Properties

Label 126.8.g.h.37.1
Level $126$
Weight $8$
Character 126.37
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 2119x^{4} - 65706x^{3} + 4519836x^{2} - 71825616x + 1150023744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(-26.0602 + 45.1375i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.8.g.h.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-201.921 + 349.738i) q^{5} +(514.742 + 747.384i) q^{7} +512.000 q^{8} +(-1615.37 - 2797.90i) q^{10} +(3237.34 + 5607.24i) q^{11} +11611.3 q^{13} +(-7237.00 + 576.704i) q^{14} +(-2048.00 + 3547.24i) q^{16} +(10154.5 + 17588.1i) q^{17} +(23247.9 - 40266.5i) q^{19} +25845.9 q^{20} -51797.4 q^{22} +(-6578.39 + 11394.1i) q^{23} +(-42481.8 - 73580.6i) q^{25} +(-46445.2 + 80445.4i) q^{26} +(24952.5 - 52446.2i) q^{28} +87278.1 q^{29} +(125138. + 216746. i) q^{31} +(-16384.0 - 28377.9i) q^{32} -162472. q^{34} +(-365326. + 29112.2i) q^{35} +(-197166. + 341501. i) q^{37} +(185983. + 322132. i) q^{38} +(-103384. + 179066. i) q^{40} +233278. q^{41} +596690. q^{43} +(207190. - 358863. i) q^{44} +(-52627.1 - 91152.9i) q^{46} +(-104168. + 180424. i) q^{47} +(-293623. + 769421. i) q^{49} +679709. q^{50} +(-371561. - 643563. i) q^{52} +(-551131. - 954586. i) q^{53} -2.61475e6 q^{55} +(263548. + 382661. i) q^{56} +(-349113. + 604681. i) q^{58} +(-1.06718e6 - 1.84842e6i) q^{59} +(-1.32732e6 + 2.29899e6i) q^{61} -2.00222e6 q^{62} +262144. q^{64} +(-2.34456e6 + 4.06091e6i) q^{65} +(-38517.8 - 66714.7i) q^{67} +(649889. - 1.12564e6i) q^{68} +(1.25961e6 - 2.64750e6i) q^{70} -1.55255e6 q^{71} +(-2.33206e6 - 4.03924e6i) q^{73} +(-1.57733e6 - 2.73201e6i) q^{74} -2.97573e6 q^{76} +(-2.52436e6 + 5.30582e6i) q^{77} +(1.16745e6 - 2.02209e6i) q^{79} +(-827069. - 1.43253e6i) q^{80} +(-933113. + 1.61620e6i) q^{82} +5.17043e6 q^{83} -8.20165e6 q^{85} +(-2.38676e6 + 4.13399e6i) q^{86} +(1.65752e6 + 2.87090e6i) q^{88} +(896976. - 1.55361e6i) q^{89} +(5.97682e6 + 8.67810e6i) q^{91} +842034. q^{92} +(-833343. - 1.44339e6i) q^{94} +(9.38847e6 + 1.62613e7i) q^{95} +2.34436e6 q^{97} +(-4.15621e6 - 5.11197e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 192 q^{4} - 110 q^{5} + 635 q^{7} + 3072 q^{8} - 880 q^{10} + 548 q^{11} + 19898 q^{13} - 4568 q^{14} - 12288 q^{16} + 20972 q^{17} + 28383 q^{19} + 14080 q^{20} - 8768 q^{22} + 32732 q^{23}+ \cdots - 6110208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −201.921 + 349.738i −0.722415 + 1.25126i 0.237614 + 0.971360i \(0.423635\pi\)
−0.960029 + 0.279900i \(0.909699\pi\)
\(6\) 0 0
\(7\) 514.742 + 747.384i 0.567214 + 0.823571i
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −1615.37 2797.90i −0.510825 0.884774i
\(11\) 3237.34 + 5607.24i 0.733354 + 1.27021i 0.955442 + 0.295180i \(0.0953797\pi\)
−0.222087 + 0.975027i \(0.571287\pi\)
\(12\) 0 0
\(13\) 11611.3 1.46581 0.732907 0.680329i \(-0.238163\pi\)
0.732907 + 0.680329i \(0.238163\pi\)
\(14\) −7237.00 + 576.704i −0.704872 + 0.0561700i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 10154.5 + 17588.1i 0.501289 + 0.868258i 0.999999 + 0.00148911i \(0.000473998\pi\)
−0.498710 + 0.866769i \(0.666193\pi\)
\(18\) 0 0
\(19\) 23247.9 40266.5i 0.777580 1.34681i −0.155752 0.987796i \(-0.549780\pi\)
0.933333 0.359012i \(-0.116886\pi\)
\(20\) 25845.9 0.722415
\(21\) 0 0
\(22\) −51797.4 −1.03712
\(23\) −6578.39 + 11394.1i −0.112739 + 0.195269i −0.916873 0.399178i \(-0.869296\pi\)
0.804135 + 0.594447i \(0.202629\pi\)
\(24\) 0 0
\(25\) −42481.8 73580.6i −0.543767 0.941832i
\(26\) −46445.2 + 80445.4i −0.518243 + 0.897624i
\(27\) 0 0
\(28\) 24952.5 52446.2i 0.214813 0.451503i
\(29\) 87278.1 0.664527 0.332263 0.943187i \(-0.392188\pi\)
0.332263 + 0.943187i \(0.392188\pi\)
\(30\) 0 0
\(31\) 125138. + 216746.i 0.754440 + 1.30673i 0.945652 + 0.325180i \(0.105425\pi\)
−0.191212 + 0.981549i \(0.561242\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −162472. −0.708930
\(35\) −365326. + 29112.2i −1.44026 + 0.114772i
\(36\) 0 0
\(37\) −197166. + 341501.i −0.639920 + 1.10837i 0.345530 + 0.938408i \(0.387699\pi\)
−0.985450 + 0.169966i \(0.945634\pi\)
\(38\) 185983. + 322132.i 0.549832 + 0.952338i
\(39\) 0 0
\(40\) −103384. + 179066.i −0.255412 + 0.442387i
\(41\) 233278. 0.528604 0.264302 0.964440i \(-0.414858\pi\)
0.264302 + 0.964440i \(0.414858\pi\)
\(42\) 0 0
\(43\) 596690. 1.14448 0.572242 0.820085i \(-0.306074\pi\)
0.572242 + 0.820085i \(0.306074\pi\)
\(44\) 207190. 358863.i 0.366677 0.635103i
\(45\) 0 0
\(46\) −52627.1 91152.9i −0.0797182 0.138076i
\(47\) −104168. + 180424.i −0.146350 + 0.253485i −0.929876 0.367874i \(-0.880086\pi\)
0.783526 + 0.621359i \(0.213419\pi\)
\(48\) 0 0
\(49\) −293623. + 769421.i −0.356537 + 0.934281i
\(50\) 679709. 0.769002
\(51\) 0 0
\(52\) −371561. 643563.i −0.366453 0.634716i
\(53\) −551131. 954586.i −0.508498 0.880744i −0.999952 0.00984042i \(-0.996868\pi\)
0.491454 0.870904i \(-0.336466\pi\)
\(54\) 0 0
\(55\) −2.61475e6 −2.11914
\(56\) 263548. + 382661.i 0.200540 + 0.291176i
\(57\) 0 0
\(58\) −349113. + 604681.i −0.234946 + 0.406938i
\(59\) −1.06718e6 1.84842e6i −0.676484 1.17170i −0.976033 0.217623i \(-0.930170\pi\)
0.299549 0.954081i \(-0.403164\pi\)
\(60\) 0 0
\(61\) −1.32732e6 + 2.29899e6i −0.748725 + 1.29683i 0.199709 + 0.979855i \(0.436000\pi\)
−0.948434 + 0.316975i \(0.897333\pi\)
\(62\) −2.00222e6 −1.06694
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −2.34456e6 + 4.06091e6i −1.05893 + 1.83411i
\(66\) 0 0
\(67\) −38517.8 66714.7i −0.0156459 0.0270994i 0.858096 0.513489i \(-0.171647\pi\)
−0.873742 + 0.486389i \(0.838314\pi\)
\(68\) 649889. 1.12564e6i 0.250645 0.434129i
\(69\) 0 0
\(70\) 1.25961e6 2.64750e6i 0.438927 0.922556i
\(71\) −1.55255e6 −0.514805 −0.257402 0.966304i \(-0.582867\pi\)
−0.257402 + 0.966304i \(0.582867\pi\)
\(72\) 0 0
\(73\) −2.33206e6 4.03924e6i −0.701631 1.21526i −0.967894 0.251360i \(-0.919122\pi\)
0.266262 0.963901i \(-0.414211\pi\)
\(74\) −1.57733e6 2.73201e6i −0.452492 0.783739i
\(75\) 0 0
\(76\) −2.97573e6 −0.777580
\(77\) −2.52436e6 + 5.30582e6i −0.630136 + 1.32445i
\(78\) 0 0
\(79\) 1.16745e6 2.02209e6i 0.266407 0.461430i −0.701524 0.712645i \(-0.747497\pi\)
0.967931 + 0.251215i \(0.0808302\pi\)
\(80\) −827069. 1.43253e6i −0.180604 0.312815i
\(81\) 0 0
\(82\) −933113. + 1.61620e6i −0.186890 + 0.323703i
\(83\) 5.17043e6 0.992552 0.496276 0.868165i \(-0.334700\pi\)
0.496276 + 0.868165i \(0.334700\pi\)
\(84\) 0 0
\(85\) −8.20165e6 −1.44855
\(86\) −2.38676e6 + 4.13399e6i −0.404636 + 0.700850i
\(87\) 0 0
\(88\) 1.65752e6 + 2.87090e6i 0.259280 + 0.449086i
\(89\) 896976. 1.55361e6i 0.134870 0.233602i −0.790678 0.612233i \(-0.790272\pi\)
0.925548 + 0.378631i \(0.123605\pi\)
\(90\) 0 0
\(91\) 5.97682e6 + 8.67810e6i 0.831430 + 1.20720i
\(92\) 842034. 0.112739
\(93\) 0 0
\(94\) −833343. 1.44339e6i −0.103485 0.179241i
\(95\) 9.38847e6 + 1.62613e7i 1.12347 + 1.94591i
\(96\) 0 0
\(97\) 2.34436e6 0.260809 0.130404 0.991461i \(-0.458372\pi\)
0.130404 + 0.991461i \(0.458372\pi\)
\(98\) −4.15621e6 5.11197e6i −0.446073 0.548652i
\(99\) 0 0
\(100\) −2.71883e6 + 4.70916e6i −0.271883 + 0.470916i
\(101\) −9.05793e6 1.56888e7i −0.874790 1.51518i −0.856986 0.515340i \(-0.827666\pi\)
−0.0178045 0.999841i \(-0.505668\pi\)
\(102\) 0 0
\(103\) −2.92574e6 + 5.06753e6i −0.263819 + 0.456948i −0.967253 0.253812i \(-0.918315\pi\)
0.703435 + 0.710760i \(0.251649\pi\)
\(104\) 5.94498e6 0.518243
\(105\) 0 0
\(106\) 8.81809e6 0.719125
\(107\) −1.41810e6 + 2.45621e6i −0.111908 + 0.193831i −0.916540 0.399944i \(-0.869030\pi\)
0.804631 + 0.593775i \(0.202363\pi\)
\(108\) 0 0
\(109\) −4.07843e6 7.06405e6i −0.301648 0.522469i 0.674862 0.737944i \(-0.264203\pi\)
−0.976509 + 0.215475i \(0.930870\pi\)
\(110\) 1.04590e7 1.81155e7i 0.749231 1.29771i
\(111\) 0 0
\(112\) −3.70534e6 + 295272.i −0.249210 + 0.0198591i
\(113\) 1.57932e7 1.02966 0.514831 0.857292i \(-0.327855\pi\)
0.514831 + 0.857292i \(0.327855\pi\)
\(114\) 0 0
\(115\) −2.65663e6 4.60142e6i −0.162888 0.282130i
\(116\) −2.79290e6 4.83745e6i −0.166132 0.287749i
\(117\) 0 0
\(118\) 1.70749e7 0.956692
\(119\) −7.91814e6 + 1.66427e7i −0.430734 + 0.905335i
\(120\) 0 0
\(121\) −1.12171e7 + 1.94287e7i −0.575617 + 0.996998i
\(122\) −1.06186e7 1.83919e7i −0.529429 0.916997i
\(123\) 0 0
\(124\) 8.00886e6 1.38718e7i 0.377220 0.653364i
\(125\) 2.76170e6 0.126471
\(126\) 0 0
\(127\) 3.88646e7 1.68361 0.841805 0.539782i \(-0.181493\pi\)
0.841805 + 0.539782i \(0.181493\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.87565e7 3.24872e7i −0.748774 1.29691i
\(131\) −1.51059e6 + 2.61642e6i −0.0587080 + 0.101685i −0.893886 0.448295i \(-0.852031\pi\)
0.835178 + 0.549980i \(0.185365\pi\)
\(132\) 0 0
\(133\) 4.20612e7 3.35178e6i 1.55025 0.123536i
\(134\) 616284. 0.0221266
\(135\) 0 0
\(136\) 5.19911e6 + 9.00513e6i 0.177232 + 0.306976i
\(137\) 3.30885e6 + 5.73109e6i 0.109940 + 0.190421i 0.915746 0.401759i \(-0.131601\pi\)
−0.805806 + 0.592180i \(0.798268\pi\)
\(138\) 0 0
\(139\) 2.69156e6 0.0850065 0.0425032 0.999096i \(-0.486467\pi\)
0.0425032 + 0.999096i \(0.486467\pi\)
\(140\) 1.33040e7 + 1.93168e7i 0.409764 + 0.594960i
\(141\) 0 0
\(142\) 6.21022e6 1.07564e7i 0.182011 0.315252i
\(143\) 3.75897e7 + 6.51073e7i 1.07496 + 1.86189i
\(144\) 0 0
\(145\) −1.76233e7 + 3.05245e7i −0.480064 + 0.831495i
\(146\) 3.73129e7 0.992256
\(147\) 0 0
\(148\) 2.52372e7 0.639920
\(149\) 2.43159e7 4.21164e7i 0.602196 1.04303i −0.390291 0.920691i \(-0.627626\pi\)
0.992488 0.122343i \(-0.0390410\pi\)
\(150\) 0 0
\(151\) −1.65734e7 2.87059e7i −0.391734 0.678504i 0.600944 0.799291i \(-0.294791\pi\)
−0.992678 + 0.120787i \(0.961458\pi\)
\(152\) 1.19029e7 2.06164e7i 0.274916 0.476169i
\(153\) 0 0
\(154\) −2.66623e7 3.87126e7i −0.588269 0.854141i
\(155\) −1.01072e8 −2.18008
\(156\) 0 0
\(157\) 1.15214e7 + 1.99557e7i 0.237606 + 0.411545i 0.960027 0.279908i \(-0.0903041\pi\)
−0.722421 + 0.691453i \(0.756971\pi\)
\(158\) 9.33964e6 + 1.61767e7i 0.188378 + 0.326280i
\(159\) 0 0
\(160\) 1.32331e7 0.255412
\(161\) −1.19020e7 + 948446.i −0.224765 + 0.0179111i
\(162\) 0 0
\(163\) 2.84447e7 4.92676e7i 0.514451 0.891055i −0.485408 0.874288i \(-0.661329\pi\)
0.999859 0.0167678i \(-0.00533759\pi\)
\(164\) −7.46490e6 1.29296e7i −0.132151 0.228892i
\(165\) 0 0
\(166\) −2.06817e7 + 3.58218e7i −0.350920 + 0.607811i
\(167\) −2.37567e6 −0.0394710 −0.0197355 0.999805i \(-0.506282\pi\)
−0.0197355 + 0.999805i \(0.506282\pi\)
\(168\) 0 0
\(169\) 7.20736e7 1.14861
\(170\) 3.28066e7 5.68227e7i 0.512141 0.887055i
\(171\) 0 0
\(172\) −1.90941e7 3.30719e7i −0.286121 0.495576i
\(173\) −1.42860e7 + 2.47440e7i −0.209772 + 0.363336i −0.951643 0.307207i \(-0.900606\pi\)
0.741870 + 0.670543i \(0.233939\pi\)
\(174\) 0 0
\(175\) 3.31258e7 6.96253e7i 0.467233 0.982050i
\(176\) −2.65203e7 −0.366677
\(177\) 0 0
\(178\) 7.17581e6 + 1.24289e7i 0.0953676 + 0.165181i
\(179\) 2.11897e7 + 3.67016e7i 0.276146 + 0.478298i 0.970424 0.241409i \(-0.0776094\pi\)
−0.694278 + 0.719707i \(0.744276\pi\)
\(180\) 0 0
\(181\) −5.11373e7 −0.641007 −0.320504 0.947247i \(-0.603852\pi\)
−0.320504 + 0.947247i \(0.603852\pi\)
\(182\) −8.40309e7 + 6.69627e6i −1.03321 + 0.0823348i
\(183\) 0 0
\(184\) −3.36814e6 + 5.83378e6i −0.0398591 + 0.0690380i
\(185\) −7.96239e7 1.37913e8i −0.924576 1.60141i
\(186\) 0 0
\(187\) −6.57473e7 + 1.13878e8i −0.735245 + 1.27348i
\(188\) 1.33335e7 0.146350
\(189\) 0 0
\(190\) −1.50215e8 −1.58883
\(191\) 7.26137e7 1.25771e8i 0.754053 1.30606i −0.191791 0.981436i \(-0.561430\pi\)
0.945844 0.324622i \(-0.105237\pi\)
\(192\) 0 0
\(193\) 1.53841e7 + 2.66461e7i 0.154036 + 0.266798i 0.932708 0.360633i \(-0.117439\pi\)
−0.778672 + 0.627432i \(0.784106\pi\)
\(194\) −9.37742e6 + 1.62422e7i −0.0922099 + 0.159712i
\(195\) 0 0
\(196\) 5.20416e7 8.34721e6i 0.493690 0.0791854i
\(197\) −6.36237e7 −0.592908 −0.296454 0.955047i \(-0.595804\pi\)
−0.296454 + 0.955047i \(0.595804\pi\)
\(198\) 0 0
\(199\) −1.57738e7 2.73210e7i −0.141890 0.245760i 0.786319 0.617821i \(-0.211984\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(200\) −2.17507e7 3.76733e7i −0.192251 0.332988i
\(201\) 0 0
\(202\) 1.44927e8 1.23714
\(203\) 4.49258e7 + 6.52303e7i 0.376929 + 0.547285i
\(204\) 0 0
\(205\) −4.71038e7 + 8.15862e7i −0.381872 + 0.661421i
\(206\) −2.34059e7 4.05403e7i −0.186548 0.323111i
\(207\) 0 0
\(208\) −2.37799e7 + 4.11880e7i −0.183227 + 0.317358i
\(209\) 3.01045e8 2.28097
\(210\) 0 0
\(211\) −1.20761e7 −0.0884987 −0.0442493 0.999021i \(-0.514090\pi\)
−0.0442493 + 0.999021i \(0.514090\pi\)
\(212\) −3.52724e7 + 6.10935e7i −0.254249 + 0.440372i
\(213\) 0 0
\(214\) −1.13448e7 1.96497e7i −0.0791311 0.137059i
\(215\) −1.20484e8 + 2.08685e8i −0.826792 + 1.43205i
\(216\) 0 0
\(217\) −9.75786e7 + 2.05095e8i −0.648254 + 1.36253i
\(218\) 6.52549e7 0.426594
\(219\) 0 0
\(220\) 8.36720e7 + 1.44924e8i 0.529786 + 0.917616i
\(221\) 1.17907e8 + 2.04221e8i 0.734796 + 1.27270i
\(222\) 0 0
\(223\) −2.80825e8 −1.69578 −0.847889 0.530173i \(-0.822127\pi\)
−0.847889 + 0.530173i \(0.822127\pi\)
\(224\) 1.27757e7 2.68525e7i 0.0759479 0.159631i
\(225\) 0 0
\(226\) −6.31727e7 + 1.09418e8i −0.364041 + 0.630537i
\(227\) 8.19821e7 + 1.41997e8i 0.465188 + 0.805729i 0.999210 0.0397413i \(-0.0126534\pi\)
−0.534022 + 0.845471i \(0.679320\pi\)
\(228\) 0 0
\(229\) 1.34697e7 2.33303e7i 0.0741200 0.128380i −0.826583 0.562814i \(-0.809719\pi\)
0.900703 + 0.434435i \(0.143052\pi\)
\(230\) 4.25061e7 0.230358
\(231\) 0 0
\(232\) 4.46864e7 0.234946
\(233\) −3.37092e7 + 5.83860e7i −0.174583 + 0.302387i −0.940017 0.341128i \(-0.889191\pi\)
0.765434 + 0.643515i \(0.222524\pi\)
\(234\) 0 0
\(235\) −4.20674e7 7.28629e7i −0.211450 0.366243i
\(236\) −6.82998e7 + 1.18299e8i −0.338242 + 0.585852i
\(237\) 0 0
\(238\) −8.36314e7 1.21429e8i −0.402115 0.583854i
\(239\) −3.87968e8 −1.83824 −0.919122 0.393973i \(-0.871100\pi\)
−0.919122 + 0.393973i \(0.871100\pi\)
\(240\) 0 0
\(241\) −1.15643e8 2.00299e8i −0.532180 0.921762i −0.999294 0.0375653i \(-0.988040\pi\)
0.467115 0.884197i \(-0.345294\pi\)
\(242\) −8.97372e7 1.55429e8i −0.407023 0.704984i
\(243\) 0 0
\(244\) 1.69897e8 0.748725
\(245\) −2.09807e8 2.58053e8i −0.911461 1.12106i
\(246\) 0 0
\(247\) 2.69938e8 4.67546e8i 1.13979 1.97417i
\(248\) 6.40709e7 + 1.10974e8i 0.266735 + 0.461998i
\(249\) 0 0
\(250\) −1.10468e7 + 1.91336e7i −0.0447143 + 0.0774475i
\(251\) −1.20208e8 −0.479817 −0.239909 0.970795i \(-0.577117\pi\)
−0.239909 + 0.970795i \(0.577117\pi\)
\(252\) 0 0
\(253\) −8.51860e7 −0.330709
\(254\) −1.55459e8 + 2.69262e8i −0.595246 + 1.03100i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 1.16118e8 2.01122e8i 0.426711 0.739084i −0.569868 0.821736i \(-0.693006\pi\)
0.996578 + 0.0826520i \(0.0263390\pi\)
\(258\) 0 0
\(259\) −3.56722e8 + 2.84266e7i −1.27580 + 0.101666i
\(260\) 3.00104e8 1.05893
\(261\) 0 0
\(262\) −1.20847e7 2.09314e7i −0.0415128 0.0719024i
\(263\) −2.66338e8 4.61311e8i −0.902792 1.56368i −0.823853 0.566803i \(-0.808180\pi\)
−0.0789391 0.996879i \(-0.525153\pi\)
\(264\) 0 0
\(265\) 4.45140e8 1.46939
\(266\) −1.45023e8 + 3.04816e8i −0.472445 + 0.993005i
\(267\) 0 0
\(268\) −2.46514e6 + 4.26974e6i −0.00782293 + 0.0135497i
\(269\) 1.49165e8 + 2.58362e8i 0.467234 + 0.809274i 0.999299 0.0374298i \(-0.0119171\pi\)
−0.532065 + 0.846704i \(0.678584\pi\)
\(270\) 0 0
\(271\) −2.76166e8 + 4.78333e8i −0.842903 + 1.45995i 0.0445269 + 0.999008i \(0.485822\pi\)
−0.887430 + 0.460943i \(0.847511\pi\)
\(272\) −8.31858e7 −0.250645
\(273\) 0 0
\(274\) −5.29416e7 −0.155478
\(275\) 2.75056e8 4.76411e8i 0.797547 1.38139i
\(276\) 0 0
\(277\) 1.00415e8 + 1.73924e8i 0.283871 + 0.491678i 0.972335 0.233592i \(-0.0750480\pi\)
−0.688464 + 0.725271i \(0.741715\pi\)
\(278\) −1.07662e7 + 1.86477e7i −0.0300543 + 0.0520556i
\(279\) 0 0
\(280\) −1.87047e8 + 1.49054e7i −0.509210 + 0.0405781i
\(281\) 3.14684e8 0.846063 0.423031 0.906115i \(-0.360966\pi\)
0.423031 + 0.906115i \(0.360966\pi\)
\(282\) 0 0
\(283\) −1.94424e8 3.36752e8i −0.509914 0.883196i −0.999934 0.0114853i \(-0.996344\pi\)
0.490020 0.871711i \(-0.336989\pi\)
\(284\) 4.96817e7 + 8.60513e7i 0.128701 + 0.222917i
\(285\) 0 0
\(286\) −6.01435e8 −1.52022
\(287\) 1.20078e8 + 1.74348e8i 0.299832 + 0.435343i
\(288\) 0 0
\(289\) −1.05926e6 + 1.83469e6i −0.00258143 + 0.00447116i
\(290\) −1.40986e8 2.44196e8i −0.339457 0.587956i
\(291\) 0 0
\(292\) −1.49252e8 + 2.58511e8i −0.350816 + 0.607630i
\(293\) 8.20380e7 0.190537 0.0952684 0.995452i \(-0.469629\pi\)
0.0952684 + 0.995452i \(0.469629\pi\)
\(294\) 0 0
\(295\) 8.61948e8 1.95481
\(296\) −1.00949e8 + 1.74849e8i −0.226246 + 0.391869i
\(297\) 0 0
\(298\) 1.94527e8 + 3.36931e8i 0.425817 + 0.737537i
\(299\) −7.63836e7 + 1.32300e8i −0.165254 + 0.286228i
\(300\) 0 0
\(301\) 3.07142e8 + 4.45957e8i 0.649167 + 0.942563i
\(302\) 2.65174e8 0.553996
\(303\) 0 0
\(304\) 9.52232e7 + 1.64931e8i 0.194395 + 0.336702i
\(305\) −5.36030e8 9.28430e8i −1.08178 1.87370i
\(306\) 0 0
\(307\) 1.58854e8 0.313338 0.156669 0.987651i \(-0.449924\pi\)
0.156669 + 0.987651i \(0.449924\pi\)
\(308\) 3.74858e8 2.98718e7i 0.731037 0.0582550i
\(309\) 0 0
\(310\) 4.04290e8 7.00250e8i 0.770773 1.33502i
\(311\) −2.77610e8 4.80834e8i −0.523327 0.906430i −0.999631 0.0271491i \(-0.991357\pi\)
0.476304 0.879281i \(-0.341976\pi\)
\(312\) 0 0
\(313\) 4.26038e8 7.37920e8i 0.785314 1.36020i −0.143497 0.989651i \(-0.545835\pi\)
0.928811 0.370553i \(-0.120832\pi\)
\(314\) −1.84342e8 −0.336025
\(315\) 0 0
\(316\) −1.49434e8 −0.266407
\(317\) 2.34377e8 4.05953e8i 0.413245 0.715761i −0.581998 0.813191i \(-0.697729\pi\)
0.995242 + 0.0974294i \(0.0310620\pi\)
\(318\) 0 0
\(319\) 2.82549e8 + 4.89389e8i 0.487334 + 0.844086i
\(320\) −5.29324e7 + 9.16816e7i −0.0903019 + 0.156407i
\(321\) 0 0
\(322\) 4.10368e7 8.62530e7i 0.0684980 0.143972i
\(323\) 9.44283e8 1.55917
\(324\) 0 0
\(325\) −4.93268e8 8.54366e8i −0.797061 1.38055i
\(326\) 2.27557e8 + 3.94141e8i 0.363772 + 0.630071i
\(327\) 0 0
\(328\) 1.19438e8 0.186890
\(329\) −1.88466e8 + 1.50185e7i −0.291774 + 0.0232510i
\(330\) 0 0
\(331\) −1.24427e8 + 2.15514e8i −0.188589 + 0.326646i −0.944780 0.327705i \(-0.893725\pi\)
0.756191 + 0.654351i \(0.227058\pi\)
\(332\) −1.65454e8 2.86574e8i −0.248138 0.429788i
\(333\) 0 0
\(334\) 9.50267e6 1.64591e7i 0.0139551 0.0241710i
\(335\) 3.11102e7 0.0452112
\(336\) 0 0
\(337\) 5.86823e8 0.835223 0.417612 0.908626i \(-0.362867\pi\)
0.417612 + 0.908626i \(0.362867\pi\)
\(338\) −2.88294e8 + 4.99340e8i −0.406095 + 0.703377i
\(339\) 0 0
\(340\) 2.62453e8 + 4.54582e8i 0.362139 + 0.627243i
\(341\) −8.10231e8 + 1.40336e9i −1.10654 + 1.91659i
\(342\) 0 0
\(343\) −7.26193e8 + 1.76604e8i −0.971679 + 0.236304i
\(344\) 3.05505e8 0.404636
\(345\) 0 0
\(346\) −1.14288e8 1.97952e8i −0.148331 0.256918i
\(347\) −6.07535e7 1.05228e8i −0.0780581 0.135201i 0.824354 0.566075i \(-0.191539\pi\)
−0.902412 + 0.430874i \(0.858205\pi\)
\(348\) 0 0
\(349\) 9.16462e8 1.15405 0.577026 0.816725i \(-0.304213\pi\)
0.577026 + 0.816725i \(0.304213\pi\)
\(350\) 3.49875e8 + 5.08003e8i 0.436189 + 0.633328i
\(351\) 0 0
\(352\) 1.06081e8 1.83738e8i 0.129640 0.224543i
\(353\) −8.02933e7 1.39072e8i −0.0971556 0.168278i 0.813351 0.581774i \(-0.197641\pi\)
−0.910506 + 0.413495i \(0.864308\pi\)
\(354\) 0 0
\(355\) 3.13494e8 5.42987e8i 0.371903 0.644154i
\(356\) −1.14813e8 −0.134870
\(357\) 0 0
\(358\) −3.39034e8 −0.390529
\(359\) −4.29774e8 + 7.44391e8i −0.490241 + 0.849123i −0.999937 0.0112320i \(-0.996425\pi\)
0.509696 + 0.860355i \(0.329758\pi\)
\(360\) 0 0
\(361\) −6.33990e8 1.09810e9i −0.709262 1.22848i
\(362\) 2.04549e8 3.54290e8i 0.226630 0.392535i
\(363\) 0 0
\(364\) 2.89730e8 6.08968e8i 0.314876 0.661820i
\(365\) 1.88357e9 2.02748
\(366\) 0 0
\(367\) 1.88818e8 + 3.27042e8i 0.199394 + 0.345361i 0.948332 0.317279i \(-0.102769\pi\)
−0.748938 + 0.662640i \(0.769436\pi\)
\(368\) −2.69451e7 4.66703e7i −0.0281846 0.0488172i
\(369\) 0 0
\(370\) 1.27398e9 1.30755
\(371\) 4.29752e8 9.03273e8i 0.436928 0.918354i
\(372\) 0 0
\(373\) −3.81849e8 + 6.61382e8i −0.380988 + 0.659890i −0.991204 0.132345i \(-0.957749\pi\)
0.610216 + 0.792235i \(0.291083\pi\)
\(374\) −5.25978e8 9.11021e8i −0.519897 0.900487i
\(375\) 0 0
\(376\) −5.33340e7 + 9.23772e7i −0.0517424 + 0.0896205i
\(377\) 1.01341e9 0.974072
\(378\) 0 0
\(379\) 7.65774e8 0.722543 0.361271 0.932461i \(-0.382343\pi\)
0.361271 + 0.932461i \(0.382343\pi\)
\(380\) 6.00862e8 1.04072e9i 0.561736 0.972955i
\(381\) 0 0
\(382\) 5.80910e8 + 1.00616e9i 0.533196 + 0.923522i
\(383\) −5.47890e8 + 9.48974e8i −0.498308 + 0.863095i −0.999998 0.00195262i \(-0.999378\pi\)
0.501690 + 0.865047i \(0.332712\pi\)
\(384\) 0 0
\(385\) −1.34592e9 1.95422e9i −1.20201 1.74526i
\(386\) −2.46146e8 −0.217840
\(387\) 0 0
\(388\) −7.50194e7 1.29937e8i −0.0652022 0.112934i
\(389\) 6.99641e8 + 1.21181e9i 0.602631 + 1.04379i 0.992421 + 0.122884i \(0.0392143\pi\)
−0.389790 + 0.920904i \(0.627452\pi\)
\(390\) 0 0
\(391\) −2.67202e8 −0.226058
\(392\) −1.50335e8 + 3.93943e8i −0.126055 + 0.330318i
\(393\) 0 0
\(394\) 2.54495e8 4.40798e8i 0.209625 0.363081i
\(395\) 4.71468e8 + 8.16606e8i 0.384913 + 0.666688i
\(396\) 0 0
\(397\) −7.97000e8 + 1.38044e9i −0.639281 + 1.10727i 0.346310 + 0.938120i \(0.387434\pi\)
−0.985591 + 0.169147i \(0.945899\pi\)
\(398\) 2.52381e8 0.200662
\(399\) 0 0
\(400\) 3.48011e8 0.271883
\(401\) −4.17660e8 + 7.23409e8i −0.323458 + 0.560246i −0.981199 0.192998i \(-0.938179\pi\)
0.657741 + 0.753244i \(0.271512\pi\)
\(402\) 0 0
\(403\) 1.45302e9 + 2.51670e9i 1.10587 + 1.91542i
\(404\) −5.79707e8 + 1.00408e9i −0.437395 + 0.757591i
\(405\) 0 0
\(406\) −6.31632e8 + 5.03336e7i −0.468407 + 0.0373265i
\(407\) −2.55317e9 −1.87715
\(408\) 0 0
\(409\) −1.12482e9 1.94825e9i −0.812930 1.40804i −0.910805 0.412837i \(-0.864538\pi\)
0.0978752 0.995199i \(-0.468795\pi\)
\(410\) −3.76830e8 6.52689e8i −0.270024 0.467695i
\(411\) 0 0
\(412\) 3.74495e8 0.263819
\(413\) 8.32153e8 1.74906e9i 0.581270 1.22174i
\(414\) 0 0
\(415\) −1.04402e9 + 1.80829e9i −0.717034 + 1.24194i
\(416\) −1.90239e8 3.29504e8i −0.129561 0.224406i
\(417\) 0 0
\(418\) −1.20418e9 + 2.08570e9i −0.806444 + 1.39680i
\(419\) −1.75510e9 −1.16561 −0.582803 0.812613i \(-0.698044\pi\)
−0.582803 + 0.812613i \(0.698044\pi\)
\(420\) 0 0
\(421\) 1.57373e9 1.02788 0.513940 0.857826i \(-0.328185\pi\)
0.513940 + 0.857826i \(0.328185\pi\)
\(422\) 4.83043e7 8.36654e7i 0.0312890 0.0541942i
\(423\) 0 0
\(424\) −2.82179e8 4.88748e8i −0.179781 0.311390i
\(425\) 8.62764e8 1.49435e9i 0.545169 0.944260i
\(426\) 0 0
\(427\) −2.40146e9 + 1.91368e8i −1.49272 + 0.118952i
\(428\) 1.81516e8 0.111908
\(429\) 0 0
\(430\) −9.63875e8 1.66948e9i −0.584630 1.01261i
\(431\) 8.75479e8 + 1.51637e9i 0.526714 + 0.912296i 0.999515 + 0.0311269i \(0.00990959\pi\)
−0.472801 + 0.881169i \(0.656757\pi\)
\(432\) 0 0
\(433\) 8.68747e8 0.514263 0.257132 0.966376i \(-0.417223\pi\)
0.257132 + 0.966376i \(0.417223\pi\)
\(434\) −1.03063e9 1.49642e9i −0.605183 0.878700i
\(435\) 0 0
\(436\) −2.61019e8 + 4.52099e8i −0.150824 + 0.261235i
\(437\) 3.05867e8 + 5.29777e8i 0.175327 + 0.303674i
\(438\) 0 0
\(439\) −6.19056e8 + 1.07224e9i −0.349224 + 0.604874i −0.986112 0.166083i \(-0.946888\pi\)
0.636888 + 0.770956i \(0.280221\pi\)
\(440\) −1.33875e9 −0.749231
\(441\) 0 0
\(442\) −1.88651e9 −1.03916
\(443\) 1.68758e9 2.92298e9i 0.922256 1.59739i 0.126340 0.991987i \(-0.459677\pi\)
0.795916 0.605408i \(-0.206990\pi\)
\(444\) 0 0
\(445\) 3.62237e8 + 6.27412e8i 0.194864 + 0.337515i
\(446\) 1.12330e9 1.94561e9i 0.599548 1.03845i
\(447\) 0 0
\(448\) 1.34937e8 + 1.95922e8i 0.0709017 + 0.102946i
\(449\) −2.12595e9 −1.10838 −0.554192 0.832389i \(-0.686973\pi\)
−0.554192 + 0.832389i \(0.686973\pi\)
\(450\) 0 0
\(451\) 7.55201e8 + 1.30805e9i 0.387654 + 0.671437i
\(452\) −5.05381e8 8.75346e8i −0.257416 0.445857i
\(453\) 0 0
\(454\) −1.31171e9 −0.657875
\(455\) −4.24190e9 + 3.38030e8i −2.11116 + 0.168235i
\(456\) 0 0
\(457\) 1.00336e9 1.73787e9i 0.491758 0.851749i −0.508197 0.861241i \(-0.669688\pi\)
0.999955 + 0.00949148i \(0.00302128\pi\)
\(458\) 1.07758e8 + 1.86642e8i 0.0524107 + 0.0907780i
\(459\) 0 0
\(460\) −1.70025e8 + 2.94491e8i −0.0814440 + 0.141065i
\(461\) −1.93015e9 −0.917567 −0.458783 0.888548i \(-0.651715\pi\)
−0.458783 + 0.888548i \(0.651715\pi\)
\(462\) 0 0
\(463\) −2.08029e9 −0.974072 −0.487036 0.873382i \(-0.661922\pi\)
−0.487036 + 0.873382i \(0.661922\pi\)
\(464\) −1.78746e8 + 3.09597e8i −0.0830658 + 0.143874i
\(465\) 0 0
\(466\) −2.69673e8 4.67088e8i −0.123449 0.213820i
\(467\) −1.62399e9 + 2.81283e9i −0.737861 + 1.27801i 0.215596 + 0.976483i \(0.430831\pi\)
−0.953457 + 0.301530i \(0.902503\pi\)
\(468\) 0 0
\(469\) 3.00348e7 6.31285e7i 0.0134437 0.0282566i
\(470\) 6.73079e8 0.299036
\(471\) 0 0
\(472\) −5.46398e8 9.46390e8i −0.239173 0.414260i
\(473\) 1.93169e9 + 3.34578e9i 0.839312 + 1.45373i
\(474\) 0 0
\(475\) −3.95044e9 −1.69129
\(476\) 1.17581e9 9.36984e7i 0.499705 0.0398206i
\(477\) 0 0
\(478\) 1.55187e9 2.68792e9i 0.649917 1.12569i
\(479\) 1.28705e8 + 2.22924e8i 0.0535083 + 0.0926791i 0.891539 0.452944i \(-0.149626\pi\)
−0.838031 + 0.545623i \(0.816293\pi\)
\(480\) 0 0
\(481\) −2.28935e9 + 3.96527e9i −0.938003 + 1.62467i
\(482\) 1.85028e9 0.752616
\(483\) 0 0
\(484\) 1.43579e9 0.575617
\(485\) −4.73375e8 + 8.19909e8i −0.188412 + 0.326340i
\(486\) 0 0
\(487\) −1.57169e9 2.72226e9i −0.616619 1.06802i −0.990098 0.140377i \(-0.955169\pi\)
0.373479 0.927639i \(-0.378165\pi\)
\(488\) −6.79590e8 + 1.17708e9i −0.264714 + 0.458499i
\(489\) 0 0
\(490\) 2.62707e9 4.21369e8i 1.00876 0.161799i
\(491\) 2.17591e9 0.829575 0.414788 0.909918i \(-0.363856\pi\)
0.414788 + 0.909918i \(0.363856\pi\)
\(492\) 0 0
\(493\) 8.86268e8 + 1.53506e9i 0.333120 + 0.576981i
\(494\) 2.15950e9 + 3.74036e9i 0.805952 + 1.39595i
\(495\) 0 0
\(496\) −1.02513e9 −0.377220
\(497\) −7.99166e8 1.16035e9i −0.292004 0.423978i
\(498\) 0 0
\(499\) 1.66910e9 2.89096e9i 0.601353 1.04157i −0.391263 0.920279i \(-0.627962\pi\)
0.992616 0.121296i \(-0.0387049\pi\)
\(500\) −8.83745e7 1.53069e8i −0.0316178 0.0547637i
\(501\) 0 0
\(502\) 4.80832e8 8.32826e8i 0.169641 0.293827i
\(503\) 3.49207e8 0.122347 0.0611737 0.998127i \(-0.480516\pi\)
0.0611737 + 0.998127i \(0.480516\pi\)
\(504\) 0 0
\(505\) 7.31595e9 2.52785
\(506\) 3.40744e8 5.90186e8i 0.116923 0.202517i
\(507\) 0 0
\(508\) −1.24367e9 2.15410e9i −0.420903 0.729025i
\(509\) 1.05045e9 1.81942e9i 0.353070 0.611536i −0.633715 0.773566i \(-0.718471\pi\)
0.986786 + 0.162031i \(0.0518043\pi\)
\(510\) 0 0
\(511\) 1.81846e9 3.82211e9i 0.602878 1.26716i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 9.28943e8 + 1.60898e9i 0.301730 + 0.522612i
\(515\) −1.18154e9 2.04648e9i −0.381173 0.660212i
\(516\) 0 0
\(517\) −1.34891e9 −0.429304
\(518\) 1.22994e9 2.58515e9i 0.388804 0.817206i
\(519\) 0 0
\(520\) −1.20042e9 + 2.07918e9i −0.374387 + 0.648457i
\(521\) 1.49421e9 + 2.58805e9i 0.462892 + 0.801753i 0.999104 0.0423306i \(-0.0134783\pi\)
−0.536211 + 0.844084i \(0.680145\pi\)
\(522\) 0 0
\(523\) −1.84772e9 + 3.20035e9i −0.564782 + 0.978231i 0.432288 + 0.901736i \(0.357706\pi\)
−0.997070 + 0.0764954i \(0.975627\pi\)
\(524\) 1.93356e8 0.0587080
\(525\) 0 0
\(526\) 4.26141e9 1.27674
\(527\) −2.54144e9 + 4.40191e9i −0.756385 + 1.31010i
\(528\) 0 0
\(529\) 1.61586e9 + 2.79876e9i 0.474580 + 0.821997i
\(530\) −1.78056e9 + 3.08402e9i −0.519506 + 0.899811i
\(531\) 0 0
\(532\) −1.53173e9 2.22401e9i −0.441054 0.640392i
\(533\) 2.70866e9 0.774835
\(534\) 0 0
\(535\) −5.72687e8 9.91923e8i −0.161688 0.280053i
\(536\) −1.97211e7 3.41579e7i −0.00553165 0.00958109i
\(537\) 0 0
\(538\) −2.38665e9 −0.660769
\(539\) −5.26488e9 + 8.44461e8i −1.44820 + 0.232284i
\(540\) 0 0
\(541\) −7.30573e8 + 1.26539e9i −0.198369 + 0.343585i −0.948000 0.318271i \(-0.896898\pi\)
0.749631 + 0.661856i \(0.230231\pi\)
\(542\) −2.20933e9 3.82667e9i −0.596022 1.03234i
\(543\) 0 0
\(544\) 3.32743e8 5.76328e8i 0.0886162 0.153488i
\(545\) 3.29408e9 0.871659
\(546\) 0 0
\(547\) −3.60184e9 −0.940954 −0.470477 0.882412i \(-0.655918\pi\)
−0.470477 + 0.882412i \(0.655918\pi\)
\(548\) 2.11766e8 3.66790e8i 0.0549699 0.0952106i
\(549\) 0 0
\(550\) 2.20045e9 + 3.81129e9i 0.563951 + 0.976792i
\(551\) 2.02903e9 3.51438e9i 0.516723 0.894990i
\(552\) 0 0
\(553\) 2.11222e9 1.68319e8i 0.531130 0.0423248i
\(554\) −1.60664e9 −0.401454
\(555\) 0 0
\(556\) −8.61299e7 1.49181e8i −0.0212516 0.0368089i
\(557\) 1.46695e9 + 2.54083e9i 0.359684 + 0.622991i 0.987908 0.155042i \(-0.0495512\pi\)
−0.628224 + 0.778033i \(0.716218\pi\)
\(558\) 0 0
\(559\) 6.92835e9 1.67760
\(560\) 6.44919e8 1.35552e9i 0.155184 0.326173i
\(561\) 0 0
\(562\) −1.25874e9 + 2.18020e9i −0.299128 + 0.518106i
\(563\) −1.22429e8 2.12053e8i −0.0289138 0.0500802i 0.851206 0.524831i \(-0.175871\pi\)
−0.880120 + 0.474751i \(0.842538\pi\)
\(564\) 0 0
\(565\) −3.18897e9 + 5.52347e9i −0.743843 + 1.28837i
\(566\) 3.11078e9 0.721127
\(567\) 0 0
\(568\) −7.94908e8 −0.182011
\(569\) 3.99420e9 6.91816e9i 0.908944 1.57434i 0.0934095 0.995628i \(-0.470223\pi\)
0.815534 0.578709i \(-0.196443\pi\)
\(570\) 0 0
\(571\) 1.07784e9 + 1.86688e9i 0.242286 + 0.419652i 0.961365 0.275276i \(-0.0887694\pi\)
−0.719079 + 0.694928i \(0.755436\pi\)
\(572\) 2.40574e9 4.16686e9i 0.537480 0.930943i
\(573\) 0 0
\(574\) −1.68823e9 + 1.34532e8i −0.372599 + 0.0296917i
\(575\) 1.11785e9 0.245214
\(576\) 0 0
\(577\) −1.42136e9 2.46187e9i −0.308028 0.533520i 0.669903 0.742449i \(-0.266336\pi\)
−0.977931 + 0.208929i \(0.933002\pi\)
\(578\) −8.47407e6 1.46775e7i −0.00182534 0.00316159i
\(579\) 0 0
\(580\) 2.25578e9 0.480064
\(581\) 2.66144e9 + 3.86430e9i 0.562989 + 0.817436i
\(582\) 0 0
\(583\) 3.56839e9 6.18064e9i 0.745818 1.29179i
\(584\) −1.19401e9 2.06809e9i −0.248064 0.429660i
\(585\) 0 0
\(586\) −3.28152e8 + 5.68376e8i −0.0673649 + 0.116679i
\(587\) 1.27323e9 0.259821 0.129910 0.991526i \(-0.458531\pi\)
0.129910 + 0.991526i \(0.458531\pi\)
\(588\) 0 0
\(589\) 1.16368e10 2.34655
\(590\) −3.44779e9 + 5.97175e9i −0.691129 + 1.19707i
\(591\) 0 0
\(592\) −8.07591e8 1.39879e9i −0.159980 0.277093i
\(593\) 5.02956e9 8.71146e9i 0.990464 1.71553i 0.375921 0.926652i \(-0.377326\pi\)
0.614543 0.788883i \(-0.289340\pi\)
\(594\) 0 0
\(595\) −4.22174e9 6.12978e9i −0.821640 1.19299i
\(596\) −3.11243e9 −0.602196
\(597\) 0 0
\(598\) −6.11069e8 1.05840e9i −0.116852 0.202394i
\(599\) 6.72728e8 + 1.16520e9i 0.127893 + 0.221517i 0.922860 0.385136i \(-0.125845\pi\)
−0.794967 + 0.606652i \(0.792512\pi\)
\(600\) 0 0
\(601\) −3.26475e9 −0.613465 −0.306732 0.951796i \(-0.599236\pi\)
−0.306732 + 0.951796i \(0.599236\pi\)
\(602\) −4.31825e9 + 3.44114e8i −0.806714 + 0.0642856i
\(603\) 0 0
\(604\) −1.06070e9 + 1.83718e9i −0.195867 + 0.339252i
\(605\) −4.52996e9 7.84612e9i −0.831669 1.44049i
\(606\) 0 0
\(607\) 1.22422e9 2.12041e9i 0.222177 0.384821i −0.733292 0.679914i \(-0.762017\pi\)
0.955469 + 0.295093i \(0.0953505\pi\)
\(608\) −1.52357e9 −0.274916
\(609\) 0 0
\(610\) 8.57647e9 1.52987
\(611\) −1.20952e9 + 2.09496e9i −0.214521 + 0.371562i
\(612\) 0 0
\(613\) −2.84315e9 4.92449e9i −0.498527 0.863474i 0.501471 0.865174i \(-0.332792\pi\)
−0.999999 + 0.00169981i \(0.999459\pi\)
\(614\) −6.35415e8 + 1.10057e9i −0.110782 + 0.191879i
\(615\) 0 0
\(616\) −1.29247e9 + 2.71658e9i −0.222787 + 0.468263i
\(617\) 1.09146e10 1.87072 0.935361 0.353695i \(-0.115075\pi\)
0.935361 + 0.353695i \(0.115075\pi\)
\(618\) 0 0
\(619\) 2.50230e8 + 4.33411e8i 0.0424055 + 0.0734485i 0.886449 0.462826i \(-0.153165\pi\)
−0.844044 + 0.536274i \(0.819831\pi\)
\(620\) 3.23432e9 + 5.60200e9i 0.545019 + 0.944001i
\(621\) 0 0
\(622\) 4.44176e9 0.740097
\(623\) 1.62285e9 1.29322e8i 0.268888 0.0214272i
\(624\) 0 0
\(625\) 2.76124e9 4.78261e9i 0.452402 0.783583i
\(626\) 3.40831e9 + 5.90336e9i 0.555301 + 0.961809i
\(627\) 0 0
\(628\) 7.37370e8 1.27716e9i 0.118803 0.205772i
\(629\) −8.00850e9 −1.28314
\(630\) 0 0
\(631\) 4.24339e9 0.672373 0.336186 0.941795i \(-0.390863\pi\)
0.336186 + 0.941795i \(0.390863\pi\)
\(632\) 5.97737e8 1.03531e9i 0.0941890 0.163140i
\(633\) 0 0
\(634\) 1.87502e9 + 3.24762e9i 0.292208 + 0.506120i
\(635\) −7.84759e9 + 1.35924e10i −1.21627 + 2.10663i
\(636\) 0 0
\(637\) −3.40935e9 + 8.93397e9i −0.522616 + 1.36948i
\(638\) −4.52078e9 −0.689194
\(639\) 0 0
\(640\) −4.23459e8 7.33453e8i −0.0638531 0.110597i
\(641\) −2.91419e9 5.04753e9i −0.437034 0.756965i 0.560425 0.828205i \(-0.310638\pi\)
−0.997459 + 0.0712398i \(0.977304\pi\)
\(642\) 0 0
\(643\) −8.45573e9 −1.25433 −0.627166 0.778886i \(-0.715785\pi\)
−0.627166 + 0.778886i \(0.715785\pi\)
\(644\) 4.33431e8 + 6.29323e8i 0.0639469 + 0.0928481i
\(645\) 0 0
\(646\) −3.77713e9 + 6.54219e9i −0.551250 + 0.954793i
\(647\) −9.59555e8 1.66200e9i −0.139285 0.241249i 0.787941 0.615751i \(-0.211147\pi\)
−0.927226 + 0.374502i \(0.877814\pi\)
\(648\) 0 0
\(649\) 6.90967e9 1.19679e10i 0.992204 1.71855i
\(650\) 7.89229e9 1.12721
\(651\) 0 0
\(652\) −3.64092e9 −0.514451
\(653\) 5.64974e9 9.78563e9i 0.794021 1.37529i −0.129437 0.991588i \(-0.541317\pi\)
0.923459 0.383698i \(-0.125350\pi\)
\(654\) 0 0
\(655\) −6.10041e8 1.05662e9i −0.0848231 0.146918i
\(656\) −4.77754e8 + 8.27494e8i −0.0660755 + 0.114446i
\(657\) 0 0
\(658\) 6.49812e8 1.36580e9i 0.0889195 0.186895i
\(659\) 3.23836e9 0.440784 0.220392 0.975411i \(-0.429266\pi\)
0.220392 + 0.975411i \(0.429266\pi\)
\(660\) 0 0
\(661\) −3.59578e9 6.22808e9i −0.484271 0.838781i 0.515566 0.856850i \(-0.327582\pi\)
−0.999837 + 0.0180684i \(0.994248\pi\)
\(662\) −9.95415e8 1.72411e9i −0.133353 0.230973i
\(663\) 0 0
\(664\) 2.64726e9 0.350920
\(665\) −7.32080e9 + 1.53872e10i −0.965345 + 2.02900i
\(666\) 0 0
\(667\) −5.74150e8 + 9.94457e8i −0.0749178 + 0.129761i
\(668\) 7.60214e7 + 1.31673e8i 0.00986775 + 0.0170914i
\(669\) 0 0
\(670\) −1.24441e8 + 2.15538e8i −0.0159846 + 0.0276861i
\(671\) −1.71880e10 −2.19632
\(672\) 0 0
\(673\) −6.55028e9 −0.828337 −0.414168 0.910200i \(-0.635928\pi\)
−0.414168 + 0.910200i \(0.635928\pi\)
\(674\) −2.34729e9 + 4.06563e9i −0.295296 + 0.511468i
\(675\) 0 0
\(676\) −2.30635e9 3.99472e9i −0.287152 0.497363i
\(677\) 5.19191e9 8.99265e9i 0.643082 1.11385i −0.341658 0.939824i \(-0.610989\pi\)
0.984741 0.174027i \(-0.0556781\pi\)
\(678\) 0 0
\(679\) 1.20674e9 + 1.75213e9i 0.147934 + 0.214794i
\(680\) −4.19924e9 −0.512141
\(681\) 0 0
\(682\) −6.48185e9 1.12269e10i −0.782445 1.35523i
\(683\) 6.33681e8 + 1.09757e9i 0.0761024 + 0.131813i 0.901565 0.432643i \(-0.142419\pi\)
−0.825463 + 0.564457i \(0.809086\pi\)
\(684\) 0 0
\(685\) −2.67250e9 −0.317689
\(686\) 1.68122e9 5.73763e9i 0.198834 0.678576i
\(687\) 0 0
\(688\) −1.22202e9 + 2.11660e9i −0.143060 + 0.247788i
\(689\) −6.39934e9 1.10840e10i −0.745363 1.29101i
\(690\) 0 0
\(691\) −7.47471e9 + 1.29466e10i −0.861829 + 1.49273i 0.00833297 + 0.999965i \(0.497348\pi\)
−0.870162 + 0.492766i \(0.835986\pi\)
\(692\) 1.82860e9 0.209772
\(693\) 0 0
\(694\) 9.72056e8 0.110391
\(695\) −5.43483e8 + 9.41339e8i −0.0614100 + 0.106365i
\(696\) 0 0
\(697\) 2.36883e9 + 4.10293e9i 0.264984 + 0.458965i
\(698\) −3.66585e9 + 6.34944e9i −0.408019 + 0.706710i
\(699\) 0 0
\(700\) −4.91905e9 + 3.91990e8i −0.542048 + 0.0431949i
\(701\) 1.40054e10 1.53562 0.767808 0.640680i \(-0.221347\pi\)
0.767808 + 0.640680i \(0.221347\pi\)
\(702\) 0 0
\(703\) 9.16737e9 + 1.58783e10i 0.995178 + 1.72370i
\(704\) 8.48649e8 + 1.46990e9i 0.0916693 + 0.158776i
\(705\) 0 0
\(706\) 1.28469e9 0.137399
\(707\) 7.06305e9 1.48454e10i 0.751665 1.57988i
\(708\) 0 0
\(709\) 6.92117e9 1.19878e10i 0.729319 1.26322i −0.227852 0.973696i \(-0.573170\pi\)
0.957171 0.289522i \(-0.0934965\pi\)
\(710\) 2.50795e9 + 4.34389e9i 0.262975 + 0.455486i
\(711\) 0 0
\(712\) 4.59252e8 7.95447e8i 0.0476838 0.0825907i
\(713\) −3.29284e9 −0.340218
\(714\) 0 0
\(715\) −3.03606e10 −3.10627
\(716\) 1.35614e9 2.34890e9i 0.138073 0.239149i
\(717\) 0 0
\(718\) −3.43819e9 5.95513e9i −0.346653 0.600420i
\(719\) −7.38278e9 + 1.27874e10i −0.740745 + 1.28301i 0.211411 + 0.977397i \(0.432194\pi\)
−0.952156 + 0.305611i \(0.901139\pi\)
\(720\) 0 0
\(721\) −5.29340e9 + 4.21822e8i −0.525970 + 0.0419136i
\(722\) 1.01438e10 1.00305
\(723\) 0 0
\(724\) 1.63639e9 + 2.83432e9i 0.160252 + 0.277564i
\(725\) −3.70773e9 6.42198e9i −0.361348 0.625872i
\(726\) 0 0
\(727\) 1.82026e10 1.75696 0.878481 0.477777i \(-0.158557\pi\)
0.878481 + 0.477777i \(0.158557\pi\)
\(728\) 3.06013e9 + 4.44318e9i 0.293955 + 0.426810i
\(729\) 0 0
\(730\) −7.53426e9 + 1.30497e10i −0.716821 + 1.24157i
\(731\) 6.05910e9 + 1.04947e10i 0.573717 + 0.993707i
\(732\) 0 0
\(733\) −5.45758e9 + 9.45281e9i −0.511843 + 0.886537i 0.488063 + 0.872808i \(0.337704\pi\)
−0.999906 + 0.0137290i \(0.995630\pi\)
\(734\) −3.02109e9 −0.281986
\(735\) 0 0
\(736\) 4.31122e8 0.0398591
\(737\) 2.49390e8 4.31956e8i 0.0229479 0.0397469i
\(738\) 0 0
\(739\) 6.46952e9 + 1.12055e10i 0.589680 + 1.02136i 0.994274 + 0.106859i \(0.0340794\pi\)
−0.404594 + 0.914496i \(0.632587\pi\)
\(740\) −5.09593e9 + 8.82641e9i −0.462288 + 0.800706i
\(741\) 0 0
\(742\) 4.53905e9 + 6.59050e9i 0.407897 + 0.592250i
\(743\) −8.91147e9 −0.797056 −0.398528 0.917156i \(-0.630479\pi\)
−0.398528 + 0.917156i \(0.630479\pi\)
\(744\) 0 0
\(745\) 9.81978e9 + 1.70084e10i 0.870072 + 1.50701i
\(746\) −3.05479e9 5.29106e9i −0.269399 0.466613i
\(747\) 0 0
\(748\) 8.41565e9 0.735245
\(749\) −2.56569e9 + 2.04455e8i −0.223109 + 0.0177792i
\(750\) 0 0
\(751\) 1.68792e9 2.92357e9i 0.145416 0.251868i −0.784112 0.620619i \(-0.786881\pi\)
0.929528 + 0.368751i \(0.120215\pi\)
\(752\) −4.26672e8 7.39017e8i −0.0365874 0.0633712i
\(753\) 0 0
\(754\) −4.05365e9 + 7.02112e9i −0.344387 + 0.596495i
\(755\) 1.33861e10 1.13198
\(756\) 0 0
\(757\) 4.09781e9 0.343333 0.171667 0.985155i \(-0.445085\pi\)
0.171667 + 0.985155i \(0.445085\pi\)
\(758\) −3.06310e9 + 5.30544e9i −0.255457 + 0.442465i
\(759\) 0 0
\(760\) 4.80689e9 + 8.32579e9i 0.397207 + 0.687983i
\(761\) −4.36321e9 + 7.55729e9i −0.358888 + 0.621613i −0.987775 0.155884i \(-0.950177\pi\)
0.628887 + 0.777497i \(0.283511\pi\)
\(762\) 0 0
\(763\) 3.18022e9 6.68432e9i 0.259191 0.544780i
\(764\) −9.29455e9 −0.754053
\(765\) 0 0
\(766\) −4.38312e9 7.59179e9i −0.352357 0.610300i
\(767\) −1.23914e10 2.14625e10i −0.991599 1.71750i
\(768\) 0 0
\(769\) −2.27000e10 −1.80005 −0.900024 0.435840i \(-0.856451\pi\)
−0.900024 + 0.435840i \(0.856451\pi\)
\(770\) 1.89229e10 1.50794e9i 1.49373 0.119032i
\(771\) 0 0
\(772\) 9.84585e8 1.70535e9i 0.0770180 0.133399i
\(773\) 9.51851e9 + 1.64865e10i 0.741209 + 1.28381i 0.951945 + 0.306269i \(0.0990807\pi\)
−0.210736 + 0.977543i \(0.567586\pi\)
\(774\) 0 0
\(775\) 1.06322e10 1.84155e10i 0.820479 1.42111i
\(776\) 1.20031e9 0.0922099
\(777\) 0 0
\(778\) −1.11943e10 −0.852249
\(779\) 5.42322e9 9.39329e9i 0.411032 0.711929i
\(780\) 0 0
\(781\) −5.02615e9 8.70554e9i −0.377534 0.653909i
\(782\) 1.06881e9 1.85123e9i 0.0799237 0.138432i
\(783\) 0 0
\(784\) −2.12798e9 2.61733e9i −0.157711 0.193978i
\(785\) −9.30566e9 −0.686599
\(786\) 0 0
\(787\) −1.13547e10 1.96670e10i −0.830357 1.43822i −0.897755 0.440495i \(-0.854803\pi\)
0.0673979 0.997726i \(-0.478530\pi\)
\(788\) 2.03596e9 + 3.52639e9i 0.148227 + 0.256737i
\(789\) 0 0
\(790\) −7.54348e9 −0.544348
\(791\) 8.12941e9 + 1.18036e10i 0.584039 + 0.847999i
\(792\) 0 0
\(793\) −1.54119e10 + 2.66943e10i −1.09749 + 1.90091i
\(794\) −6.37600e9 1.10436e10i −0.452040 0.782956i
\(795\) 0 0
\(796\) −1.00952e9 + 1.74854e9i −0.0709448 + 0.122880i
\(797\) 5.57990e9 0.390411 0.195206 0.980762i \(-0.437463\pi\)
0.195206 + 0.980762i \(0.437463\pi\)
\(798\) 0 0
\(799\) −4.23110e9 −0.293454
\(800\) −1.39204e9 + 2.41109e9i −0.0961253 + 0.166494i
\(801\) 0 0
\(802\) −3.34128e9 5.78727e9i −0.228719 0.396154i
\(803\) 1.50993e10 2.61528e10i 1.02909 1.78243i
\(804\) 0 0
\(805\) 2.07155e9 4.35407e9i 0.139962 0.294178i
\(806\) −2.32483e10 −1.56393
\(807\) 0 0
\(808\) −4.63766e9 8.03266e9i −0.309285 0.535698i
\(809\) −4.83729e8 8.37842e8i −0.0321205 0.0556343i 0.849518 0.527559i \(-0.176893\pi\)
−0.881639 + 0.471925i \(0.843559\pi\)
\(810\) 0 0
\(811\) 2.31593e10 1.52459 0.762295 0.647229i \(-0.224072\pi\)
0.762295 + 0.647229i \(0.224072\pi\)
\(812\) 2.17781e9 4.57741e9i 0.142749 0.300036i
\(813\) 0 0
\(814\) 1.02127e10 1.76889e10i 0.663674 1.14952i
\(815\) 1.14872e10 + 1.98963e10i 0.743294 + 1.28742i
\(816\) 0 0
\(817\) 1.38718e10 2.40266e10i 0.889928 1.54140i
\(818\) 1.79972e10 1.14966
\(819\) 0 0
\(820\) 6.02929e9 0.381872
\(821\) −9.32624e9 + 1.61535e10i −0.588174 + 1.01875i 0.406298 + 0.913741i \(0.366820\pi\)
−0.994472 + 0.105006i \(0.966514\pi\)
\(822\) 0 0
\(823\) 7.23446e9 + 1.25304e10i 0.452383 + 0.783551i 0.998534 0.0541365i \(-0.0172406\pi\)
−0.546150 + 0.837687i \(0.683907\pi\)
\(824\) −1.49798e9 + 2.59458e9i −0.0932740 + 0.161555i
\(825\) 0 0
\(826\) 8.78920e9 + 1.27615e10i 0.542649 + 0.787904i
\(827\) −2.18964e10 −1.34618 −0.673092 0.739559i \(-0.735034\pi\)
−0.673092 + 0.739559i \(0.735034\pi\)
\(828\) 0 0
\(829\) −2.96991e9 5.14404e9i −0.181052 0.313591i 0.761187 0.648532i \(-0.224617\pi\)
−0.942239 + 0.334941i \(0.891283\pi\)
\(830\) −8.35215e9 1.44663e10i −0.507020 0.878184i
\(831\) 0 0
\(832\) 3.04383e9 0.183227
\(833\) −1.65143e10 + 2.64881e9i −0.989925 + 0.158779i
\(834\) 0 0
\(835\) 4.79698e8 8.30861e8i 0.0285144 0.0493885i
\(836\) −9.63343e9 1.66856e10i −0.570242 0.987688i
\(837\) 0 0
\(838\) 7.02038e9 1.21597e10i 0.412104 0.713785i
\(839\) 2.57848e9 0.150729 0.0753646 0.997156i \(-0.475988\pi\)
0.0753646 + 0.997156i \(0.475988\pi\)
\(840\) 0 0
\(841\) −9.63240e9 −0.558404
\(842\) −6.29492e9 + 1.09031e10i −0.363411 + 0.629446i
\(843\) 0 0
\(844\) 3.86434e8 + 6.69323e8i 0.0221247 + 0.0383211i
\(845\) −1.45532e10 + 2.52068e10i −0.829773 + 1.43721i
\(846\) 0 0
\(847\) −2.02946e10 + 1.61724e9i −1.14760 + 0.0914499i
\(848\) 4.51486e9 0.254249
\(849\) 0 0
\(850\) 6.90211e9 + 1.19548e10i 0.385492 + 0.667693i
\(851\) −2.59407e9 4.49306e9i −0.144287 0.249913i
\(852\) 0 0
\(853\) 2.41906e10 1.33452 0.667259 0.744826i \(-0.267467\pi\)
0.667259 + 0.744826i \(0.267467\pi\)
\(854\) 8.28001e9 1.74033e10i 0.454913 0.956156i
\(855\) 0 0
\(856\) −7.26065e8 + 1.25758e9i −0.0395656 + 0.0685296i
\(857\) 2.97434e9 + 5.15170e9i 0.161420 + 0.279588i 0.935378 0.353649i \(-0.115059\pi\)
−0.773958 + 0.633237i \(0.781726\pi\)
\(858\) 0 0
\(859\) −5.90660e9 + 1.02305e10i −0.317952 + 0.550709i −0.980061 0.198699i \(-0.936328\pi\)
0.662109 + 0.749408i \(0.269662\pi\)
\(860\) 1.54220e10 0.826792
\(861\) 0 0
\(862\) −1.40077e10 −0.744887
\(863\) −3.65692e8 + 6.33397e8i −0.0193677 + 0.0335458i −0.875547 0.483133i \(-0.839499\pi\)
0.856179 + 0.516679i \(0.172832\pi\)
\(864\) 0 0
\(865\) −5.76928e9 9.99268e9i −0.303085 0.524959i
\(866\) −3.47499e9 + 6.01885e9i −0.181820 + 0.314921i
\(867\) 0 0
\(868\) 1.44900e10 1.15468e9i 0.752056 0.0599300i
\(869\) 1.51178e10 0.781482
\(870\) 0 0
\(871\) −4.47241e8 7.74644e8i −0.0229339 0.0397227i
\(872\) −2.08816e9 3.61679e9i −0.106649 0.184721i
\(873\) 0 0
\(874\) −4.89387e9 −0.247949
\(875\) 1.42157e9 + 2.06405e9i 0.0717363 + 0.104158i
\(876\) 0 0
\(877\) 1.58323e10 2.74224e10i 0.792587 1.37280i −0.131774 0.991280i \(-0.542067\pi\)
0.924360 0.381520i \(-0.124599\pi\)
\(878\) −4.95245e9 8.57789e9i −0.246939 0.427710i
\(879\) 0 0
\(880\) 5.35501e9 9.27514e9i 0.264893 0.458808i
\(881\) 1.90621e10 0.939192 0.469596 0.882881i \(-0.344400\pi\)
0.469596 + 0.882881i \(0.344400\pi\)
\(882\) 0 0
\(883\) −2.91186e10 −1.42334 −0.711670 0.702514i \(-0.752061\pi\)
−0.711670 + 0.702514i \(0.752061\pi\)
\(884\) 7.54605e9 1.30701e10i 0.367398 0.636352i
\(885\) 0 0
\(886\) 1.35006e10 + 2.33838e10i 0.652134 + 1.12953i
\(887\) 8.54207e8 1.47953e9i 0.0410989 0.0711854i −0.844744 0.535170i \(-0.820247\pi\)
0.885843 + 0.463985i \(0.153581\pi\)
\(888\) 0 0
\(889\) 2.00053e10 + 2.90468e10i 0.954967 + 1.38657i
\(890\) −5.79579e9 −0.275580
\(891\) 0 0
\(892\) 8.98641e9 + 1.55649e10i 0.423945 + 0.734294i
\(893\) 4.84336e9 + 8.38895e9i 0.227597 + 0.394210i
\(894\) 0 0
\(895\) −1.71146e10 −0.797967
\(896\) −1.89714e9 + 1.51179e8i −0.0881090 + 0.00702125i
\(897\) 0 0
\(898\) 8.50379e9 1.47290e10i 0.391873 0.678744i
\(899\) 1.09219e10 + 1.89172e10i 0.501346 + 0.868356i
\(900\) 0 0
\(901\) 1.11929e10 1.93867e10i 0.509809 0.883015i
\(902\) −1.20832e10 −0.548226
\(903\) 0 0
\(904\) 8.08610e9 0.364041
\(905\) 1.03257e10 1.78846e10i 0.463073 0.802066i
\(906\) 0 0
\(907\) 2.36944e9 + 4.10399e9i 0.105444 + 0.182634i 0.913919 0.405896i \(-0.133040\pi\)
−0.808476 + 0.588529i \(0.799707\pi\)
\(908\) 5.24685e9 9.08782e9i 0.232594 0.402865i
\(909\) 0 0
\(910\) 1.46257e10 3.07409e10i 0.643385 1.35230i
\(911\) 2.73789e10 1.19978 0.599891 0.800082i \(-0.295211\pi\)
0.599891 + 0.800082i \(0.295211\pi\)
\(912\) 0 0
\(913\) 1.67384e10 + 2.89918e10i 0.727892 + 1.26075i
\(914\) 8.02690e9 + 1.39030e10i 0.347725 + 0.602278i
\(915\) 0 0
\(916\) −1.72413e9 −0.0741200
\(917\) −2.73304e9 + 2.17791e8i −0.117045 + 0.00932711i
\(918\) 0 0
\(919\) −4.85860e8 + 8.41534e8i −0.0206494 + 0.0357657i −0.876165 0.482011i \(-0.839907\pi\)
0.855516 + 0.517776i \(0.173240\pi\)
\(920\) −1.36020e9 2.35593e9i −0.0575896 0.0997481i
\(921\) 0 0
\(922\) 7.72060e9 1.33725e10i 0.324409 0.561893i
\(923\) −1.80272e10 −0.754608
\(924\) 0 0
\(925\) 3.35038e10 1.39187
\(926\) 8.32117e9 1.44127e10i 0.344386 0.596495i
\(927\) 0 0
\(928\) −1.42997e9 2.47677e9i −0.0587364 0.101734i
\(929\) 2.24929e9 3.89588e9i 0.0920429 0.159423i −0.816328 0.577589i \(-0.803994\pi\)
0.908371 + 0.418166i \(0.137327\pi\)
\(930\) 0 0
\(931\) 2.41557e10 + 2.97106e10i 0.981062 + 1.20667i
\(932\) 4.31477e9 0.174583
\(933\) 0 0
\(934\) −1.29919e10 2.25027e10i −0.521746 0.903691i
\(935\) −2.65515e10 4.59886e10i −1.06230 1.83996i
\(936\) 0 0
\(937\) −2.77390e10 −1.10155 −0.550773 0.834655i \(-0.685667\pi\)
−0.550773 + 0.834655i \(0.685667\pi\)
\(938\) 3.17228e8 + 4.60601e8i 0.0125505 + 0.0182228i
\(939\) 0 0
\(940\) −2.69231e9 + 4.66323e9i −0.105725 + 0.183121i
\(941\) 1.93638e10 + 3.35392e10i 0.757579 + 1.31216i 0.944082 + 0.329711i \(0.106951\pi\)
−0.186503 + 0.982454i \(0.559716\pi\)
\(942\) 0 0
\(943\) −1.53460e9 + 2.65800e9i −0.0595941 + 0.103220i
\(944\) 8.74237e9 0.338242
\(945\) 0 0
\(946\) −3.09070e10 −1.18697
\(947\) 2.04015e10 3.53364e10i 0.780615 1.35207i −0.150969 0.988539i \(-0.548239\pi\)
0.931584 0.363527i \(-0.118427\pi\)
\(948\) 0 0
\(949\) −2.70782e10 4.69008e10i −1.02846 1.78135i
\(950\) 1.58018e10 2.73695e10i 0.597961 1.03570i
\(951\) 0 0
\(952\) −4.05409e9 + 8.52106e9i −0.152287 + 0.320084i
\(953\) −3.64067e10 −1.36256 −0.681280 0.732023i \(-0.738577\pi\)
−0.681280 + 0.732023i \(0.738577\pi\)
\(954\) 0 0
\(955\) 2.93245e10 + 5.07915e10i 1.08948 + 1.88703i
\(956\) 1.24150e10 + 2.15034e10i 0.459561 + 0.795983i
\(957\) 0 0
\(958\) −2.05928e9 −0.0756722
\(959\) −2.58012e9 + 5.42302e9i −0.0944660 + 0.198553i
\(960\) 0 0
\(961\) −1.75630e10 + 3.04199e10i −0.638360 + 1.10567i
\(962\) −1.83148e10 3.17222e10i −0.663269 1.14881i
\(963\) 0 0
\(964\) −7.40113e9 + 1.28191e10i −0.266090 + 0.460881i
\(965\) −1.24255e10 −0.445112
\(966\) 0 0
\(967\) 1.98247e10 0.705039 0.352519 0.935804i \(-0.385325\pi\)
0.352519 + 0.935804i \(0.385325\pi\)
\(968\) −5.74318e9 + 9.94748e9i −0.203511 + 0.352492i
\(969\) 0 0
\(970\) −3.78700e9 6.55927e9i −0.133228 0.230757i
\(971\) 8.85983e9 1.53457e10i 0.310569 0.537921i −0.667917 0.744236i \(-0.732814\pi\)
0.978486 + 0.206315i \(0.0661471\pi\)
\(972\) 0 0
\(973\) 1.38546e9 + 2.01163e9i 0.0482169 + 0.0700088i
\(974\) 2.51471e10 0.872031
\(975\) 0 0
\(976\) −5.43672e9 9.41667e9i −0.187181 0.324208i
\(977\) 1.05326e10 + 1.82429e10i 0.361329 + 0.625841i 0.988180 0.153299i \(-0.0489897\pi\)
−0.626851 + 0.779139i \(0.715656\pi\)
\(978\) 0 0
\(979\) 1.16153e10 0.395630
\(980\) −7.58896e9 + 1.98864e10i −0.257567 + 0.674939i
\(981\) 0 0
\(982\) −8.70364e9 + 1.50752e10i −0.293299 + 0.508009i
\(983\) −1.25543e9 2.17447e9i −0.0421556 0.0730156i 0.844178 0.536063i \(-0.180089\pi\)
−0.886333 + 0.463048i \(0.846756\pi\)
\(984\) 0 0
\(985\) 1.28470e10 2.22516e10i 0.428326 0.741882i
\(986\) −1.41803e10 −0.471103
\(987\) 0 0
\(988\) −3.45520e10 −1.13979
\(989\) −3.92526e9 + 6.79876e9i −0.129027 + 0.223482i
\(990\) 0 0
\(991\) −1.98537e10 3.43876e10i −0.648013 1.12239i −0.983597 0.180381i \(-0.942267\pi\)
0.335584 0.942010i \(-0.391066\pi\)
\(992\) 4.10054e9 7.10234e9i 0.133367 0.230999i
\(993\) 0 0
\(994\) 1.12358e10 8.95364e8i 0.362872 0.0289166i
\(995\) 1.27403e10 0.410013
\(996\) 0 0
\(997\) 1.61458e9 + 2.79654e9i 0.0515973 + 0.0893692i 0.890670 0.454649i \(-0.150235\pi\)
−0.839073 + 0.544019i \(0.816902\pi\)
\(998\) 1.33528e10 + 2.31277e10i 0.425221 + 0.736504i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.h.37.1 6
3.2 odd 2 42.8.e.e.37.3 yes 6
7.4 even 3 inner 126.8.g.h.109.1 6
21.2 odd 6 294.8.a.v.1.1 3
21.5 even 6 294.8.a.w.1.3 3
21.11 odd 6 42.8.e.e.25.3 6
21.17 even 6 294.8.e.ba.67.1 6
21.20 even 2 294.8.e.ba.79.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.e.25.3 6 21.11 odd 6
42.8.e.e.37.3 yes 6 3.2 odd 2
126.8.g.h.37.1 6 1.1 even 1 trivial
126.8.g.h.109.1 6 7.4 even 3 inner
294.8.a.v.1.1 3 21.2 odd 6
294.8.a.w.1.3 3 21.5 even 6
294.8.e.ba.67.1 6 21.17 even 6
294.8.e.ba.79.1 6 21.20 even 2