Properties

Label 126.8.g.h.109.3
Level $126$
Weight $8$
Character 126.109
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 2119x^{4} - 65706x^{3} + 4519836x^{2} - 71825616x + 1150023744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.3
Root \(16.9812 + 29.4123i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.8.g.h.37.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(99.3686 + 172.111i) q^{5} +(709.564 + 565.740i) q^{7} +512.000 q^{8} +(794.949 - 1376.89i) q^{10} +(-3946.05 + 6834.75i) q^{11} +10120.7 q^{13} +(1081.31 - 7178.96i) q^{14} +(-2048.00 - 3547.24i) q^{16} +(-4814.83 + 8339.53i) q^{17} +(-5120.94 - 8869.73i) q^{19} -12719.2 q^{20} +63136.8 q^{22} +(-23197.0 - 40178.4i) q^{23} +(19314.3 - 33453.3i) q^{25} +(-40482.9 - 70118.5i) q^{26} +(-54062.6 + 21224.3i) q^{28} -208906. q^{29} +(-118652. + 205512. i) q^{31} +(-16384.0 + 28377.9i) q^{32} +77037.3 q^{34} +(-26862.0 + 178341. i) q^{35} +(-162011. - 280611. i) q^{37} +(-40967.5 + 70957.9i) q^{38} +(50876.7 + 88121.0i) q^{40} +758284. q^{41} -558520. q^{43} +(-252547. - 437424. i) q^{44} +(-185576. + 321427. i) q^{46} +(134708. + 233321. i) q^{47} +(183419. + 802858. i) q^{49} -309028. q^{50} +(-323864. + 560948. i) q^{52} +(66909.5 - 115891. i) q^{53} -1.56845e6 q^{55} +(363297. + 289659. i) q^{56} +(835623. + 1.44734e6i) q^{58} +(-815863. + 1.41312e6i) q^{59} +(887949. + 1.53797e6i) q^{61} +1.89844e6 q^{62} +262144. q^{64} +(1.00568e6 + 1.74189e6i) q^{65} +(376991. - 652968. i) q^{67} +(-308149. - 533730. i) q^{68} +(1.34303e6 - 527258. i) q^{70} -1.44473e6 q^{71} +(-1.65487e6 + 2.86632e6i) q^{73} +(-1.29609e6 + 2.24489e6i) q^{74} +655481. q^{76} +(-6.66667e6 + 2.61726e6i) q^{77} +(3.31651e6 + 5.74437e6i) q^{79} +(407014. - 704968. i) q^{80} +(-3.03314e6 - 5.25354e6i) q^{82} -2.35482e6 q^{83} -1.91377e6 q^{85} +(2.23408e6 + 3.86954e6i) q^{86} +(-2.02038e6 + 3.49939e6i) q^{88} +(1.94917e6 + 3.37607e6i) q^{89} +(7.18131e6 + 5.72571e6i) q^{91} +2.96922e6 q^{92} +(1.07766e6 - 1.86657e6i) q^{94} +(1.01772e6 - 1.76275e6i) q^{95} -7.98505e6 q^{97} +(4.82869e6 - 4.48220e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 192 q^{4} - 110 q^{5} + 635 q^{7} + 3072 q^{8} - 880 q^{10} + 548 q^{11} + 19898 q^{13} - 4568 q^{14} - 12288 q^{16} + 20972 q^{17} + 28383 q^{19} + 14080 q^{20} - 8768 q^{22} + 32732 q^{23}+ \cdots - 6110208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 99.3686 + 172.111i 0.355512 + 0.615764i 0.987205 0.159454i \(-0.0509733\pi\)
−0.631694 + 0.775218i \(0.717640\pi\)
\(6\) 0 0
\(7\) 709.564 + 565.740i 0.781895 + 0.623410i
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 794.949 1376.89i 0.251385 0.435411i
\(11\) −3946.05 + 6834.75i −0.893898 + 1.54828i −0.0587350 + 0.998274i \(0.518707\pi\)
−0.835163 + 0.550003i \(0.814627\pi\)
\(12\) 0 0
\(13\) 10120.7 1.27765 0.638823 0.769354i \(-0.279422\pi\)
0.638823 + 0.769354i \(0.279422\pi\)
\(14\) 1081.31 7178.96i 0.105318 0.699220i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) −4814.83 + 8339.53i −0.237689 + 0.411690i −0.960051 0.279826i \(-0.909723\pi\)
0.722361 + 0.691516i \(0.243057\pi\)
\(18\) 0 0
\(19\) −5120.94 8869.73i −0.171282 0.296670i 0.767586 0.640946i \(-0.221458\pi\)
−0.938868 + 0.344276i \(0.888124\pi\)
\(20\) −12719.2 −0.355512
\(21\) 0 0
\(22\) 63136.8 1.26416
\(23\) −23197.0 40178.4i −0.397543 0.688565i 0.595879 0.803074i \(-0.296804\pi\)
−0.993422 + 0.114509i \(0.963471\pi\)
\(24\) 0 0
\(25\) 19314.3 33453.3i 0.247223 0.428202i
\(26\) −40482.9 70118.5i −0.451716 0.782395i
\(27\) 0 0
\(28\) −54062.6 + 21224.3i −0.465418 + 0.182718i
\(29\) −208906. −1.59059 −0.795293 0.606225i \(-0.792683\pi\)
−0.795293 + 0.606225i \(0.792683\pi\)
\(30\) 0 0
\(31\) −118652. + 205512.i −0.715337 + 1.23900i 0.247492 + 0.968890i \(0.420394\pi\)
−0.962829 + 0.270111i \(0.912940\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 77037.3 0.336144
\(35\) −26862.0 + 178341.i −0.105901 + 0.703093i
\(36\) 0 0
\(37\) −162011. 280611.i −0.525821 0.910748i −0.999548 0.0300762i \(-0.990425\pi\)
0.473727 0.880672i \(-0.342908\pi\)
\(38\) −40967.5 + 70957.9i −0.121115 + 0.209777i
\(39\) 0 0
\(40\) 50876.7 + 88121.0i 0.125692 + 0.217706i
\(41\) 758284. 1.71826 0.859129 0.511759i \(-0.171006\pi\)
0.859129 + 0.511759i \(0.171006\pi\)
\(42\) 0 0
\(43\) −558520. −1.07127 −0.535635 0.844450i \(-0.679928\pi\)
−0.535635 + 0.844450i \(0.679928\pi\)
\(44\) −252547. 437424.i −0.446949 0.774138i
\(45\) 0 0
\(46\) −185576. + 321427.i −0.281106 + 0.486889i
\(47\) 134708. + 233321.i 0.189257 + 0.327802i 0.945003 0.327063i \(-0.106059\pi\)
−0.755746 + 0.654865i \(0.772726\pi\)
\(48\) 0 0
\(49\) 183419. + 802858.i 0.222719 + 0.974883i
\(50\) −309028. −0.349626
\(51\) 0 0
\(52\) −323864. + 560948.i −0.319411 + 0.553237i
\(53\) 66909.5 115891.i 0.0617337 0.106926i −0.833507 0.552509i \(-0.813670\pi\)
0.895240 + 0.445583i \(0.147004\pi\)
\(54\) 0 0
\(55\) −1.56845e6 −1.27116
\(56\) 363297. + 289659.i 0.276442 + 0.220409i
\(57\) 0 0
\(58\) 835623. + 1.44734e6i 0.562357 + 0.974032i
\(59\) −815863. + 1.41312e6i −0.517172 + 0.895769i 0.482629 + 0.875825i \(0.339682\pi\)
−0.999801 + 0.0199439i \(0.993651\pi\)
\(60\) 0 0
\(61\) 887949. + 1.53797e6i 0.500880 + 0.867550i 0.999999 + 0.00101648i \(0.000323556\pi\)
−0.499119 + 0.866533i \(0.666343\pi\)
\(62\) 1.89844e6 1.01164
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 1.00568e6 + 1.74189e6i 0.454218 + 0.786729i
\(66\) 0 0
\(67\) 376991. 652968.i 0.153133 0.265235i −0.779244 0.626720i \(-0.784397\pi\)
0.932378 + 0.361485i \(0.117730\pi\)
\(68\) −308149. 533730.i −0.118845 0.205845i
\(69\) 0 0
\(70\) 1.34303e6 527258.i 0.467996 0.183730i
\(71\) −1.44473e6 −0.479053 −0.239526 0.970890i \(-0.576992\pi\)
−0.239526 + 0.970890i \(0.576992\pi\)
\(72\) 0 0
\(73\) −1.65487e6 + 2.86632e6i −0.497891 + 0.862373i −0.999997 0.00243304i \(-0.999226\pi\)
0.502106 + 0.864806i \(0.332559\pi\)
\(74\) −1.29609e6 + 2.24489e6i −0.371811 + 0.643996i
\(75\) 0 0
\(76\) 655481. 0.171282
\(77\) −6.66667e6 + 2.61726e6i −1.66415 + 0.653324i
\(78\) 0 0
\(79\) 3.31651e6 + 5.74437e6i 0.756810 + 1.31083i 0.944469 + 0.328600i \(0.106577\pi\)
−0.187659 + 0.982234i \(0.560090\pi\)
\(80\) 407014. 704968.i 0.0888779 0.153941i
\(81\) 0 0
\(82\) −3.03314e6 5.25354e6i −0.607496 1.05221i
\(83\) −2.35482e6 −0.452048 −0.226024 0.974122i \(-0.572573\pi\)
−0.226024 + 0.974122i \(0.572573\pi\)
\(84\) 0 0
\(85\) −1.91377e6 −0.338006
\(86\) 2.23408e6 + 3.86954e6i 0.378751 + 0.656016i
\(87\) 0 0
\(88\) −2.02038e6 + 3.49939e6i −0.316041 + 0.547398i
\(89\) 1.94917e6 + 3.37607e6i 0.293079 + 0.507629i 0.974536 0.224230i \(-0.0719866\pi\)
−0.681457 + 0.731858i \(0.738653\pi\)
\(90\) 0 0
\(91\) 7.18131e6 + 5.72571e6i 0.998984 + 0.796497i
\(92\) 2.96922e6 0.397543
\(93\) 0 0
\(94\) 1.07766e6 1.86657e6i 0.133825 0.231791i
\(95\) 1.01772e6 1.76275e6i 0.121786 0.210939i
\(96\) 0 0
\(97\) −7.98505e6 −0.888335 −0.444167 0.895944i \(-0.646500\pi\)
−0.444167 + 0.895944i \(0.646500\pi\)
\(98\) 4.82869e6 4.48220e6i 0.518248 0.481060i
\(99\) 0 0
\(100\) 1.23611e6 + 2.14101e6i 0.123611 + 0.214101i
\(101\) 4.86706e6 8.42999e6i 0.470047 0.814146i −0.529366 0.848394i \(-0.677570\pi\)
0.999413 + 0.0342476i \(0.0109035\pi\)
\(102\) 0 0
\(103\) −5.06333e6 8.76994e6i −0.456568 0.790799i 0.542209 0.840244i \(-0.317588\pi\)
−0.998777 + 0.0494445i \(0.984255\pi\)
\(104\) 5.18182e6 0.451716
\(105\) 0 0
\(106\) −1.07055e6 −0.0873047
\(107\) −5.69879e6 9.87059e6i −0.449717 0.778933i 0.548650 0.836052i \(-0.315142\pi\)
−0.998367 + 0.0571192i \(0.981808\pi\)
\(108\) 0 0
\(109\) −9.70714e6 + 1.68133e7i −0.717957 + 1.24354i 0.243851 + 0.969813i \(0.421589\pi\)
−0.961808 + 0.273725i \(0.911744\pi\)
\(110\) 6.27381e6 + 1.08666e7i 0.449425 + 0.778426i
\(111\) 0 0
\(112\) 553629. 3.67563e6i 0.0372354 0.247211i
\(113\) −2.80072e7 −1.82598 −0.912988 0.407987i \(-0.866231\pi\)
−0.912988 + 0.407987i \(0.866231\pi\)
\(114\) 0 0
\(115\) 4.61011e6 7.98494e6i 0.282663 0.489586i
\(116\) 6.68498e6 1.15787e7i 0.397647 0.688744i
\(117\) 0 0
\(118\) 1.30538e7 0.731392
\(119\) −8.13444e6 + 3.19349e6i −0.442500 + 0.173720i
\(120\) 0 0
\(121\) −2.13990e7 3.70641e7i −1.09811 1.90198i
\(122\) 7.10359e6 1.23038e7i 0.354176 0.613450i
\(123\) 0 0
\(124\) −7.59376e6 1.31528e7i −0.357669 0.619500i
\(125\) 2.32033e7 1.06259
\(126\) 0 0
\(127\) 1.55135e7 0.672043 0.336021 0.941854i \(-0.390919\pi\)
0.336021 + 0.941854i \(0.390919\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 8.04546e6 1.39352e7i 0.321181 0.556301i
\(131\) −9.19771e6 1.59309e7i −0.357462 0.619143i 0.630074 0.776535i \(-0.283025\pi\)
−0.987536 + 0.157392i \(0.949691\pi\)
\(132\) 0 0
\(133\) 1.38433e6 9.19077e6i 0.0510221 0.338744i
\(134\) −6.03186e6 −0.216563
\(135\) 0 0
\(136\) −2.46519e6 + 4.26984e6i −0.0840359 + 0.145554i
\(137\) 1.65808e7 2.87189e7i 0.550915 0.954213i −0.447294 0.894387i \(-0.647612\pi\)
0.998209 0.0598256i \(-0.0190544\pi\)
\(138\) 0 0
\(139\) 3.41540e7 1.07867 0.539337 0.842090i \(-0.318675\pi\)
0.539337 + 0.842090i \(0.318675\pi\)
\(140\) −9.02507e6 7.19575e6i −0.277973 0.221630i
\(141\) 0 0
\(142\) 5.77893e6 + 1.00094e7i 0.169371 + 0.293359i
\(143\) −3.99369e7 + 6.91727e7i −1.14208 + 1.97815i
\(144\) 0 0
\(145\) −2.07587e7 3.59551e7i −0.565472 0.979427i
\(146\) 2.64780e7 0.704125
\(147\) 0 0
\(148\) 2.07374e7 0.525821
\(149\) 1.03906e7 + 1.79971e7i 0.257329 + 0.445707i 0.965526 0.260308i \(-0.0838242\pi\)
−0.708196 + 0.706015i \(0.750491\pi\)
\(150\) 0 0
\(151\) −1.63037e7 + 2.82389e7i −0.385361 + 0.667465i −0.991819 0.127651i \(-0.959256\pi\)
0.606458 + 0.795115i \(0.292590\pi\)
\(152\) −2.62192e6 4.54130e6i −0.0605574 0.104889i
\(153\) 0 0
\(154\) 4.47996e7 + 3.57190e7i 0.988442 + 0.788092i
\(155\) −4.71613e7 −1.01724
\(156\) 0 0
\(157\) 1.37310e7 2.37828e7i 0.283174 0.490471i −0.688991 0.724770i \(-0.741946\pi\)
0.972165 + 0.234299i \(0.0752793\pi\)
\(158\) 2.65321e7 4.59550e7i 0.535146 0.926899i
\(159\) 0 0
\(160\) −6.51222e6 −0.125692
\(161\) 6.27077e6 4.16326e7i 0.118421 0.786218i
\(162\) 0 0
\(163\) −2.62267e7 4.54260e7i −0.474337 0.821576i 0.525231 0.850959i \(-0.323979\pi\)
−0.999568 + 0.0293839i \(0.990645\pi\)
\(164\) −2.42651e7 + 4.20284e7i −0.429564 + 0.744027i
\(165\) 0 0
\(166\) 9.41929e6 + 1.63147e7i 0.159823 + 0.276822i
\(167\) 3.91024e7 0.649674 0.324837 0.945770i \(-0.394691\pi\)
0.324837 + 0.945770i \(0.394691\pi\)
\(168\) 0 0
\(169\) 3.96808e7 0.632378
\(170\) 7.65509e6 + 1.32590e7i 0.119503 + 0.206985i
\(171\) 0 0
\(172\) 1.78726e7 3.09563e7i 0.267817 0.463873i
\(173\) 1.12616e7 + 1.95057e7i 0.165363 + 0.286418i 0.936784 0.349907i \(-0.113787\pi\)
−0.771421 + 0.636325i \(0.780454\pi\)
\(174\) 0 0
\(175\) 3.26306e7 1.28104e7i 0.460248 0.180688i
\(176\) 3.23260e7 0.446949
\(177\) 0 0
\(178\) 1.55934e7 2.70085e7i 0.207238 0.358948i
\(179\) −2.19056e7 + 3.79417e7i −0.285476 + 0.494460i −0.972725 0.231963i \(-0.925485\pi\)
0.687248 + 0.726423i \(0.258819\pi\)
\(180\) 0 0
\(181\) −4.23221e7 −0.530508 −0.265254 0.964179i \(-0.585456\pi\)
−0.265254 + 0.964179i \(0.585456\pi\)
\(182\) 1.09436e7 7.26564e7i 0.134559 0.893355i
\(183\) 0 0
\(184\) −1.18769e7 2.05713e7i −0.140553 0.243445i
\(185\) 3.21975e7 5.57678e7i 0.373871 0.647563i
\(186\) 0 0
\(187\) −3.79991e7 6.58164e7i −0.424940 0.736018i
\(188\) −1.72426e7 −0.189257
\(189\) 0 0
\(190\) −1.62835e7 −0.172231
\(191\) 6.76367e7 + 1.17150e8i 0.702369 + 1.21654i 0.967633 + 0.252363i \(0.0812077\pi\)
−0.265264 + 0.964176i \(0.585459\pi\)
\(192\) 0 0
\(193\) −8.46054e7 + 1.46541e8i −0.847125 + 1.46726i 0.0366379 + 0.999329i \(0.488335\pi\)
−0.883763 + 0.467935i \(0.844998\pi\)
\(194\) 3.19402e7 + 5.53221e7i 0.314074 + 0.543992i
\(195\) 0 0
\(196\) −5.03683e7 1.55253e7i −0.477816 0.147280i
\(197\) 1.25987e7 0.117407 0.0587037 0.998275i \(-0.481303\pi\)
0.0587037 + 0.998275i \(0.481303\pi\)
\(198\) 0 0
\(199\) −7.56030e7 + 1.30948e8i −0.680069 + 1.17791i 0.294890 + 0.955531i \(0.404717\pi\)
−0.974959 + 0.222383i \(0.928616\pi\)
\(200\) 9.88891e6 1.71281e7i 0.0874064 0.151392i
\(201\) 0 0
\(202\) −7.78729e7 −0.664747
\(203\) −1.48232e8 1.18186e8i −1.24367 0.991588i
\(204\) 0 0
\(205\) 7.53496e7 + 1.30509e8i 0.610861 + 1.05804i
\(206\) −4.05066e7 + 7.01595e7i −0.322843 + 0.559180i
\(207\) 0 0
\(208\) −2.07273e7 3.59007e7i −0.159706 0.276618i
\(209\) 8.08299e7 0.612435
\(210\) 0 0
\(211\) 1.55746e8 1.14137 0.570687 0.821168i \(-0.306677\pi\)
0.570687 + 0.821168i \(0.306677\pi\)
\(212\) 4.28221e6 + 7.41700e6i 0.0308669 + 0.0534630i
\(213\) 0 0
\(214\) −4.55903e7 + 7.89647e7i −0.317998 + 0.550789i
\(215\) −5.54993e7 9.61276e7i −0.380849 0.659650i
\(216\) 0 0
\(217\) −2.00458e8 + 7.86975e7i −1.33172 + 0.522820i
\(218\) 1.55314e8 1.01534
\(219\) 0 0
\(220\) 5.01905e7 8.69324e7i 0.317791 0.550431i
\(221\) −4.87296e7 + 8.44022e7i −0.303683 + 0.525994i
\(222\) 0 0
\(223\) 1.59012e8 0.960200 0.480100 0.877214i \(-0.340600\pi\)
0.480100 + 0.877214i \(0.340600\pi\)
\(224\) −2.76800e7 + 1.08669e7i −0.164550 + 0.0646005i
\(225\) 0 0
\(226\) 1.12029e8 + 1.94039e8i 0.645580 + 1.11818i
\(227\) −1.95537e7 + 3.38680e7i −0.110953 + 0.192176i −0.916155 0.400825i \(-0.868724\pi\)
0.805202 + 0.593001i \(0.202057\pi\)
\(228\) 0 0
\(229\) −5.31757e7 9.21030e7i −0.292610 0.506815i 0.681816 0.731524i \(-0.261190\pi\)
−0.974426 + 0.224708i \(0.927857\pi\)
\(230\) −7.37617e7 −0.399745
\(231\) 0 0
\(232\) −1.06960e8 −0.562357
\(233\) −4.09925e7 7.10011e7i −0.212304 0.367722i 0.740131 0.672463i \(-0.234763\pi\)
−0.952435 + 0.304741i \(0.901430\pi\)
\(234\) 0 0
\(235\) −2.67715e7 + 4.63696e7i −0.134566 + 0.233075i
\(236\) −5.22153e7 9.04395e7i −0.258586 0.447885i
\(237\) 0 0
\(238\) 5.46629e7 + 4.35831e7i 0.262829 + 0.209555i
\(239\) −2.35102e8 −1.11395 −0.556973 0.830531i \(-0.688037\pi\)
−0.556973 + 0.830531i \(0.688037\pi\)
\(240\) 0 0
\(241\) −3.46303e7 + 5.99814e7i −0.159366 + 0.276030i −0.934640 0.355595i \(-0.884278\pi\)
0.775274 + 0.631625i \(0.217612\pi\)
\(242\) −1.71192e8 + 2.96513e8i −0.776479 + 1.34490i
\(243\) 0 0
\(244\) −1.13658e8 −0.500880
\(245\) −1.19955e8 + 1.11347e8i −0.521119 + 0.483725i
\(246\) 0 0
\(247\) −5.18277e7 8.97682e7i −0.218838 0.379039i
\(248\) −6.07501e7 + 1.05222e8i −0.252910 + 0.438053i
\(249\) 0 0
\(250\) −9.28131e7 1.60757e8i −0.375681 0.650698i
\(251\) 1.52667e8 0.609379 0.304690 0.952452i \(-0.401447\pi\)
0.304690 + 0.952452i \(0.401447\pi\)
\(252\) 0 0
\(253\) 3.66146e8 1.42145
\(254\) −6.20540e7 1.07481e8i −0.237603 0.411540i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) 5.56435e7 + 9.63774e7i 0.204479 + 0.354168i 0.949967 0.312352i \(-0.101117\pi\)
−0.745488 + 0.666519i \(0.767783\pi\)
\(258\) 0 0
\(259\) 4.37958e7 2.90767e8i 0.156633 1.03991i
\(260\) −1.28727e8 −0.454218
\(261\) 0 0
\(262\) −7.35817e7 + 1.27447e8i −0.252764 + 0.437800i
\(263\) 5.45137e7 9.44204e7i 0.184782 0.320052i −0.758721 0.651416i \(-0.774175\pi\)
0.943503 + 0.331364i \(0.107509\pi\)
\(264\) 0 0
\(265\) 2.65948e7 0.0877883
\(266\) −6.92128e7 + 2.71722e7i −0.225476 + 0.0885194i
\(267\) 0 0
\(268\) 2.41275e7 + 4.17900e7i 0.0765667 + 0.132617i
\(269\) 2.10715e8 3.64970e8i 0.660030 1.14320i −0.320578 0.947222i \(-0.603877\pi\)
0.980607 0.195983i \(-0.0627896\pi\)
\(270\) 0 0
\(271\) 2.52373e8 + 4.37123e8i 0.770283 + 1.33417i 0.937408 + 0.348233i \(0.113218\pi\)
−0.167125 + 0.985936i \(0.553448\pi\)
\(272\) 3.94431e7 0.118845
\(273\) 0 0
\(274\) −2.65293e8 −0.779111
\(275\) 1.52430e8 + 2.64017e8i 0.441984 + 0.765538i
\(276\) 0 0
\(277\) 9.82407e7 1.70158e8i 0.277723 0.481031i −0.693095 0.720846i \(-0.743754\pi\)
0.970819 + 0.239815i \(0.0770868\pi\)
\(278\) −1.36616e8 2.36626e8i −0.381369 0.660550i
\(279\) 0 0
\(280\) −1.37533e7 + 9.13105e7i −0.0374417 + 0.248581i
\(281\) 4.50497e8 1.21121 0.605605 0.795766i \(-0.292931\pi\)
0.605605 + 0.795766i \(0.292931\pi\)
\(282\) 0 0
\(283\) −2.38684e8 + 4.13413e8i −0.625995 + 1.08426i 0.362352 + 0.932041i \(0.381974\pi\)
−0.988347 + 0.152215i \(0.951360\pi\)
\(284\) 4.62314e7 8.00752e7i 0.119763 0.207436i
\(285\) 0 0
\(286\) 6.38990e8 1.61515
\(287\) 5.38051e8 + 4.28992e8i 1.34350 + 1.07118i
\(288\) 0 0
\(289\) 1.58804e8 + 2.75057e8i 0.387007 + 0.670317i
\(290\) −1.66069e8 + 2.87640e8i −0.399849 + 0.692559i
\(291\) 0 0
\(292\) −1.05912e8 1.83445e8i −0.248946 0.431187i
\(293\) 6.36994e8 1.47944 0.739722 0.672913i \(-0.234957\pi\)
0.739722 + 0.672913i \(0.234957\pi\)
\(294\) 0 0
\(295\) −3.24285e8 −0.735444
\(296\) −8.29495e7 1.43673e8i −0.185906 0.321998i
\(297\) 0 0
\(298\) 8.31249e7 1.43976e8i 0.181959 0.315163i
\(299\) −2.34771e8 4.06635e8i −0.507919 0.879742i
\(300\) 0 0
\(301\) −3.96305e8 3.15977e8i −0.837620 0.667840i
\(302\) 2.60860e8 0.544982
\(303\) 0 0
\(304\) −2.09754e7 + 3.63304e7i −0.0428206 + 0.0741674i
\(305\) −1.76468e8 + 3.05652e8i −0.356138 + 0.616848i
\(306\) 0 0
\(307\) −6.50187e8 −1.28249 −0.641245 0.767336i \(-0.721582\pi\)
−0.641245 + 0.767336i \(0.721582\pi\)
\(308\) 6.82702e7 4.53257e8i 0.133139 0.883927i
\(309\) 0 0
\(310\) 1.88645e8 + 3.26743e8i 0.359650 + 0.622932i
\(311\) −3.75166e7 + 6.49807e7i −0.0707232 + 0.122496i −0.899218 0.437500i \(-0.855864\pi\)
0.828495 + 0.559996i \(0.189197\pi\)
\(312\) 0 0
\(313\) −4.24942e8 7.36021e8i −0.783293 1.35670i −0.930013 0.367526i \(-0.880205\pi\)
0.146720 0.989178i \(-0.453128\pi\)
\(314\) −2.19696e8 −0.400468
\(315\) 0 0
\(316\) −4.24514e8 −0.756810
\(317\) 4.71679e7 + 8.16971e7i 0.0831646 + 0.144045i 0.904608 0.426245i \(-0.140164\pi\)
−0.821443 + 0.570291i \(0.806831\pi\)
\(318\) 0 0
\(319\) 8.24352e8 1.42782e9i 1.42182 2.46267i
\(320\) 2.60489e7 + 4.51180e7i 0.0444390 + 0.0769706i
\(321\) 0 0
\(322\) −3.13522e8 + 1.23085e8i −0.523327 + 0.205452i
\(323\) 9.86259e7 0.162848
\(324\) 0 0
\(325\) 1.95475e8 3.38572e8i 0.315863 0.547091i
\(326\) −2.09814e8 + 3.63408e8i −0.335407 + 0.580942i
\(327\) 0 0
\(328\) 3.88241e8 0.607496
\(329\) −3.64152e7 + 2.41766e8i −0.0563764 + 0.374291i
\(330\) 0 0
\(331\) 5.20721e7 + 9.01916e7i 0.0789237 + 0.136700i 0.902786 0.430090i \(-0.141518\pi\)
−0.823862 + 0.566790i \(0.808185\pi\)
\(332\) 7.53543e7 1.30518e8i 0.113012 0.195743i
\(333\) 0 0
\(334\) −1.56409e8 2.70909e8i −0.229694 0.397842i
\(335\) 1.49844e8 0.217763
\(336\) 0 0
\(337\) 1.04307e9 1.48459 0.742296 0.670073i \(-0.233737\pi\)
0.742296 + 0.670073i \(0.233737\pi\)
\(338\) −1.58723e8 2.74916e8i −0.223579 0.387251i
\(339\) 0 0
\(340\) 6.12407e7 1.06072e8i 0.0845014 0.146361i
\(341\) −9.36416e8 1.62192e9i −1.27888 2.21508i
\(342\) 0 0
\(343\) −3.24061e8 + 6.73446e8i −0.433609 + 0.901101i
\(344\) −2.85962e8 −0.378751
\(345\) 0 0
\(346\) 9.00929e7 1.56046e8i 0.116930 0.202528i
\(347\) −2.01605e7 + 3.49190e7i −0.0259029 + 0.0448651i −0.878686 0.477400i \(-0.841579\pi\)
0.852783 + 0.522265i \(0.174913\pi\)
\(348\) 0 0
\(349\) 1.36569e9 1.71974 0.859871 0.510512i \(-0.170544\pi\)
0.859871 + 0.510512i \(0.170544\pi\)
\(350\) −2.19275e8 1.74830e8i −0.273371 0.217960i
\(351\) 0 0
\(352\) −1.29304e8 2.23961e8i −0.158020 0.273699i
\(353\) 6.58018e8 1.13972e9i 0.796207 1.37907i −0.125863 0.992048i \(-0.540170\pi\)
0.922070 0.387024i \(-0.126497\pi\)
\(354\) 0 0
\(355\) −1.43561e8 2.48655e8i −0.170309 0.294984i
\(356\) −2.49494e8 −0.293079
\(357\) 0 0
\(358\) 3.50490e8 0.403725
\(359\) 4.90745e8 + 8.49995e8i 0.559790 + 0.969585i 0.997514 + 0.0704751i \(0.0224515\pi\)
−0.437724 + 0.899110i \(0.644215\pi\)
\(360\) 0 0
\(361\) 3.94488e8 6.83273e8i 0.441325 0.764397i
\(362\) 1.69288e8 + 2.93216e8i 0.187563 + 0.324869i
\(363\) 0 0
\(364\) −5.47153e8 + 2.14806e8i −0.594640 + 0.233449i
\(365\) −6.57769e8 −0.708025
\(366\) 0 0
\(367\) −5.32019e8 + 9.21483e8i −0.561818 + 0.973097i 0.435520 + 0.900179i \(0.356565\pi\)
−0.997338 + 0.0729183i \(0.976769\pi\)
\(368\) −9.50149e7 + 1.64571e8i −0.0993858 + 0.172141i
\(369\) 0 0
\(370\) −5.15161e8 −0.528733
\(371\) 1.13041e8 4.43785e7i 0.114928 0.0451194i
\(372\) 0 0
\(373\) −2.33167e8 4.03858e8i −0.232641 0.402947i 0.725943 0.687755i \(-0.241403\pi\)
−0.958585 + 0.284808i \(0.908070\pi\)
\(374\) −3.03993e8 + 5.26531e8i −0.300478 + 0.520443i
\(375\) 0 0
\(376\) 6.89705e7 + 1.19460e8i 0.0669123 + 0.115896i
\(377\) −2.11428e9 −2.03221
\(378\) 0 0
\(379\) 7.76974e8 0.733110 0.366555 0.930396i \(-0.380537\pi\)
0.366555 + 0.930396i \(0.380537\pi\)
\(380\) 6.51342e7 + 1.12816e8i 0.0608929 + 0.105470i
\(381\) 0 0
\(382\) 5.41093e8 9.37201e8i 0.496650 0.860223i
\(383\) −5.50385e8 9.53295e8i −0.500577 0.867025i −1.00000 0.000666367i \(-0.999788\pi\)
0.499423 0.866358i \(-0.333545\pi\)
\(384\) 0 0
\(385\) −1.11292e9 8.87336e8i −0.993917 0.792457i
\(386\) 1.35369e9 1.19802
\(387\) 0 0
\(388\) 2.55522e8 4.42576e8i 0.222084 0.384660i
\(389\) 5.37920e8 9.31705e8i 0.463334 0.802518i −0.535791 0.844351i \(-0.679986\pi\)
0.999125 + 0.0418330i \(0.0133198\pi\)
\(390\) 0 0
\(391\) 4.46759e8 0.377967
\(392\) 9.39105e7 + 4.11063e8i 0.0787432 + 0.344673i
\(393\) 0 0
\(394\) −5.03949e7 8.72866e7i −0.0415097 0.0718970i
\(395\) −6.59114e8 + 1.14162e9i −0.538110 + 0.932034i
\(396\) 0 0
\(397\) 3.42883e8 + 5.93891e8i 0.275030 + 0.476365i 0.970143 0.242535i \(-0.0779790\pi\)
−0.695113 + 0.718900i \(0.744646\pi\)
\(398\) 1.20965e9 0.961763
\(399\) 0 0
\(400\) −1.58223e8 −0.123611
\(401\) 1.87277e8 + 3.24373e8i 0.145037 + 0.251211i 0.929387 0.369107i \(-0.120337\pi\)
−0.784350 + 0.620319i \(0.787003\pi\)
\(402\) 0 0
\(403\) −1.20085e9 + 2.07993e9i −0.913947 + 1.58300i
\(404\) 3.11492e8 + 5.39519e8i 0.235024 + 0.407073i
\(405\) 0 0
\(406\) −2.25891e8 + 1.49973e9i −0.167517 + 1.11217i
\(407\) 2.55721e9 1.88012
\(408\) 0 0
\(409\) −4.41356e8 + 7.64451e8i −0.318976 + 0.552482i −0.980275 0.197640i \(-0.936672\pi\)
0.661299 + 0.750122i \(0.270005\pi\)
\(410\) 6.02797e8 1.04407e9i 0.431944 0.748149i
\(411\) 0 0
\(412\) 6.48106e8 0.456568
\(413\) −1.37836e9 + 5.41130e8i −0.962806 + 0.377987i
\(414\) 0 0
\(415\) −2.33995e8 4.05292e8i −0.160708 0.278355i
\(416\) −1.65818e8 + 2.87205e8i −0.112929 + 0.195599i
\(417\) 0 0
\(418\) −3.23320e8 5.60006e8i −0.216529 0.375039i
\(419\) −2.03664e8 −0.135259 −0.0676294 0.997711i \(-0.521544\pi\)
−0.0676294 + 0.997711i \(0.521544\pi\)
\(420\) 0 0
\(421\) 1.72219e8 0.112485 0.0562423 0.998417i \(-0.482088\pi\)
0.0562423 + 0.998417i \(0.482088\pi\)
\(422\) −6.22983e8 1.07904e9i −0.403536 0.698946i
\(423\) 0 0
\(424\) 3.42577e7 5.93360e7i 0.0218262 0.0378040i
\(425\) 1.85990e8 + 3.22144e8i 0.117524 + 0.203558i
\(426\) 0 0
\(427\) −2.40037e8 + 1.59364e9i −0.149204 + 0.990586i
\(428\) 7.29445e8 0.449717
\(429\) 0 0
\(430\) −4.43994e8 + 7.69021e8i −0.269301 + 0.466443i
\(431\) −1.21791e9 + 2.10948e9i −0.732730 + 1.26913i 0.222982 + 0.974823i \(0.428421\pi\)
−0.955712 + 0.294303i \(0.904912\pi\)
\(432\) 0 0
\(433\) −1.33927e9 −0.792792 −0.396396 0.918080i \(-0.629739\pi\)
−0.396396 + 0.918080i \(0.629739\pi\)
\(434\) 1.34706e9 + 1.07402e9i 0.790996 + 0.630666i
\(435\) 0 0
\(436\) −6.21257e8 1.07605e9i −0.358978 0.621769i
\(437\) −2.37581e8 + 4.11503e8i −0.136184 + 0.235878i
\(438\) 0 0
\(439\) −1.34943e9 2.33729e9i −0.761246 1.31852i −0.942208 0.335027i \(-0.891254\pi\)
0.180962 0.983490i \(-0.442079\pi\)
\(440\) −8.03048e8 −0.449425
\(441\) 0 0
\(442\) 7.79674e8 0.429472
\(443\) 3.54509e8 + 6.14028e8i 0.193738 + 0.335564i 0.946486 0.322745i \(-0.104606\pi\)
−0.752748 + 0.658309i \(0.771272\pi\)
\(444\) 0 0
\(445\) −3.87373e8 + 6.70950e8i −0.208386 + 0.360936i
\(446\) −6.36046e8 1.10166e9i −0.339482 0.588000i
\(447\) 0 0
\(448\) 1.86008e8 + 1.48305e8i 0.0977369 + 0.0779263i
\(449\) −1.12477e9 −0.586408 −0.293204 0.956050i \(-0.594722\pi\)
−0.293204 + 0.956050i \(0.594722\pi\)
\(450\) 0 0
\(451\) −2.99222e9 + 5.18268e9i −1.53595 + 2.66034i
\(452\) 8.96230e8 1.55232e9i 0.456494 0.790671i
\(453\) 0 0
\(454\) 3.12859e8 0.156911
\(455\) −2.71863e8 + 1.80494e9i −0.135304 + 0.898303i
\(456\) 0 0
\(457\) 1.68026e9 + 2.91030e9i 0.823512 + 1.42637i 0.903051 + 0.429534i \(0.141322\pi\)
−0.0795385 + 0.996832i \(0.525345\pi\)
\(458\) −4.25406e8 + 7.36824e8i −0.206906 + 0.358372i
\(459\) 0 0
\(460\) 2.95047e8 + 5.11036e8i 0.141331 + 0.244793i
\(461\) 1.19222e9 0.566764 0.283382 0.959007i \(-0.408544\pi\)
0.283382 + 0.959007i \(0.408544\pi\)
\(462\) 0 0
\(463\) 1.89692e9 0.888210 0.444105 0.895975i \(-0.353522\pi\)
0.444105 + 0.895975i \(0.353522\pi\)
\(464\) 4.27839e8 + 7.41039e8i 0.198823 + 0.344372i
\(465\) 0 0
\(466\) −3.27940e8 + 5.68008e8i −0.150122 + 0.260018i
\(467\) 9.39761e8 + 1.62771e9i 0.426981 + 0.739553i 0.996603 0.0823540i \(-0.0262438\pi\)
−0.569622 + 0.821907i \(0.692910\pi\)
\(468\) 0 0
\(469\) 6.36910e8 2.50044e8i 0.285084 0.111921i
\(470\) 4.28344e8 0.190305
\(471\) 0 0
\(472\) −4.17722e8 + 7.23516e8i −0.182848 + 0.316702i
\(473\) 2.20394e9 3.81734e9i 0.957605 1.65862i
\(474\) 0 0
\(475\) −3.95629e8 −0.169379
\(476\) 8.33010e7 5.53048e8i 0.0354018 0.235038i
\(477\) 0 0
\(478\) 9.40408e8 + 1.62884e9i 0.393839 + 0.682149i
\(479\) −1.66902e9 + 2.89084e9i −0.693887 + 1.20185i 0.276668 + 0.960966i \(0.410770\pi\)
−0.970555 + 0.240881i \(0.922564\pi\)
\(480\) 0 0
\(481\) −1.63967e9 2.83999e9i −0.671812 1.16361i
\(482\) 5.54084e8 0.225378
\(483\) 0 0
\(484\) 2.73907e9 1.09811
\(485\) −7.93463e8 1.37432e9i −0.315813 0.547005i
\(486\) 0 0
\(487\) 2.22852e9 3.85992e9i 0.874311 1.51435i 0.0168153 0.999859i \(-0.494647\pi\)
0.857495 0.514492i \(-0.172019\pi\)
\(488\) 4.54630e8 + 7.87442e8i 0.177088 + 0.306725i
\(489\) 0 0
\(490\) 1.25126e9 + 3.85683e8i 0.480463 + 0.148096i
\(491\) −3.43015e9 −1.30776 −0.653880 0.756598i \(-0.726860\pi\)
−0.653880 + 0.756598i \(0.726860\pi\)
\(492\) 0 0
\(493\) 1.00585e9 1.74218e9i 0.378066 0.654829i
\(494\) −4.14622e8 + 7.18146e8i −0.154742 + 0.268021i
\(495\) 0 0
\(496\) 9.72001e8 0.357669
\(497\) −1.02513e9 8.17343e8i −0.374569 0.298646i
\(498\) 0 0
\(499\) 3.75424e8 + 6.50254e8i 0.135260 + 0.234278i 0.925697 0.378266i \(-0.123480\pi\)
−0.790437 + 0.612544i \(0.790146\pi\)
\(500\) −7.42505e8 + 1.28606e9i −0.265646 + 0.460113i
\(501\) 0 0
\(502\) −6.10669e8 1.05771e9i −0.215448 0.373167i
\(503\) −2.79800e9 −0.980303 −0.490151 0.871637i \(-0.663058\pi\)
−0.490151 + 0.871637i \(0.663058\pi\)
\(504\) 0 0
\(505\) 1.93453e9 0.668430
\(506\) −1.46458e9 2.53673e9i −0.502559 0.870458i
\(507\) 0 0
\(508\) −4.96432e8 + 8.59846e8i −0.168011 + 0.291003i
\(509\) 2.07883e9 + 3.60064e9i 0.698725 + 1.21023i 0.968909 + 0.247419i \(0.0795823\pi\)
−0.270184 + 0.962809i \(0.587084\pi\)
\(510\) 0 0
\(511\) −2.79583e9 + 1.09761e9i −0.926911 + 0.363895i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 4.45148e8 7.71019e8i 0.144588 0.250435i
\(515\) 1.00627e9 1.74291e9i 0.324631 0.562277i
\(516\) 0 0
\(517\) −2.12626e9 −0.676704
\(518\) −2.18968e9 + 8.59642e8i −0.692191 + 0.271746i
\(519\) 0 0
\(520\) 5.14910e8 + 8.91850e8i 0.160590 + 0.278151i
\(521\) −7.53291e8 + 1.30474e9i −0.233362 + 0.404196i −0.958796 0.284097i \(-0.908306\pi\)
0.725433 + 0.688293i \(0.241640\pi\)
\(522\) 0 0
\(523\) −1.35806e9 2.35223e9i −0.415110 0.718992i 0.580330 0.814382i \(-0.302924\pi\)
−0.995440 + 0.0953893i \(0.969590\pi\)
\(524\) 1.17731e9 0.357462
\(525\) 0 0
\(526\) −8.72219e8 −0.261322
\(527\) −1.14258e9 1.97901e9i −0.340056 0.588995i
\(528\) 0 0
\(529\) 6.26211e8 1.08463e9i 0.183919 0.318556i
\(530\) −1.06379e8 1.84254e8i −0.0310378 0.0537591i
\(531\) 0 0
\(532\) 4.65106e8 + 3.70832e8i 0.133925 + 0.106779i
\(533\) 7.67439e9 2.19532
\(534\) 0 0
\(535\) 1.13256e9 1.96165e9i 0.319759 0.553839i
\(536\) 1.93020e8 3.34320e8i 0.0541408 0.0937746i
\(537\) 0 0
\(538\) −3.37145e9 −0.933423
\(539\) −6.21112e9 1.91449e9i −1.70848 0.526614i
\(540\) 0 0
\(541\) −3.59033e8 6.21864e8i −0.0974864 0.168851i 0.813157 0.582044i \(-0.197747\pi\)
−0.910644 + 0.413193i \(0.864414\pi\)
\(542\) 2.01898e9 3.49698e9i 0.544672 0.943400i
\(543\) 0 0
\(544\) −1.57772e8 2.73270e8i −0.0420180 0.0727772i
\(545\) −3.85834e9 −1.02097
\(546\) 0 0
\(547\) 5.09149e9 1.33011 0.665057 0.746792i \(-0.268407\pi\)
0.665057 + 0.746792i \(0.268407\pi\)
\(548\) 1.06117e9 + 1.83801e9i 0.275457 + 0.477106i
\(549\) 0 0
\(550\) 1.21944e9 2.11213e9i 0.312530 0.541317i
\(551\) 1.06979e9 + 1.85294e9i 0.272439 + 0.471879i
\(552\) 0 0
\(553\) −8.96543e8 + 5.95228e9i −0.225441 + 1.49674i
\(554\) −1.57185e9 −0.392760
\(555\) 0 0
\(556\) −1.09293e9 + 1.89301e9i −0.269668 + 0.467079i
\(557\) 2.58456e9 4.47660e9i 0.633715 1.09763i −0.353071 0.935597i \(-0.614862\pi\)
0.986786 0.162030i \(-0.0518042\pi\)
\(558\) 0 0
\(559\) −5.65263e9 −1.36870
\(560\) 6.87631e8 2.69956e8i 0.165462 0.0649584i
\(561\) 0 0
\(562\) −1.80199e9 3.12113e9i −0.428227 0.741711i
\(563\) 3.69727e9 6.40386e9i 0.873177 1.51239i 0.0144840 0.999895i \(-0.495389\pi\)
0.858693 0.512491i \(-0.171277\pi\)
\(564\) 0 0
\(565\) −2.78303e9 4.82036e9i −0.649156 1.12437i
\(566\) 3.81895e9 0.885291
\(567\) 0 0
\(568\) −7.39703e8 −0.169371
\(569\) 1.67602e9 + 2.90295e9i 0.381405 + 0.660612i 0.991263 0.131898i \(-0.0421071\pi\)
−0.609859 + 0.792510i \(0.708774\pi\)
\(570\) 0 0
\(571\) −2.07567e9 + 3.59517e9i −0.466586 + 0.808151i −0.999272 0.0381621i \(-0.987850\pi\)
0.532685 + 0.846313i \(0.321183\pi\)
\(572\) −2.55596e9 4.42706e9i −0.571042 0.989074i
\(573\) 0 0
\(574\) 8.19938e8 5.44369e9i 0.180963 1.20144i
\(575\) −1.79213e9 −0.393127
\(576\) 0 0
\(577\) 3.37611e9 5.84759e9i 0.731646 1.26725i −0.224533 0.974467i \(-0.572086\pi\)
0.956179 0.292782i \(-0.0945811\pi\)
\(578\) 1.27043e9 2.20045e9i 0.273656 0.473985i
\(579\) 0 0
\(580\) 2.65711e9 0.565472
\(581\) −1.67090e9 1.33222e9i −0.353454 0.281812i
\(582\) 0 0
\(583\) 5.28056e8 + 9.14620e8i 0.110367 + 0.191162i
\(584\) −8.47295e8 + 1.46756e9i −0.176031 + 0.304895i
\(585\) 0 0
\(586\) −2.54797e9 4.41322e9i −0.523062 0.905971i
\(587\) 4.88293e9 0.996431 0.498216 0.867053i \(-0.333989\pi\)
0.498216 + 0.867053i \(0.333989\pi\)
\(588\) 0 0
\(589\) 2.43045e9 0.490098
\(590\) 1.29714e9 + 2.24671e9i 0.260019 + 0.450365i
\(591\) 0 0
\(592\) −6.63596e8 + 1.14938e9i −0.131455 + 0.227687i
\(593\) −3.88570e9 6.73023e9i −0.765205 1.32537i −0.940138 0.340794i \(-0.889304\pi\)
0.174933 0.984580i \(-0.444029\pi\)
\(594\) 0 0
\(595\) −1.35794e9 1.08270e9i −0.264285 0.210716i
\(596\) −1.33000e9 −0.257329
\(597\) 0 0
\(598\) −1.87817e9 + 3.25308e9i −0.359153 + 0.622072i
\(599\) −4.57122e9 + 7.91759e9i −0.869038 + 1.50522i −0.00605623 + 0.999982i \(0.501928\pi\)
−0.862981 + 0.505236i \(0.831406\pi\)
\(600\) 0 0
\(601\) 6.52910e8 0.122685 0.0613427 0.998117i \(-0.480462\pi\)
0.0613427 + 0.998117i \(0.480462\pi\)
\(602\) −6.03931e8 + 4.00959e9i −0.112824 + 0.749053i
\(603\) 0 0
\(604\) −1.04344e9 1.80729e9i −0.192680 0.333732i
\(605\) 4.25277e9 7.36602e9i 0.780780 1.35235i
\(606\) 0 0
\(607\) 3.10668e9 + 5.38093e9i 0.563815 + 0.976556i 0.997159 + 0.0753272i \(0.0240001\pi\)
−0.433344 + 0.901229i \(0.642667\pi\)
\(608\) 3.35606e8 0.0605574
\(609\) 0 0
\(610\) 2.82350e9 0.503655
\(611\) 1.36334e9 + 2.36138e9i 0.241803 + 0.418815i
\(612\) 0 0
\(613\) 1.46039e9 2.52947e9i 0.256069 0.443525i −0.709116 0.705092i \(-0.750906\pi\)
0.965185 + 0.261567i \(0.0842392\pi\)
\(614\) 2.60075e9 + 4.50463e9i 0.453429 + 0.785362i
\(615\) 0 0
\(616\) −3.41333e9 + 1.34004e9i −0.588364 + 0.230985i
\(617\) 6.40381e9 1.09759 0.548796 0.835957i \(-0.315087\pi\)
0.548796 + 0.835957i \(0.315087\pi\)
\(618\) 0 0
\(619\) 4.58054e9 7.93372e9i 0.776246 1.34450i −0.157846 0.987464i \(-0.550455\pi\)
0.934092 0.357033i \(-0.116212\pi\)
\(620\) 1.50916e9 2.61394e9i 0.254311 0.440479i
\(621\) 0 0
\(622\) 6.00266e8 0.100018
\(623\) −5.26914e8 + 3.49826e9i −0.0873035 + 0.579621i
\(624\) 0 0
\(625\) 7.96747e8 + 1.38001e9i 0.130539 + 0.226100i
\(626\) −3.39954e9 + 5.88817e9i −0.553872 + 0.959334i
\(627\) 0 0
\(628\) 8.78783e8 + 1.52210e9i 0.141587 + 0.245236i
\(629\) 3.12022e9 0.499928
\(630\) 0 0
\(631\) 7.82656e9 1.24013 0.620066 0.784549i \(-0.287106\pi\)
0.620066 + 0.784549i \(0.287106\pi\)
\(632\) 1.69806e9 + 2.94112e9i 0.267573 + 0.463450i
\(633\) 0 0
\(634\) 3.77343e8 6.53577e8i 0.0588063 0.101855i
\(635\) 1.54155e9 + 2.67005e9i 0.238919 + 0.413820i
\(636\) 0 0
\(637\) 1.85634e9 + 8.12551e9i 0.284556 + 1.24555i
\(638\) −1.31896e10 −2.01076
\(639\) 0 0
\(640\) 2.08391e8 3.60944e8i 0.0314231 0.0544264i
\(641\) 4.95682e9 8.58547e9i 0.743362 1.28754i −0.207594 0.978215i \(-0.566563\pi\)
0.950956 0.309326i \(-0.100103\pi\)
\(642\) 0 0
\(643\) 1.11553e10 1.65480 0.827398 0.561616i \(-0.189820\pi\)
0.827398 + 0.561616i \(0.189820\pi\)
\(644\) 2.10685e9 + 1.67981e9i 0.310837 + 0.247833i
\(645\) 0 0
\(646\) −3.94504e8 6.83300e8i −0.0575754 0.0997236i
\(647\) −5.74496e9 + 9.95056e9i −0.833915 + 1.44438i 0.0609955 + 0.998138i \(0.480572\pi\)
−0.894911 + 0.446245i \(0.852761\pi\)
\(648\) 0 0
\(649\) −6.43887e9 1.11525e10i −0.924599 1.60145i
\(650\) −3.12759e9 −0.446698
\(651\) 0 0
\(652\) 3.35702e9 0.474337
\(653\) 2.26085e8 + 3.91591e8i 0.0317743 + 0.0550347i 0.881475 0.472230i \(-0.156551\pi\)
−0.849701 + 0.527265i \(0.823218\pi\)
\(654\) 0 0
\(655\) 1.82793e9 3.16606e9i 0.254164 0.440225i
\(656\) −1.55297e9 2.68981e9i −0.214782 0.372014i
\(657\) 0 0
\(658\) 1.82066e9 7.14772e8i 0.249138 0.0978086i
\(659\) 1.13939e10 1.55086 0.775430 0.631434i \(-0.217533\pi\)
0.775430 + 0.631434i \(0.217533\pi\)
\(660\) 0 0
\(661\) −3.02602e9 + 5.24121e9i −0.407536 + 0.705873i −0.994613 0.103658i \(-0.966945\pi\)
0.587077 + 0.809531i \(0.300279\pi\)
\(662\) 4.16577e8 7.21533e8i 0.0558075 0.0966614i
\(663\) 0 0
\(664\) −1.20567e9 −0.159823
\(665\) 1.71939e9 6.75015e8i 0.226725 0.0890097i
\(666\) 0 0
\(667\) 4.84599e9 + 8.39350e9i 0.632327 + 1.09522i
\(668\) −1.25128e9 + 2.16727e9i −0.162418 + 0.281317i
\(669\) 0 0
\(670\) −5.99378e8 1.03815e9i −0.0769908 0.133352i
\(671\) −1.40156e10 −1.79094
\(672\) 0 0
\(673\) −1.20368e10 −1.52215 −0.761076 0.648663i \(-0.775328\pi\)
−0.761076 + 0.648663i \(0.775328\pi\)
\(674\) −4.17226e9 7.22657e9i −0.524882 0.909123i
\(675\) 0 0
\(676\) −1.26978e9 + 2.19933e9i −0.158094 + 0.273828i
\(677\) −3.33947e9 5.78413e9i −0.413635 0.716436i 0.581649 0.813440i \(-0.302408\pi\)
−0.995284 + 0.0970033i \(0.969074\pi\)
\(678\) 0 0
\(679\) −5.66591e9 4.51747e9i −0.694584 0.553797i
\(680\) −9.79851e8 −0.119503
\(681\) 0 0
\(682\) −7.49133e9 + 1.29754e10i −0.904302 + 1.56630i
\(683\) −2.78597e9 + 4.82545e9i −0.334583 + 0.579516i −0.983405 0.181425i \(-0.941929\pi\)
0.648821 + 0.760941i \(0.275262\pi\)
\(684\) 0 0
\(685\) 6.59046e9 0.783427
\(686\) 5.96202e9 4.48622e8i 0.705113 0.0530575i
\(687\) 0 0
\(688\) 1.14385e9 + 1.98120e9i 0.133909 + 0.231937i
\(689\) 6.77174e8 1.17290e9i 0.0788738 0.136613i
\(690\) 0 0
\(691\) 3.81749e9 + 6.61208e9i 0.440154 + 0.762369i 0.997701 0.0677769i \(-0.0215906\pi\)
−0.557547 + 0.830146i \(0.688257\pi\)
\(692\) −1.44149e9 −0.165363
\(693\) 0 0
\(694\) 3.22568e8 0.0366322
\(695\) 3.39383e9 + 5.87829e9i 0.383481 + 0.664209i
\(696\) 0 0
\(697\) −3.65101e9 + 6.32373e9i −0.408412 + 0.707390i
\(698\) −5.46276e9 9.46178e9i −0.608020 1.05312i
\(699\) 0 0
\(700\) −3.34155e8 + 2.21850e9i −0.0368218 + 0.244465i
\(701\) −1.19417e10 −1.30934 −0.654671 0.755914i \(-0.727193\pi\)
−0.654671 + 0.755914i \(0.727193\pi\)
\(702\) 0 0
\(703\) −1.65929e9 + 2.87398e9i −0.180127 + 0.311990i
\(704\) −1.03443e9 + 1.79169e9i −0.111737 + 0.193535i
\(705\) 0 0
\(706\) −1.05283e10 −1.12601
\(707\) 8.22267e9 3.22813e9i 0.875075 0.343544i
\(708\) 0 0
\(709\) −5.06814e9 8.77827e9i −0.534055 0.925011i −0.999208 0.0397809i \(-0.987334\pi\)
0.465153 0.885230i \(-0.345999\pi\)
\(710\) −1.14849e9 + 1.98924e9i −0.120427 + 0.208585i
\(711\) 0 0
\(712\) 9.97977e8 + 1.72855e9i 0.103619 + 0.179474i
\(713\) 1.10095e10 1.13751
\(714\) 0 0
\(715\) −1.58739e10 −1.62410
\(716\) −1.40196e9 2.42827e9i −0.142738 0.247230i
\(717\) 0 0
\(718\) 3.92596e9 6.79996e9i 0.395831 0.685600i
\(719\) 3.20435e9 + 5.55010e9i 0.321506 + 0.556864i 0.980799 0.195022i \(-0.0624777\pi\)
−0.659293 + 0.751886i \(0.729144\pi\)
\(720\) 0 0
\(721\) 1.36875e9 9.08736e9i 0.136004 0.902951i
\(722\) −6.31180e9 −0.624127
\(723\) 0 0
\(724\) 1.35431e9 2.34573e9i 0.132627 0.229717i
\(725\) −4.03486e9 + 6.98859e9i −0.393229 + 0.681093i
\(726\) 0 0
\(727\) 3.59040e8 0.0346555 0.0173278 0.999850i \(-0.494484\pi\)
0.0173278 + 0.999850i \(0.494484\pi\)
\(728\) 3.67683e9 + 2.93156e9i 0.353194 + 0.281604i
\(729\) 0 0
\(730\) 2.63108e9 + 4.55716e9i 0.250325 + 0.433575i
\(731\) 2.68918e9 4.65779e9i 0.254629 0.441031i
\(732\) 0 0
\(733\) 3.53759e9 + 6.12729e9i 0.331775 + 0.574652i 0.982860 0.184353i \(-0.0590191\pi\)
−0.651085 + 0.759005i \(0.725686\pi\)
\(734\) 8.51230e9 0.794531
\(735\) 0 0
\(736\) 1.52024e9 0.140553
\(737\) 2.97525e9 + 5.15329e9i 0.273771 + 0.474185i
\(738\) 0 0
\(739\) −4.55027e9 + 7.88130e9i −0.414746 + 0.718361i −0.995402 0.0957883i \(-0.969463\pi\)
0.580656 + 0.814149i \(0.302796\pi\)
\(740\) 2.06064e9 + 3.56914e9i 0.186935 + 0.323782i
\(741\) 0 0
\(742\) −7.59625e8 6.05655e8i −0.0682631 0.0544266i
\(743\) 2.11812e10 1.89448 0.947238 0.320532i \(-0.103862\pi\)
0.947238 + 0.320532i \(0.103862\pi\)
\(744\) 0 0
\(745\) −2.06500e9 + 3.57668e9i −0.182967 + 0.316908i
\(746\) −1.86534e9 + 3.23086e9i −0.164502 + 0.284926i
\(747\) 0 0
\(748\) 4.86389e9 0.424940
\(749\) 1.54054e9 1.02278e10i 0.133963 0.889402i
\(750\) 0 0
\(751\) 6.86477e8 + 1.18901e9i 0.0591407 + 0.102435i 0.894080 0.447907i \(-0.147831\pi\)
−0.834939 + 0.550342i \(0.814497\pi\)
\(752\) 5.51764e8 9.55683e8i 0.0473141 0.0819505i
\(753\) 0 0
\(754\) 8.45712e9 + 1.46482e10i 0.718493 + 1.24447i
\(755\) −6.48031e9 −0.548001
\(756\) 0 0
\(757\) −1.24709e10 −1.04487 −0.522433 0.852680i \(-0.674976\pi\)
−0.522433 + 0.852680i \(0.674976\pi\)
\(758\) −3.10789e9 5.38303e9i −0.259193 0.448936i
\(759\) 0 0
\(760\) 5.21073e8 9.02526e8i 0.0430578 0.0745782i
\(761\) 3.70982e9 + 6.42560e9i 0.305145 + 0.528528i 0.977294 0.211889i \(-0.0679616\pi\)
−0.672148 + 0.740417i \(0.734628\pi\)
\(762\) 0 0
\(763\) −1.63998e10 + 6.43836e9i −1.33660 + 0.524734i
\(764\) −8.65749e9 −0.702369
\(765\) 0 0
\(766\) −4.40308e9 + 7.62636e9i −0.353961 + 0.613079i
\(767\) −8.25714e9 + 1.43018e10i −0.660763 + 1.14448i
\(768\) 0 0
\(769\) 1.39749e10 1.10817 0.554085 0.832460i \(-0.313068\pi\)
0.554085 + 0.832460i \(0.313068\pi\)
\(770\) −1.69598e9 + 1.12599e10i −0.133876 + 0.888824i
\(771\) 0 0
\(772\) −5.41475e9 9.37861e9i −0.423563 0.733632i
\(773\) −2.10460e9 + 3.64527e9i −0.163886 + 0.283858i −0.936259 0.351310i \(-0.885736\pi\)
0.772373 + 0.635169i \(0.219069\pi\)
\(774\) 0 0
\(775\) 4.58337e9 + 7.93864e9i 0.353695 + 0.612618i
\(776\) −4.08835e9 −0.314074
\(777\) 0 0
\(778\) −8.60672e9 −0.655253
\(779\) −3.88313e9 6.72578e9i −0.294307 0.509755i
\(780\) 0 0
\(781\) 5.70098e9 9.87439e9i 0.428224 0.741706i
\(782\) −1.78703e9 3.09524e9i −0.133632 0.231457i
\(783\) 0 0
\(784\) 2.47229e9 2.29488e9i 0.183228 0.170080i
\(785\) 5.45772e9 0.402686
\(786\) 0 0
\(787\) 7.38069e8 1.27837e9i 0.0539741 0.0934859i −0.837776 0.546014i \(-0.816144\pi\)
0.891750 + 0.452528i \(0.149478\pi\)
\(788\) −4.03159e8 + 6.98293e8i −0.0293518 + 0.0508389i
\(789\) 0 0
\(790\) 1.05458e10 0.761002
\(791\) −1.98729e10 1.58448e10i −1.42772 1.13833i
\(792\) 0 0
\(793\) 8.98670e9 + 1.55654e10i 0.639947 + 1.10842i
\(794\) 2.74306e9 4.75113e9i 0.194475 0.336841i
\(795\) 0 0
\(796\) −4.83859e9 8.38068e9i −0.340035 0.588957i
\(797\) −8.29050e8 −0.0580065 −0.0290033 0.999579i \(-0.509233\pi\)
−0.0290033 + 0.999579i \(0.509233\pi\)
\(798\) 0 0
\(799\) −2.59439e9 −0.179937
\(800\) 6.32890e8 + 1.09620e9i 0.0437032 + 0.0756962i
\(801\) 0 0
\(802\) 1.49821e9 2.59498e9i 0.102557 0.177633i
\(803\) −1.30604e10 2.26213e10i −0.890128 1.54175i
\(804\) 0 0
\(805\) 7.78857e9 3.05770e9i 0.526226 0.206590i
\(806\) 1.92136e10 1.29252
\(807\) 0 0
\(808\) 2.49193e9 4.31616e9i 0.166187 0.287844i
\(809\) −1.18808e10 + 2.05781e10i −0.788907 + 1.36643i 0.137730 + 0.990470i \(0.456019\pi\)
−0.926637 + 0.375957i \(0.877314\pi\)
\(810\) 0 0
\(811\) −5.06935e9 −0.333718 −0.166859 0.985981i \(-0.553362\pi\)
−0.166859 + 0.985981i \(0.553362\pi\)
\(812\) 1.12940e10 4.43389e9i 0.740288 0.290629i
\(813\) 0 0
\(814\) −1.02288e10 1.77168e10i −0.664723 1.15133i
\(815\) 5.21222e9 9.02783e9i 0.337265 0.584160i
\(816\) 0 0
\(817\) 2.86015e9 + 4.95392e9i 0.183489 + 0.317813i
\(818\) 7.06170e9 0.451100
\(819\) 0 0
\(820\) −9.64475e9 −0.610861
\(821\) 3.19979e8 + 5.54220e8i 0.0201800 + 0.0349527i 0.875939 0.482422i \(-0.160243\pi\)
−0.855759 + 0.517375i \(0.826909\pi\)
\(822\) 0 0
\(823\) 2.26480e9 3.92276e9i 0.141622 0.245297i −0.786485 0.617609i \(-0.788102\pi\)
0.928108 + 0.372312i \(0.121435\pi\)
\(824\) −2.59242e9 4.49021e9i −0.161421 0.279590i
\(825\) 0 0
\(826\) 9.26252e9 + 7.38507e9i 0.571872 + 0.455957i
\(827\) 8.73001e9 0.536717 0.268359 0.963319i \(-0.413519\pi\)
0.268359 + 0.963319i \(0.413519\pi\)
\(828\) 0 0
\(829\) 7.79339e9 1.34985e10i 0.475100 0.822898i −0.524493 0.851415i \(-0.675745\pi\)
0.999593 + 0.0285169i \(0.00907844\pi\)
\(830\) −1.87196e9 + 3.24233e9i −0.113638 + 0.196827i
\(831\) 0 0
\(832\) 2.65309e9 0.159706
\(833\) −7.57859e9 2.33600e9i −0.454288 0.140028i
\(834\) 0 0
\(835\) 3.88555e9 + 6.72996e9i 0.230967 + 0.400046i
\(836\) −2.58656e9 + 4.48005e9i −0.153109 + 0.265192i
\(837\) 0 0
\(838\) 8.14657e8 + 1.41103e9i 0.0478212 + 0.0828288i
\(839\) −2.98612e9 −0.174558 −0.0872790 0.996184i \(-0.527817\pi\)
−0.0872790 + 0.996184i \(0.527817\pi\)
\(840\) 0 0
\(841\) 2.63917e10 1.52997
\(842\) −6.88876e8 1.19317e9i −0.0397693 0.0688825i
\(843\) 0 0
\(844\) −4.98387e9 + 8.63231e9i −0.285343 + 0.494229i
\(845\) 3.94302e9 + 6.82951e9i 0.224818 + 0.389396i
\(846\) 0 0
\(847\) 5.78472e9 3.84056e10i 0.327108 2.17172i
\(848\) −5.48123e8 −0.0308669
\(849\) 0 0
\(850\) 1.48792e9 2.57715e9i 0.0831023 0.143937i
\(851\) −7.51632e9 + 1.30187e10i −0.418073 + 0.724124i
\(852\) 0 0
\(853\) −3.07407e10 −1.69587 −0.847935 0.530100i \(-0.822154\pi\)
−0.847935 + 0.530100i \(0.822154\pi\)
\(854\) 1.20012e10 4.71153e9i 0.659359 0.258857i
\(855\) 0 0
\(856\) −2.91778e9 5.05374e9i −0.158999 0.275394i
\(857\) 2.31482e9 4.00938e9i 0.125627 0.217593i −0.796351 0.604835i \(-0.793239\pi\)
0.921978 + 0.387242i \(0.126572\pi\)
\(858\) 0 0
\(859\) 1.16851e10 + 2.02392e10i 0.629009 + 1.08948i 0.987751 + 0.156039i \(0.0498725\pi\)
−0.358742 + 0.933437i \(0.616794\pi\)
\(860\) 7.10391e9 0.380849
\(861\) 0 0
\(862\) 1.94865e10 1.03624
\(863\) 2.53121e9 + 4.38419e9i 0.134058 + 0.232194i 0.925237 0.379390i \(-0.123866\pi\)
−0.791180 + 0.611584i \(0.790533\pi\)
\(864\) 0 0
\(865\) −2.23810e9 + 3.87651e9i −0.117577 + 0.203650i
\(866\) 5.35707e9 + 9.27871e9i 0.280294 + 0.485484i
\(867\) 0 0
\(868\) 2.05280e9 1.36288e10i 0.106543 0.707358i
\(869\) −5.23485e10 −2.70604
\(870\) 0 0
\(871\) 3.81543e9 6.60852e9i 0.195650 0.338876i
\(872\) −4.97005e9 + 8.60839e9i −0.253836 + 0.439657i
\(873\) 0 0
\(874\) 3.80130e9 0.192594
\(875\) 1.64642e10 + 1.31270e10i 0.830831 + 0.662427i
\(876\) 0 0
\(877\) 3.59428e8 + 6.22548e8i 0.0179934 + 0.0311655i 0.874882 0.484336i \(-0.160939\pi\)
−0.856888 + 0.515502i \(0.827606\pi\)
\(878\) −1.07955e10 + 1.86983e10i −0.538282 + 0.932333i
\(879\) 0 0
\(880\) 3.21219e9 + 5.56368e9i 0.158896 + 0.275215i
\(881\) 3.21074e9 0.158194 0.0790968 0.996867i \(-0.474796\pi\)
0.0790968 + 0.996867i \(0.474796\pi\)
\(882\) 0 0
\(883\) −3.00942e10 −1.47103 −0.735513 0.677511i \(-0.763059\pi\)
−0.735513 + 0.677511i \(0.763059\pi\)
\(884\) −3.11870e9 5.40174e9i −0.151841 0.262997i
\(885\) 0 0
\(886\) 2.83608e9 4.91223e9i 0.136993 0.237280i
\(887\) 5.65367e9 + 9.79245e9i 0.272018 + 0.471150i 0.969379 0.245571i \(-0.0789755\pi\)
−0.697360 + 0.716721i \(0.745642\pi\)
\(888\) 0 0
\(889\) 1.10078e10 + 8.77661e9i 0.525467 + 0.418958i
\(890\) 6.19797e9 0.294703
\(891\) 0 0
\(892\) −5.08837e9 + 8.81331e9i −0.240050 + 0.415779i
\(893\) 1.37966e9 2.38965e9i 0.0648326 0.112293i
\(894\) 0 0
\(895\) −8.70693e9 −0.405961
\(896\) 2.83458e8 1.88192e9i 0.0131647 0.0874025i
\(897\) 0 0
\(898\) 4.49906e9 + 7.79261e9i 0.207327 + 0.359100i
\(899\) 2.47872e10 4.29327e10i 1.13781 1.97074i
\(900\) 0 0
\(901\) 6.44316e8 + 1.11599e9i 0.0293469 + 0.0508303i
\(902\) 4.78756e10 2.17216
\(903\) 0 0
\(904\) −1.43397e10 −0.645580
\(905\) −4.20549e9 7.28411e9i −0.188602 0.326668i
\(906\) 0 0
\(907\) 1.27986e10 2.21679e10i 0.569558 0.986503i −0.427052 0.904227i \(-0.640448\pi\)
0.996610 0.0822756i \(-0.0262188\pi\)
\(908\) −1.25144e9 2.16755e9i −0.0554764 0.0960879i
\(909\) 0 0
\(910\) 1.35924e10 5.33624e9i 0.597933 0.234742i
\(911\) 4.11144e9 0.180169 0.0900845 0.995934i \(-0.471286\pi\)
0.0900845 + 0.995934i \(0.471286\pi\)
\(912\) 0 0
\(913\) 9.29224e9 1.60946e10i 0.404085 0.699896i
\(914\) 1.34421e10 2.32824e10i 0.582311 1.00859i
\(915\) 0 0
\(916\) 6.80649e9 0.292610
\(917\) 2.48639e9 1.65075e10i 0.106482 0.706950i
\(918\) 0 0
\(919\) −7.37403e9 1.27722e10i −0.313401 0.542827i 0.665695 0.746224i \(-0.268135\pi\)
−0.979096 + 0.203397i \(0.934802\pi\)
\(920\) 2.36037e9 4.08829e9i 0.0999364 0.173095i
\(921\) 0 0
\(922\) −4.76887e9 8.25993e9i −0.200381 0.347071i
\(923\) −1.46218e10 −0.612059
\(924\) 0 0
\(925\) −1.25165e10 −0.519979
\(926\) −7.58768e9 1.31423e10i −0.314030 0.543915i
\(927\) 0 0
\(928\) 3.42271e9 5.92831e9i 0.140589 0.243508i
\(929\) 9.39242e9 + 1.62682e10i 0.384346 + 0.665707i 0.991678 0.128741i \(-0.0410936\pi\)
−0.607332 + 0.794448i \(0.707760\pi\)
\(930\) 0 0
\(931\) 6.18186e9 5.73827e9i 0.251070 0.233054i
\(932\) 5.24704e9 0.212304
\(933\) 0 0
\(934\) 7.51809e9 1.30217e10i 0.301921 0.522943i
\(935\) 7.55183e9 1.30802e10i 0.302142 0.523326i
\(936\) 0 0
\(937\) −1.99897e9 −0.0793813 −0.0396906 0.999212i \(-0.512637\pi\)
−0.0396906 + 0.999212i \(0.512637\pi\)
\(938\) −4.27999e9 3.41247e9i −0.169330 0.135008i
\(939\) 0 0
\(940\) −1.71338e9 2.96765e9i −0.0672829 0.116537i
\(941\) −1.82073e9 + 3.15360e9i −0.0712333 + 0.123380i −0.899442 0.437040i \(-0.856027\pi\)
0.828209 + 0.560420i \(0.189360\pi\)
\(942\) 0 0
\(943\) −1.75899e10 3.04666e10i −0.683082 1.18313i
\(944\) 6.68355e9 0.258586
\(945\) 0 0
\(946\) −3.52631e10 −1.35426
\(947\) 5.25411e9 + 9.10039e9i 0.201036 + 0.348205i 0.948863 0.315689i \(-0.102236\pi\)
−0.747826 + 0.663894i \(0.768902\pi\)
\(948\) 0 0
\(949\) −1.67485e10 + 2.90093e10i −0.636129 + 1.10181i
\(950\) 1.58252e9 + 2.74100e9i 0.0598847 + 0.103723i
\(951\) 0 0
\(952\) −4.16483e9 + 1.63507e9i −0.156447 + 0.0614195i
\(953\) 7.06173e9 0.264293 0.132147 0.991230i \(-0.457813\pi\)
0.132147 + 0.991230i \(0.457813\pi\)
\(954\) 0 0
\(955\) −1.34419e10 + 2.32821e10i −0.499401 + 0.864988i
\(956\) 7.52327e9 1.30307e10i 0.278486 0.482352i
\(957\) 0 0
\(958\) 2.67044e10 0.981304
\(959\) 2.80126e10 1.09974e10i 1.02562 0.402648i
\(960\) 0 0
\(961\) −1.44005e10 2.49424e10i −0.523415 0.906581i
\(962\) −1.31173e10 + 2.27199e10i −0.475043 + 0.822799i
\(963\) 0 0
\(964\) −2.21634e9 3.83881e9i −0.0796831 0.138015i
\(965\) −3.36285e10 −1.20465
\(966\) 0 0
\(967\) 1.66264e10 0.591296 0.295648 0.955297i \(-0.404464\pi\)
0.295648 + 0.955297i \(0.404464\pi\)
\(968\) −1.09563e10 1.89768e10i −0.388239 0.672450i
\(969\) 0 0
\(970\) −6.34771e9 + 1.09945e10i −0.223314 + 0.386791i
\(971\) −1.29166e10 2.23722e10i −0.452773 0.784226i 0.545784 0.837926i \(-0.316232\pi\)
−0.998557 + 0.0536999i \(0.982899\pi\)
\(972\) 0 0
\(973\) 2.42345e10 + 1.93223e10i 0.843409 + 0.672456i
\(974\) −3.56564e10 −1.23646
\(975\) 0 0
\(976\) 3.63704e9 6.29954e9i 0.125220 0.216887i
\(977\) 7.20642e9 1.24819e10i 0.247223 0.428203i −0.715531 0.698581i \(-0.753815\pi\)
0.962754 + 0.270378i \(0.0871486\pi\)
\(978\) 0 0
\(979\) −3.07661e10 −1.04793
\(980\) −2.33294e9 1.02117e10i −0.0791794 0.346582i
\(981\) 0 0
\(982\) 1.37206e10 + 2.37648e10i 0.462363 + 0.800837i
\(983\) −8.06293e9 + 1.39654e10i −0.270742 + 0.468939i −0.969052 0.246857i \(-0.920602\pi\)
0.698310 + 0.715795i \(0.253936\pi\)
\(984\) 0 0
\(985\) 1.25192e9 + 2.16839e9i 0.0417397 + 0.0722952i
\(986\) −1.60935e10 −0.534666
\(987\) 0 0
\(988\) 6.63395e9 0.218838
\(989\) 1.29560e10 + 2.24404e10i 0.425876 + 0.737639i
\(990\) 0 0
\(991\) −1.44468e10 + 2.50227e10i −0.471536 + 0.816725i −0.999470 0.0325611i \(-0.989634\pi\)
0.527934 + 0.849286i \(0.322967\pi\)
\(992\) −3.88800e9 6.73422e9i −0.126455 0.219026i
\(993\) 0 0
\(994\) −1.56220e9 + 1.03717e10i −0.0504527 + 0.334963i
\(995\) −3.00502e10 −0.967090
\(996\) 0 0
\(997\) 2.45465e10 4.25157e10i 0.784433 1.35868i −0.144904 0.989446i \(-0.546287\pi\)
0.929337 0.369232i \(-0.120379\pi\)
\(998\) 3.00339e9 5.20203e9i 0.0956435 0.165659i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.h.109.3 6
3.2 odd 2 42.8.e.e.25.1 6
7.2 even 3 inner 126.8.g.h.37.3 6
21.2 odd 6 42.8.e.e.37.1 yes 6
21.5 even 6 294.8.e.ba.79.3 6
21.11 odd 6 294.8.a.v.1.3 3
21.17 even 6 294.8.a.w.1.1 3
21.20 even 2 294.8.e.ba.67.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.e.25.1 6 3.2 odd 2
42.8.e.e.37.1 yes 6 21.2 odd 6
126.8.g.h.37.3 6 7.2 even 3 inner
126.8.g.h.109.3 6 1.1 even 1 trivial
294.8.a.v.1.3 3 21.11 odd 6
294.8.a.w.1.1 3 21.17 even 6
294.8.e.ba.67.3 6 21.20 even 2
294.8.e.ba.79.3 6 21.5 even 6