Properties

Label 126.8.g.i
Level $126$
Weight $8$
Character orbit 126.g
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1111x^{4} + 2838x^{3} + 1231236x^{2} + 959040x + 746496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 8 \beta_{3} - 8) q^{2} + 64 \beta_{3} q^{4} + (\beta_{5} - \beta_{4} + 240 \beta_{3} + \cdots + 239) q^{5} + (\beta_{5} + 5 \beta_{4} - 40 \beta_{3} + \cdots - 263) q^{7} + 512 q^{8} + ( - 8 \beta_{5} + 8 \beta_{4} + \cdots - 8 \beta_{2}) q^{10}+ \cdots + (33400 \beta_{5} + 10152 \beta_{4} + \cdots - 3111552) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 192 q^{4} + 718 q^{5} - 1471 q^{7} + 3072 q^{8} + 5744 q^{10} - 208 q^{11} + 19394 q^{13} + 4504 q^{14} - 12288 q^{16} + 19244 q^{17} - 25419 q^{19} - 91904 q^{20} + 3328 q^{22} + 67400 q^{23}+ \cdots - 20461248 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 1111x^{4} + 2838x^{3} + 1231236x^{2} + 959040x + 746496 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 1111\nu^{4} - 1234321\nu^{3} + 1231236\nu^{2} + 343174599\nu - 1407708999 ) / 342215559 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -277\nu^{5} + 307747\nu^{4} + 308642\nu^{3} + 341052372\nu^{2} + 1292300757\nu + 254114289315 ) / 1026646677 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 205535 \nu^{5} - 205679 \nu^{4} + 228509369 \nu^{3} + 405566106 \nu^{2} + 253239389244 \nu + 138226176 ) / 197116161984 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 205607 \nu^{5} - 285671 \nu^{4} + 317380481 \nu^{3} + 316917114 \nu^{2} + 745960743324 \nu + 76853753856 ) / 98558080992 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 50767097 \nu^{5} + 50749385 \nu^{4} - 56382566735 \nu^{3} - 165939314838 \nu^{2} + \cdots - 48670690190400 ) / 197116161984 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4\beta_{4} - 8\beta_{3} + \beta _1 + 1 ) / 21 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -9\beta_{5} - \beta_{4} - 2221\beta_{3} - \beta _1 - 2224 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1096\beta_{4} - 2192\beta_{3} + 63\beta_{2} - 5543\beta _1 - 39248 ) / 21 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9999\beta_{5} - 2239\beta_{4} + 2476823\beta_{3} + 9999\beta_{2} + 1940\beta _1 + 1940 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 194355\beta_{5} - 6148775\beta_{4} + 80461219\beta_{3} + 4957891\beta _1 + 73121560 ) / 21 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-1 - \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−0.389676 0.674939i
−16.2090 28.0749i
17.0987 + 29.6158i
−0.389676 + 0.674939i
−16.2090 + 28.0749i
17.0987 29.6158i
−4.00000 + 6.92820i 0 −32.0000 55.4256i −6.21726 + 10.7686i 0 −879.593 + 223.290i 512.000 0 −49.7381 86.1488i
37.2 −4.00000 + 6.92820i 0 −32.0000 55.4256i 95.0129 164.567i 0 −515.817 746.643i 512.000 0 760.103 + 1316.54i
37.3 −4.00000 + 6.92820i 0 −32.0000 55.4256i 270.204 468.008i 0 659.910 + 622.946i 512.000 0 2161.63 + 3744.06i
109.1 −4.00000 6.92820i 0 −32.0000 + 55.4256i −6.21726 10.7686i 0 −879.593 223.290i 512.000 0 −49.7381 + 86.1488i
109.2 −4.00000 6.92820i 0 −32.0000 + 55.4256i 95.0129 + 164.567i 0 −515.817 + 746.643i 512.000 0 760.103 1316.54i
109.3 −4.00000 6.92820i 0 −32.0000 + 55.4256i 270.204 + 468.008i 0 659.910 622.946i 512.000 0 2161.63 3744.06i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.8.g.i 6
3.b odd 2 1 126.8.g.j yes 6
7.c even 3 1 inner 126.8.g.i 6
21.h odd 6 1 126.8.g.j yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.8.g.i 6 1.a even 1 1 trivial
126.8.g.i 6 7.c even 3 1 inner
126.8.g.j yes 6 3.b odd 2 1
126.8.g.j yes 6 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 718T_{5}^{5} + 421915T_{5}^{4} - 69765102T_{5}^{3} + 9679473441T_{5}^{2} + 119531204280T_{5} + 1630524686400 \) acting on \(S_{8}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 64)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 1630524686400 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 55\!\cdots\!07 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 80\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( (T^{3} - 9697 T^{2} + \cdots + 201095083596)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 96\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 41\!\cdots\!44 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 48\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots - 115409062150992)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 14\!\cdots\!21 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 43\!\cdots\!20)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots + 38\!\cdots\!48)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 61\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 35\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 37\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 10\!\cdots\!40)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 41\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 17\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( (T^{3} + \cdots - 22\!\cdots\!72)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 95\!\cdots\!74)^{2} \) Copy content Toggle raw display
show more
show less