882i \(0.753236\pi\)
\(410\) −3.50787e8 6.07580e8i −0.251362 0.435372i
\(411\) 0 0
\(412\) −9.96048e8 −0.701681
\(413\) 5.39459e8 2.27329e9i 0.376819 1.58792i
\(414\) 0 0
\(415\) 1.73841e9 3.01101e9i 1.19394 2.06797i
\(416\) 1.08918e8 + 1.88651e8i 0.0741773 + 0.128479i
\(417\) 0 0
\(418\) −5.94218e7 + 1.02922e8i −0.0397950 + 0.0689270i
\(419\) −1.41673e9 −0.940887 −0.470443 0.882430i \(-0.655906\pi\)
−0.470443 + 0.882430i \(0.655906\pi\)
\(420\) 0 0
\(421\) −2.86813e9 −1.87332 −0.936660 0.350240i \(-0.886100\pi\)
−0.936660 + 0.350240i \(0.886100\pi\)
\(422\) −8.44063e8 + 1.46196e9i −0.546741 + 0.946983i
\(423\) 0 0
\(424\) −1.46012e8 2.52900e8i −0.0930266 0.161127i
\(425\) −3.75977e9 + 6.51211e9i −2.37575 + 4.11491i
\(426\) 0 0
\(427\) 2.24798e9 6.72309e8i 1.39732 0.417899i
\(428\) 7.98124e8 0.492059
\(429\) 0 0
\(430\) 8.62317e8 + 1.49358e9i 0.523031 + 0.905916i
\(431\) 6.54074e8 + 1.13289e9i 0.393511 + 0.681580i 0.992910 0.118870i \(-0.0379271\pi\)
−0.599399 + 0.800450i \(0.704594\pi\)
\(432\) 0 0
\(433\) −1.57896e8 −0.0934678 −0.0467339 0.998907i \(-0.514881\pi\)
−0.0467339 + 0.998907i \(0.514881\pi\)
\(434\) −6.01643e8 5.67942e8i −0.353284 0.333496i
\(435\) 0 0
\(436\) −4.18029e8 + 7.24048e8i −0.241548 + 0.418374i
\(437\) −8.59824e8 1.48926e9i −0.492861 0.853661i
\(438\) 0 0
\(439\) −1.19764e9 + 2.07438e9i −0.675619 + 1.17021i 0.300669 + 0.953729i \(0.402790\pi\)
−0.976288 + 0.216478i \(0.930543\pi\)
\(440\) 1.87275e8 0.104808
\(441\) 0 0
\(442\) −1.86945e9 −1.02976
\(443\) 2.02980e7 3.51571e7i 0.0110928 0.0192132i −0.860426 0.509576i \(-0.829802\pi\)
0.871519 + 0.490363i \(0.163136\pi\)
\(444\) 0 0
\(445\) −1.72179e9 2.98222e9i −0.926231 1.60428i
\(446\) 6.19525e7 1.07305e8i 0.0330664 0.0572727i
\(447\) 0 0
\(448\) 1.72991e8 + 1.63302e8i 0.0908974 + 0.0858059i
\(449\) −1.72734e9 −0.900568 −0.450284 0.892885i \(-0.648677\pi\)
−0.450284 + 0.892885i \(0.648677\pi\)
\(450\) 0 0
\(451\) −5.49186e7 9.51217e7i −0.0281904 0.0488272i
\(452\) −1.98866e8 3.44446e8i −0.101292 0.175443i
\(453\) 0 0
\(454\) 1.80469e9 0.905121
\(455\) −3.12349e9 + 9.34150e8i −1.55454 + 0.464919i
\(456\) 0 0
\(457\) 1.29712e9 2.24668e9i 0.635731 1.10112i −0.350629 0.936514i \(-0.614032\pi\)
0.986360 0.164604i \(-0.0526345\pi\)
\(458\) 2.35515e8 + 4.07924e8i 0.114548 + 0.198404i
\(459\) 0 0
\(460\) −1.35492e9 + 2.34679e9i −0.649026 + 1.12415i
\(461\) −1.29682e9 −0.616493 −0.308246 0.951307i \(-0.599742\pi\)
−0.308246 + 0.951307i \(0.599742\pi\)
\(462\) 0 0
\(463\) 4.47444e8 0.209510 0.104755 0.994498i \(-0.466594\pi\)
0.104755 + 0.994498i \(0.466594\pi\)
\(464\) 1.51293e8 2.62046e8i 0.0703080 0.121777i
\(465\) 0 0
\(466\) 1.48006e8 + 2.56354e8i 0.0677531 + 0.117352i
\(467\) −2.04121e8 + 3.53548e8i −0.0927425 + 0.160635i −0.908664 0.417528i \(-0.862897\pi\)
0.815922 + 0.578162i \(0.196230\pi\)
\(468\) 0 0
\(469\) 1.96285e8 8.27149e8i 0.0878582 0.370236i
\(470\) 6.93202e8 0.307976
\(471\) 0 0
\(472\) 6.59095e8 + 1.14159e9i 0.288503 + 0.499702i
\(473\) 1.35003e8 + 2.33832e8i 0.0586582 + 0.101599i
\(474\) 0 0
\(475\) 4.69507e9 2.01009
\(476\) −1.95599e9 + 5.84983e8i −0.831272 + 0.248610i
\(477\) 0 0
\(478\) 1.40910e9 2.44064e9i 0.590126 1.02213i
\(479\) −1.88014e8 3.25649e8i −0.0781655 0.135387i 0.824293 0.566163i \(-0.191573\pi\)
−0.902458 + 0.430777i \(0.858240\pi\)
\(480\) 0 0
\(481\) −3.67043e8 + 6.35738e8i −0.150387 + 0.260477i
\(482\) −8.08771e8 −0.328973
\(483\) 0 0
\(484\) −1.21786e9 −0.488246
\(485\) 4.31100e9 7.46688e9i 1.71586 2.97196i
\(486\) 0 0
\(487\) 1.96697e9 + 3.40689e9i 0.771696 + 1.33662i 0.936633 + 0.350312i \(0.113924\pi\)
−0.164938 + 0.986304i \(0.552742\pi\)
\(488\) −6.61900e8 + 1.14644e9i −0.257824 + 0.446564i
\(489\) 0 0
\(490\) −2.97578e9 + 1.95479e9i −1.14265 + 0.750608i
\(491\) 4.06838e9 1.55109 0.775543 0.631295i \(-0.217476\pi\)
0.775543 + 0.631295i \(0.217476\pi\)
\(492\) 0 0
\(493\) 1.29839e9 + 2.24887e9i 0.488023 + 0.845280i
\(494\) 5.83627e8 + 1.01087e9i 0.217817 + 0.377270i
\(495\) 0 0
\(496\) 4.66792e8 0.171766
\(497\) −2.42743e9 2.29146e9i −0.886952 0.837270i
\(498\) 0 0
\(499\) −1.26756e9 + 2.19549e9i −0.456687 + 0.791004i −0.998783 0.0493117i \(-0.984297\pi\)
0.542097 + 0.840316i \(0.317631\pi\)
\(500\) −2.34825e9 4.06730e9i −0.840137 1.45516i
\(501\) 0 0
\(502\) −3.90221e8 + 6.75882e8i −0.137673 + 0.238456i
\(503\) 1.65400e9 0.579492 0.289746 0.957104i \(-0.406429\pi\)
0.289746 + 0.957104i \(0.406429\pi\)
\(504\) 0 0
\(505\) −3.47720e9 −1.20146
\(506\) −2.12124e8 + 3.67410e8i −0.0727886 + 0.126074i
\(507\) 0 0
\(508\) −1.91555e8 3.31783e8i −0.0648293 0.112288i
\(509\) −6.05650e8 + 1.04902e9i −0.203568 + 0.352590i −0.949676 0.313235i \(-0.898587\pi\)
0.746108 + 0.665825i \(0.231920\pi\)
\(510\) 0 0
\(511\) 8.64485e8 3.64296e9i 0.286605 1.20776i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 7.00021e8 + 1.21247e9i 0.227374 + 0.393823i
\(515\) 4.20526e9 + 7.28372e9i 1.35665 + 2.34978i
\(516\) 0 0
\(517\) 1.08526e8 0.0345397
\(518\) −1.85101e8 + 7.80021e8i −0.0585134 + 0.246577i
\(519\) 0 0
\(520\) 9.19687e8 1.59294e9i 0.286833 0.496809i
\(521\) −4.39174e8 7.60671e8i −0.136052 0.235649i 0.789947 0.613175i \(-0.210108\pi\)
−0.925999 + 0.377527i \(0.876775\pi\)
\(522\) 0 0
\(523\) 1.35133e9 2.34057e9i 0.413052 0.715427i −0.582170 0.813067i \(-0.697796\pi\)
0.995222 + 0.0976400i \(0.0311294\pi\)
\(524\) −1.26253e9 −0.383339
\(525\) 0 0
\(526\) −4.87680e8 −0.146112
\(527\) −2.00300e9 + 3.46929e9i −0.596133 + 1.03253i
\(528\) 0 0
\(529\) −1.36699e9 2.36770e9i −0.401487 0.695395i
\(530\) −1.23291e9 + 2.13546e9i −0.359720 + 0.623053i
\(531\) 0 0
\(532\) 9.26963e8 + 8.75040e8i 0.266914 + 0.251963i
\(533\) −1.07879e9 −0.308598
\(534\) 0 0
\(535\) −3.36964e9 5.83638e9i −0.951360 1.64780i
\(536\) 2.39815e8 + 4.15372e8i 0.0672667 + 0.116509i
\(537\) 0 0
\(538\) −8.64051e8 −0.239222
\(539\) −4.65882e8 + 3.06038e8i −0.128149 + 0.0841812i
\(540\) 0 0
\(541\) 7.16665e8 1.24130e9i 0.194592 0.337044i −0.752174 0.658964i \(-0.770995\pi\)
0.946767 + 0.321920i \(0.104328\pi\)
\(542\) 2.29458e8 + 3.97433e8i 0.0619022 + 0.107218i
\(543\) 0 0
\(544\) 5.75926e8 9.97533e8i 0.153381 0.265663i
\(545\) 7.05958e9 1.86806
\(546\) 0 0
\(547\) −6.58354e8 −0.171990 −0.0859952 0.996296i \(-0.527407\pi\)
−0.0859952 + 0.996296i \(0.527407\pi\)
\(548\) 9.41039e8 1.62993e9i 0.244273 0.423094i
\(549\) 0 0
\(550\) −5.79152e8 1.00312e9i −0.148431 0.257089i
\(551\) 8.10691e8 1.40416e9i 0.206455 0.357590i
\(552\) 0 0
\(553\) −6.42471e9 + 1.92145e9i −1.61553 + 0.483161i
\(554\) 3.14424e9 0.785655
\(555\) 0 0
\(556\) −1.22906e9 2.12879e9i −0.303257 0.525256i
\(557\) −2.72877e9 4.72637e9i −0.669074 1.15887i −0.978163 0.207837i \(-0.933358\pi\)
0.309089 0.951033i \(-0.399976\pi\)
\(558\) 0 0
\(559\) 2.65193e9 0.642127
\(560\) 4.63802e8 1.95447e9i 0.111603 0.470296i
\(561\) 0 0
\(562\) −7.41198e8 + 1.28379e9i −0.176140 + 0.305083i
\(563\) −1.50153e9 2.60072e9i −0.354612 0.614207i 0.632439 0.774610i \(-0.282054\pi\)
−0.987052 + 0.160403i \(0.948721\pi\)
\(564\) 0 0
\(565\) −1.67920e9 + 2.90846e9i −0.391681 + 0.678412i
\(566\) 3.26462e9 0.756790
\(567\) 0 0
\(568\) 1.88336e9 0.431235
\(569\) −1.62201e9 + 2.80941e9i −0.369115 + 0.639326i −0.989427 0.145029i \(-0.953672\pi\)
0.620313 + 0.784355i \(0.287006\pi\)
\(570\) 0 0
\(571\) −2.44038e9 4.22686e9i −0.548569 0.950149i −0.998373 0.0570221i \(-0.981839\pi\)
0.449804 0.893127i \(-0.351494\pi\)
\(572\) 1.43985e8 2.49389e8i 0.0321684 0.0557174i
\(573\) 0 0
\(574\) −1.12873e9 + 3.37573e8i −0.249115 + 0.0745034i
\(575\) 1.67605e10 3.67662
\(576\) 0 0
\(577\) −3.55569e9 6.15863e9i −0.770563 1.33465i −0.937255 0.348645i \(-0.886642\pi\)
0.166692 0.986009i \(-0.446691\pi\)
\(578\) 3.30122e9 + 5.71788e9i 0.711095 + 1.23165i
\(579\) 0 0
\(580\) −2.55499e9 −0.543741
\(581\) −4.24565e9 4.00783e9i −0.898106 0.847800i
\(582\) 0 0
\(583\) −1.93022e8 + 3.34323e8i −0.0403428 + 0.0698758i
\(584\) 1.05620e9 + 1.82940e9i 0.219433 + 0.380069i
\(585\) 0 0
\(586\) 1.12235e9 1.94398e9i 0.230403 0.399070i
\(587\) −1.89582e9 −0.386869 −0.193434 0.981113i \(-0.561963\pi\)
−0.193434 + 0.981113i \(0.561963\pi\)
\(588\) 0 0
\(589\) 2.50128e9 0.504380
\(590\) 5.56532e9 9.63942e9i 1.11560 1.93227i
\(591\) 0 0
\(592\) −2.26152e8 3.91706e8i −0.0447995 0.0775951i
\(593\) −1.07277e9 + 1.85810e9i −0.211260 + 0.365912i −0.952109 0.305759i \(-0.901090\pi\)
0.740849 + 0.671671i \(0.234423\pi\)
\(594\) 0 0
\(595\) 1.25359e10 + 1.18337e10i 2.43975 + 2.30309i
\(596\) 2.60691e8 0.0504387
\(597\) 0 0
\(598\) 2.08343e9 + 3.60861e9i 0.398406 + 0.690059i
\(599\) −3.73799e9 6.47439e9i −0.710631 1.23085i −0.964621 0.263642i \(-0.915076\pi\)
0.253990 0.967207i \(-0.418257\pi\)
\(600\) 0 0
\(601\) 1.83935e9 0.345623 0.172812 0.984955i \(-0.444715\pi\)
0.172812 + 0.984955i \(0.444715\pi\)
\(602\) 2.77470e9 8.29834e8i 0.518355 0.155026i
\(603\) 0 0
\(604\) 1.42930e9 2.47561e9i 0.263932 0.457144i
\(605\) 5.14173e9 + 8.90574e9i 0.943986 + 1.63503i
\(606\) 0 0
\(607\) −2.18208e9 + 3.77948e9i −0.396014 + 0.685916i −0.993230 0.116164i \(-0.962940\pi\)
0.597216 + 0.802080i \(0.296274\pi\)
\(608\) −7.19197e8 −0.129773
\(609\) 0 0
\(610\) 1.11780e10 1.99393
\(611\) 5.32961e8 9.23115e8i 0.0945259 0.163724i
\(612\) 0 0
\(613\) 1.25453e9 + 2.17290e9i 0.219972 + 0.381003i 0.954799 0.297251i \(-0.0960699\pi\)
−0.734827 + 0.678255i \(0.762737\pi\)
\(614\) −2.42920e9 + 4.20750e9i −0.423520 + 0.733558i
\(615\) 0 0
\(616\) 7.26120e7 3.05989e8i 0.0125163 0.0527439i
\(617\) 1.26023e9 0.215999 0.108000 0.994151i \(-0.465555\pi\)
0.108000 + 0.994151i \(0.465555\pi\)
\(618\) 0 0
\(619\) 1.67673e9 + 2.90418e9i 0.284148 + 0.492159i 0.972402 0.233311i \(-0.0749559\pi\)
−0.688254 + 0.725470i \(0.741623\pi\)
\(620\) −1.97077e9 3.41348e9i −0.332097 0.575209i
\(621\) 0 0
\(622\) −7.56017e9 −1.25970
\(623\) −5.54023e9 + 1.65693e9i −0.917951 + 0.274533i
\(624\) 0 0
\(625\) −1.14723e10 + 1.98706e10i −1.87962 + 3.25559i
\(626\) 4.89851e8 + 8.48447e8i 0.0798094 + 0.138234i
\(627\) 0 0
\(628\) 2.18175e9 3.77891e9i 0.351517 0.608846i
\(629\) 3.88165e9 0.621926
\(630\) 0 0
\(631\) 8.67026e9 1.37382 0.686910 0.726743i \(-0.258967\pi\)
0.686910 + 0.726743i \(0.258967\pi\)
\(632\) 1.89170e9 3.27653e9i 0.298087 0.516302i
\(633\) 0 0
\(634\) −4.42918e9 7.67156e9i −0.690256 1.19556i
\(635\) −1.61747e9 + 2.80154e9i −0.250685 + 0.434199i
\(636\) 0 0
\(637\) 3.15237e8 + 5.46566e9i 0.0483224 + 0.837828i
\(638\) −4.00005e8 −0.0609808
\(639\) 0 0
\(640\) 5.66660e8 + 9.81483e8i 0.0854461 + 0.147997i
\(641\) 2.88292e9 + 4.99337e9i 0.432345 + 0.748843i 0.997075 0.0764328i \(-0.0243531\pi\)
−0.564730 + 0.825276i \(0.691020\pi\)
\(642\) 0 0
\(643\) 2.51024e9 0.372371 0.186186 0.982515i \(-0.440387\pi\)
0.186186 + 0.982515i \(0.440387\pi\)
\(644\) 3.30908e9 + 3.12372e9i 0.488210 + 0.460863i
\(645\) 0 0
\(646\) 3.08606e9 5.34521e9i 0.450392 0.780102i
\(647\) −3.91464e9 6.78036e9i −0.568234 0.984210i −0.996741 0.0806713i \(-0.974294\pi\)
0.428507 0.903538i \(-0.359040\pi\)
\(648\) 0 0
\(649\) 8.71297e8 1.50913e9i 0.125115 0.216706i
\(650\) −1.13766e10 −1.62486
\(651\) 0 0
\(652\) 1.31073e8 0.0185203
\(653\) 2.72632e9 4.72212e9i 0.383160 0.663653i −0.608352 0.793668i \(-0.708169\pi\)
0.991512 + 0.130014i \(0.0415023\pi\)
\(654\) 0 0
\(655\) 5.33034e9 + 9.23241e9i 0.741157 + 1.28372i
\(656\) 3.32346e8 5.75641e8i 0.0459650 0.0796137i
\(657\) 0 0
\(658\) 2.68774e8 1.13262e9i 0.0367788 0.154986i
\(659\) 7.30618e9 0.994470 0.497235 0.867616i \(-0.334349\pi\)
0.497235 + 0.867616i \(0.334349\pi\)
\(660\) 0 0
\(661\) −5.63349e9 9.75749e9i −0.758704 1.31411i −0.943512 0.331339i \(-0.892500\pi\)
0.184808 0.982775i \(-0.440834\pi\)
\(662\) 2.28348e9 + 3.95510e9i 0.305910 + 0.529852i
\(663\) 0 0
\(664\) 3.29404e9 0.436658
\(665\) 2.48525e9 1.04729e10i 0.327714 1.38099i
\(666\) 0 0
\(667\) 2.89401e9 5.01257e9i 0.377624 0.654063i
\(668\) −1.07192e9 1.85663e9i −0.139138 0.240995i
\(669\) 0 0
\(670\) 2.02497e9 3.50736e9i 0.260110 0.450524i
\(671\) 1.75001e9 0.223621
\(672\) 0 0
\(673\) −4.40416e9 −0.556943 −0.278471 0.960445i \(-0.589828\pi\)
−0.278471 + 0.960445i \(0.589828\pi\)
\(674\) −1.39013e9 + 2.40778e9i −0.174883 + 0.302906i
\(675\) 0 0
\(676\) 5.93770e8 + 1.02844e9i 0.0739273 + 0.128046i
\(677\) −4.28255e9 + 7.41760e9i −0.530447 + 0.918761i 0.468922 + 0.883240i \(0.344643\pi\)
−0.999369 + 0.0355218i \(0.988691\pi\)
\(678\) 0 0
\(679\) −1.05286e10 9.93885e9i −1.29070 1.21841i
\(680\) −9.72611e9 −1.18620
\(681\) 0 0
\(682\) −3.08540e8 5.34408e8i −0.0372449 0.0645101i
\(683\) −5.18466e9 8.98010e9i −0.622656 1.07847i −0.988989 0.147988i \(-0.952720\pi\)
0.366333 0.930484i \(-0.380613\pi\)
\(684\) 0 0
\(685\) −1.58921e10 −1.88914
\(686\) 2.04013e9 + 5.62004e9i 0.241281 + 0.664668i
\(687\) 0 0
\(688\) −8.16986e8 + 1.41506e9i −0.0956434 + 0.165659i
\(689\) 1.89581e9 + 3.28364e9i 0.220815 + 0.382462i
\(690\) 0 0
\(691\) 6.88286e9 1.19215e10i 0.793589 1.37454i −0.130142 0.991495i \(-0.541543\pi\)
0.923731 0.383041i \(-0.125123\pi\)
\(692\) −3.81084e9 −0.437168
\(693\) 0 0
\(694\) 1.44485e9 0.164083
\(695\) −1.03780e10 + 1.79753e10i −1.17265 + 2.03109i
\(696\) 0 0
\(697\) 2.85218e9 + 4.94013e9i 0.319053 + 0.552616i
\(698\) −1.68743e9 + 2.92271e9i −0.187815 + 0.325305i
\(699\) 0 0
\(700\) −1.19032e10 + 3.55993e9i −1.31166 + 0.392282i
\(701\) −1.60131e10 −1.75575 −0.877874 0.478891i \(-0.841039\pi\)
−0.877874 + 0.478891i \(0.841039\pi\)
\(702\) 0 0
\(703\) −1.21182e9 2.09893e9i −0.131551 0.227853i
\(704\) 8.87152e7 + 1.53659e8i 0.00958283 + 0.0165980i
\(705\) 0 0
\(706\) 3.92439e9 0.419716
\(707\) −1.34821e9 + 5.68139e9i −0.143480 + 0.604626i
\(708\) 0 0
\(709\) −9.47418e9 + 1.64098e10i −0.998343 + 1.72918i −0.449344 + 0.893359i \(0.648342\pi\)
−0.549000 + 0.835822i \(0.684991\pi\)
\(710\) −7.95143e9 1.37723e10i −0.833760 1.44411i
\(711\) 0 0
\(712\) 1.63127e9 2.82545e9i 0.169374 0.293364i
\(713\) 8.92906e9 0.922556
\(714\) 0 0
\(715\) −2.43158e9 −0.248781
\(716\) −1.58834e9 + 2.75109e9i −0.161714 + 0.280098i
\(717\) 0 0
\(718\) −4.28838e9 7.42770e9i −0.432372 0.748891i
\(719\) 4.22087e9 7.31076e9i 0.423497 0.733519i −0.572782 0.819708i \(-0.694136\pi\)
0.996279 + 0.0861893i \(0.0274690\pi\)
\(720\) 0 0
\(721\) 1.35313e10 4.04685e9i 1.34452 0.402109i
\(722\) 3.29721e9 0.326036
\(723\) 0 0
\(724\) 4.00742e9 + 6.94105e9i 0.392446 + 0.679736i
\(725\) 7.90136e9 + 1.36856e10i 0.770050 + 1.33377i
\(726\) 0 0
\(727\) −1.46028e9 −0.140950 −0.0704752 0.997514i \(-0.522452\pi\)
−0.0704752 + 0.997514i \(0.522452\pi\)
\(728\) −2.24612e9 2.12030e9i −0.215761 0.203675i
\(729\) 0 0
\(730\) 8.91845e9 1.54472e10i 0.848515 1.46967i
\(731\) −7.01135e9 1.21440e10i −0.663882 1.14988i
\(732\) 0 0
\(733\) −1.59745e9 + 2.76686e9i −0.149818 + 0.259492i −0.931160 0.364611i \(-0.881202\pi\)
0.781342 + 0.624103i \(0.214535\pi\)
\(734\) −2.16486e9 −0.202066
\(735\) 0 0
\(736\) −2.56739e9 −0.237367
\(737\) 3.17026e8 5.49105e8i 0.0291715 0.0505265i
\(738\) 0 0
\(739\) 5.44510e9 + 9.43118e9i 0.496307 + 0.859628i 0.999991 0.00425955i \(-0.00135586\pi\)
−0.503684 + 0.863888i \(0.668023\pi\)
\(740\) −1.90960e9 + 3.30752e9i −0.173233 + 0.300049i
\(741\) 0 0
\(742\) 3.01108e9 + 2.84242e9i 0.270588 + 0.255431i
\(743\) −1.23102e10 −1.10105 −0.550523 0.834820i \(-0.685572\pi\)
−0.550523 + 0.834820i \(0.685572\pi\)
\(744\) 0 0
\(745\) −1.10062e9 1.90633e9i −0.0975194 0.168909i
\(746\) 2.64113e9 + 4.57457e9i 0.232918 + 0.403426i
\(747\) 0 0
\(748\) −1.52270e9 −0.133033
\(749\) −1.08425e10 + 3.24270e9i −0.942855 + 0.281982i
\(750\) 0 0
\(751\) 1.06396e9 1.84283e9i 0.0916612 0.158762i −0.816549 0.577276i \(-0.804116\pi\)
0.908210 + 0.418514i \(0.137449\pi\)
\(752\) 3.28380e8 + 5.68772e8i 0.0281588 + 0.0487726i
\(753\) 0 0
\(754\) −1.96438e9 + 3.40240e9i −0.166888 + 0.289059i
\(755\) −2.41376e10 −2.04117
\(756\) 0 0
\(757\) −1.35668e10 −1.13669 −0.568344 0.822791i \(-0.692416\pi\)
−0.568344 + 0.822791i \(0.692416\pi\)
\(758\) −7.90993e8 + 1.37004e9i −0.0659675 + 0.114259i
\(759\) 0 0
\(760\) 3.03641e9 + 5.25921e9i 0.250907 + 0.434583i
\(761\) 4.19117e9 7.25933e9i 0.344738 0.597104i −0.640568 0.767902i \(-0.721301\pi\)
0.985306 + 0.170797i \(0.0546343\pi\)
\(762\) 0 0
\(763\) 2.73720e9 1.15346e10i 0.223085 0.940086i
\(764\) 1.09032e10 0.884560
\(765\) 0 0
\(766\) 4.34281e9 + 7.52197e9i 0.349116 + 0.604687i
\(767\) −8.55767e9 1.48223e10i −0.684813 1.18613i
\(768\) 0 0
\(769\) 2.02485e10 1.60565 0.802823 0.596218i \(-0.203330\pi\)
0.802823 + 0.596218i \(0.203330\pi\)
\(770\) −2.54414e9 + 7.60882e8i −0.200828 + 0.0600620i
\(771\) 0 0
\(772\) 2.58139e9 4.47109e9i 0.201926 0.349746i
\(773\) 1.08122e10 + 1.87272e10i 0.841947 + 1.45829i 0.888247 + 0.459367i \(0.151924\pi\)
−0.0463002 + 0.998928i \(0.514743\pi\)
\(774\) 0 0
\(775\) −1.21893e10 + 2.11125e10i −0.940638 + 1.62923i
\(776\) 8.16876e9 0.627538
\(777\) 0 0
\(778\) 4.67850e9 0.356187
\(779\) 1.78085e9 3.08453e9i 0.134973 0.233780i
\(780\) 0 0
\(781\) −1.24486e9 2.15616e9i −0.0935066 0.161958i
\(782\) 1.10166e10 1.90814e10i 0.823806 1.42687i
\(783\) 0 0
\(784\) −3.01357e9 1.51561e9i −0.223345 0.112326i
\(785\) −3.68449e10 −2.71853
\(786\) 0 0
\(787\) 6.63279e9 + 1.14883e10i 0.485048 + 0.840128i 0.999852 0.0171798i \(-0.00546878\pi\)
−0.514804 + 0.857308i \(0.672135\pi\)
\(788\) 2.20295e9 + 3.81562e9i 0.160385 + 0.277794i
\(789\) 0 0
\(790\) −3.19466e10 −2.30532
\(791\) 4.10105e9 + 3.87133e9i 0.294630 + 0.278127i
\(792\) 0 0
\(793\) 8.59409e9 1.48854e10i 0.611989 1.06000i
\(794\) 6.33184e9 + 1.09671e10i 0.448909 + 0.777533i
\(795\) 0 0
\(796\) 5.11630e9 8.86169e9i 0.359551 0.622760i
\(797\) 6.98382e9 0.488640 0.244320 0.969695i \(-0.421435\pi\)
0.244320 + 0.969695i \(0.421435\pi\)
\(798\) 0 0
\(799\) −5.63630e9 −0.390913
\(800\) 3.50481e9 6.07051e9i 0.242019 0.419189i
\(801\) 0 0
\(802\) 3.80004e9 + 6.58186e9i 0.260123 + 0.450545i
\(803\) 1.39626e9 2.41839e9i 0.0951614 0.164824i
\(804\) 0 0
\(805\) 8.87186e9 3.73862e10i 0.599417 2.52596i
\(806\) −6.06082e9 −0.407717
\(807\) 0 0
\(808\) −1.64721e9 2.85304e9i −0.109852 0.190269i
\(809\) 4.95232e9 + 8.57767e9i 0.328843 + 0.569573i 0.982283 0.187406i \(-0.0600079\pi\)
−0.653439 + 0.756979i \(0.726675\pi\)
\(810\) 0 0
\(811\) −1.09986e10 −0.724046 −0.362023 0.932169i \(-0.617914\pi\)
−0.362023 + 0.932169i \(0.617914\pi\)
\(812\) −9.90644e8 + 4.17459e9i −0.0649339 + 0.273633i
\(813\) 0 0
\(814\) −2.98963e8 + 5.17820e8i −0.0194282 + 0.0336506i
\(815\) −5.53384e8 9.58489e8i −0.0358076 0.0620205i
\(816\) 0 0
\(817\) −4.37776e9 + 7.58251e9i −0.280850 + 0.486447i
\(818\) 5.51223e9 0.352120
\(819\) 0 0
\(820\) −5.61259e9 −0.355480
\(821\) −3.23026e9 + 5.59497e9i −0.203721 + 0.352855i −0.949725 0.313087i \(-0.898637\pi\)
0.746003 + 0.665942i \(0.231970\pi\)
\(822\) 0 0
\(823\) −6.01171e9 1.04126e10i −0.375923 0.651117i 0.614542 0.788884i \(-0.289341\pi\)
−0.990465 + 0.137767i \(0.956008\pi\)
\(824\) −3.98419e9 + 6.90082e9i −0.248082 + 0.429690i
\(825\) 0 0
\(826\) −1.35920e10 1.28306e10i −0.839175 0.792169i
\(827\) 2.82746e10 1.73831 0.869156 0.494538i \(-0.164663\pi\)
0.869156 + 0.494538i \(0.164663\pi\)
\(828\) 0 0
\(829\) −3.16275e9 5.47804e9i −0.192807 0.333952i 0.753372 0.657594i \(-0.228426\pi\)
−0.946179 + 0.323642i \(0.895093\pi\)
\(830\) −1.39073e10 2.40881e10i −0.844245 1.46228i
\(831\) 0 0
\(832\) 1.74268e9 0.104903
\(833\) 2.41955e10 1.58940e10i 1.45036 0.952745i
\(834\) 0 0
\(835\) −9.05121e9 + 1.56772e10i −0.538027 + 0.931890i
\(836\) 4.75375e8 + 8.23373e8i 0.0281393 + 0.0487388i
\(837\) 0 0
\(838\) −5.66691e9 + 9.81538e9i −0.332654 + 0.576173i
\(839\) 1.89113e10 1.10549 0.552744 0.833351i \(-0.313581\pi\)
0.552744 + 0.833351i \(0.313581\pi\)
\(840\) 0 0
\(841\) −1.17926e10 −0.683635
\(842\) −1.14725e10 + 1.98710e10i −0.662319 + 1.14717i
\(843\) 0 0
\(844\) 6.75251e9 + 1.16957e10i 0.386604 + 0.669618i
\(845\) 5.01372e9 8.68402e9i 0.285866 0.495134i
\(846\) 0 0
\(847\) 1.65447e10 4.94805e9i 0.935548 0.279796i
\(848\) −2.33619e9 −0.131559
\(849\) 0 0
\(850\) 3.00782e10 + 5.20969e10i 1.67991 + 2.90968i
\(851\) −4.32595e9 7.49277e9i −0.240618 0.416763i
\(852\) 0 0
\(853\) 2.21338e10 1.22105 0.610526 0.791996i \(-0.290958\pi\)
0.610526 + 0.791996i \(0.290958\pi\)
\(854\) 4.33404e9 1.82637e10i 0.238117 1.00343i
\(855\) 0 0
\(856\) 3.19250e9 5.52957e9i 0.173969 0.301324i
\(857\) −7.79400e9 1.34996e10i −0.422988 0.732636i 0.573243 0.819386i \(-0.305685\pi\)
−0.996230 + 0.0867498i \(0.972352\pi\)
\(858\) 0 0
\(859\) 1.23240e10 2.13458e10i 0.663400 1.14904i −0.316316 0.948654i \(-0.602446\pi\)
0.979716 0.200389i \(-0.0642205\pi\)
\(860\) 1.37971e10 0.739678
\(861\) 0 0
\(862\) 1.04652e10 0.556508
\(863\) −1.11714e10 + 1.93494e10i −0.591654 + 1.02478i 0.402355 + 0.915484i \(0.368192\pi\)
−0.994010 + 0.109292i \(0.965142\pi\)
\(864\) 0 0
\(865\) 1.60891e10 + 2.78672e10i 0.845232 + 1.46399i
\(866\) −6.31582e8 + 1.09393e9i −0.0330459 + 0.0572371i
\(867\) 0 0
\(868\) −6.34139e9 + 1.89653e9i −0.329128 + 0.0984332i
\(869\) −5.00151e9 −0.258543
\(870\) 0 0
\(871\) −3.11376e9 5.39318e9i −0.159669 0.276555i
\(872\) 3.34423e9 + 5.79238e9i 0.170800 + 0.295835i
\(873\) 0 0
\(874\) −1.37572e10 −0.697011
\(875\) 4.84262e10 + 4.57136e10i 2.44372 + 2.30684i
\(876\) 0 0
\(877\) 6.90962e7 1.19678e8i 0.00345904 0.00599123i −0.864291 0.502993i \(-0.832232\pi\)
0.867750 + 0.497001i \(0.165566\pi\)
\(878\) 9.58115e9 + 1.65950e10i 0.477735 + 0.827461i
\(879\) 0 0
\(880\) 7.49101e8 1.29748e9i 0.0370554 0.0641818i
\(881\) −1.53707e10 −0.757320 −0.378660 0.925536i \(-0.623615\pi\)
−0.378660 + 0.925536i \(0.623615\pi\)
\(882\) 0 0
\(883\) −1.20807e10 −0.590515 −0.295257 0.955418i \(-0.595405\pi\)
−0.295257 + 0.955418i \(0.595405\pi\)
\(884\) −7.47781e9 + 1.29519e10i −0.364076 + 0.630597i
\(885\) 0 0
\(886\) −1.62384e8 2.81257e8i −0.00784377 0.0135858i
\(887\) 7.18701e9 1.24483e10i 0.345793 0.598930i −0.639705 0.768621i \(-0.720943\pi\)
0.985497 + 0.169690i \(0.0542767\pi\)
\(888\) 0 0
\(889\) 3.95029e9 + 3.72902e9i 0.188570 + 0.178008i
\(890\) −2.75486e10 −1.30989
\(891\) 0 0
\(892\) −4.95620e8 8.58439e8i −0.0233815 0.0404979i
\(893\) 1.75960e9 + 3.04772e9i 0.0826866 + 0.143217i
\(894\) 0 0
\(895\) 2.68236e10 1.25065
\(896\) 1.82335e9 5.45314e8i 0.0846823 0.0253261i
\(897\) 0 0
\(898\) −6.90938e9 + 1.19674e10i −0.318399 + 0.551483i
\(899\) 4.20941e9 + 7.29091e9i 0.193225 + 0.334675i
\(900\) 0 0
\(901\) 1.00245e10 1.73630e10i 0.456591 0.790839i
\(902\) −8.78697e8 −0.0398672
\(903\) 0 0
\(904\) −3.18185e9 −0.143249
\(905\) 3.38382e10 5.86095e10i 1.51753 2.62844i
\(906\) 0 0
\(907\) 1.12941e10 + 1.95619e10i 0.502603 + 0.870533i 0.999995 + 0.00300772i \(0.000957390\pi\)
−0.497393 + 0.867525i \(0.665709\pi\)
\(908\) 7.21875e9 1.25032e10i 0.320009 0.554271i
\(909\) 0 0
\(910\) −6.02200e9 + 2.53768e10i −0.264908 + 1.11633i
\(911\) 4.00994e10 1.75721 0.878606 0.477548i \(-0.158474\pi\)
0.878606 + 0.477548i \(0.158474\pi\)
\(912\) 0 0
\(913\) −2.17730e9 3.77119e9i −0.0946826 0.163995i
\(914\) −1.03770e10 1.79734e10i −0.449530 0.778608i
\(915\) 0 0
\(916\) 3.76824e9 0.161996
\(917\) 1.71515e10 5.12955e9i 0.734531 0.219678i
\(918\) 0 0
\(919\) −2.21264e9 + 3.83241e9i −0.0940387 + 0.162880i −0.909207 0.416344i \(-0.863311\pi\)
0.815168 + 0.579224i \(0.196644\pi\)
\(920\) 1.08394e10 + 1.87744e10i 0.458931 + 0.794891i
\(921\) 0 0
\(922\) −5.18730e9 + 8.98466e9i −0.217963 + 0.377523i
\(923\) −2.44535e10 −1.02361
\(924\) 0 0
\(925\) 2.36219e10 0.981336
\(926\) 1.78977e9 3.09998e9i 0.0740730 0.128298i
\(927\) 0 0
\(928\) −1.21034e9 2.09637e9i −0.0497152 0.0861093i
\(929\) 1.43849e10 2.49153e10i 0.588641 1.01956i −0.405769 0.913976i \(-0.632996\pi\)
0.994411 0.105581i \(-0.0336703\pi\)
\(930\) 0 0
\(931\) −1.61480e10 8.12129e9i −0.655837 0.329838i
\(932\) 2.36810e9 0.0958173
\(933\) 0 0
\(934\) 1.63297e9 + 2.82838e9i 0.0655788 + 0.113586i
\(935\) 6.42876e9 + 1.11349e10i 0.257209 + 0.445500i
\(936\) 0 0
\(937\) −3.85301e10 −1.53007 −0.765036 0.643988i \(-0.777279\pi\)
−0.765036 + 0.643988i \(0.777279\pi\)
\(938\) −4.94552e9 4.66850e9i −0.195660 0.184700i
\(939\) 0 0
\(940\) 2.77281e9 4.80264e9i 0.108886 0.188596i
\(941\) 1.98576e10 + 3.43943e10i 0.776895 + 1.34562i 0.933723 + 0.357995i \(0.116540\pi\)
−0.156829 + 0.987626i \(0.550127\pi\)
\(942\) 0 0
\(943\) 6.35730e9 1.10112e10i 0.246878 0.427605i
\(944\) 1.05455e10 0.408005
\(945\) 0 0
\(946\) 2.16005e9 0.0829553
\(947\) 1.22182e10 2.11625e10i 0.467500 0.809734i −0.531810 0.846864i \(-0.678488\pi\)
0.999310 + 0.0371293i \(0.0118213\pi\)
\(948\) 0 0
\(949\) −1.37137e10 2.37528e10i −0.520863 0.902160i
\(950\) 1.87803e10 3.25284e10i 0.710672 1.23092i
\(951\) 0 0
\(952\) −3.77109e9 + 1.58915e10i −0.141657 + 0.596945i
\(953\) −2.13072e10 −0.797445 −0.398722 0.917072i \(-0.630546\pi\)
−0.398722 + 0.917072i \(0.630546\pi\)
\(954\) 0 0
\(955\) −4.60327e10 7.97310e10i −1.71023 2.96221i
\(956\) −1.12728e10 1.95251e10i −0.417282 0.722754i
\(957\) 0 0
\(958\) −3.00822e9 −0.110543
\(959\) −6.16181e9 + 2.59660e10i −0.225602 + 0.950691i
\(960\) 0 0
\(961\) 7.26253e9 1.25791e10i 0.263971 0.457211i
\(962\) 2.93635e9 + 5.08590e9i 0.106339 + 0.184185i
\(963\) 0 0
\(964\) −3.23508e9 + 5.60333e9i −0.116310 + 0.201454i
\(965\) −4.35938e10 −1.56164
\(966\) 0 0
\(967\) −2.39953e10 −0.853363 −0.426681 0.904402i \(-0.640317\pi\)
−0.426681 + 0.904402i \(0.640317\pi\)
\(968\) −4.87144e9 + 8.43758e9i −0.172621 + 0.298988i
\(969\) 0 0
\(970\) −3.44880e10 5.97350e10i −1.21330 2.10149i
\(971\) 1.42414e10 2.46668e10i 0.499212 0.864661i −0.500787 0.865570i \(-0.666956\pi\)
1.00000 0.000909327i \(0.000289448\pi\)
\(972\) 0 0
\(973\) 2.53459e10 + 2.39261e10i 0.882088 + 0.832679i
\(974\) 3.14715e10 1.09134
\(975\) 0 0
\(976\) 5.29520e9 + 9.17155e9i 0.182309 + 0.315768i
\(977\) −2.37646e10 4.11615e10i −0.815266 1.41208i −0.909137 0.416498i \(-0.863257\pi\)
0.0938706 0.995584i \(-0.470076\pi\)
\(978\) 0 0
\(979\) −4.31296e9 −0.146905
\(980\) 1.64007e9 + 2.84359e10i 0.0556634 + 0.965109i
\(981\) 0 0
\(982\) 1.62735e10 2.81865e10i 0.548392 0.949842i
\(983\) 4.95134e9 + 8.57597e9i 0.166259 + 0.287969i 0.937102 0.349057i \(-0.113498\pi\)
−0.770843 + 0.637026i \(0.780165\pi\)
\(984\) 0 0
\(985\) 1.86015e10 3.22187e10i 0.620184 1.07419i
\(986\) 2.07742e10 0.690168
\(987\) 0 0
\(988\) 9.33803e9 0.308039
\(989\) −1.56278e10 + 2.70681e10i −0.513700 + 0.889755i
\(990\) 0 0
\(991\) −9.34663e8 1.61888e9i −0.0305069 0.0528394i 0.850369 0.526187i \(-0.176379\pi\)
−0.880876 + 0.473348i \(0.843045\pi\)
\(992\) 1.86717e9 3.23403e9i 0.0607286 0.105185i
\(993\) 0 0
\(994\) −2.55855e10 + 7.65190e9i −0.826306 + 0.247125i
\(995\) −8.64029e10 −2.78066
\(996\) 0 0
\(997\) −7.70789e9 1.33505e10i −0.246322 0.426642i 0.716181 0.697915i \(-0.245889\pi\)
−0.962502 + 0.271273i \(0.912555\pi\)
\(998\) 1.01405e10 + 1.75639e10i 0.322926 + 0.559324i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.j.37.1 yes 6
3.2 odd 2 126.8.g.i.37.3 6
7.4 even 3 inner 126.8.g.j.109.1 yes 6
21.11 odd 6 126.8.g.i.109.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.8.g.i.37.3 6 3.2 odd 2
126.8.g.i.109.3 yes 6 21.11 odd 6
126.8.g.j.37.1 yes 6 1.1 even 1 trivial
126.8.g.j.109.1 yes 6 7.4 even 3 inner