Properties

Label 126.8.g.h.109.2
Level $126$
Weight $8$
Character 126.109
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 2119x^{4} - 65706x^{3} + 4519836x^{2} - 71825616x + 1150023744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(9.57894 + 16.5912i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.8.g.h.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(47.5526 + 82.3635i) q^{5} +(-906.806 + 35.2857i) q^{7} +512.000 q^{8} +(380.420 - 658.908i) q^{10} +(982.708 - 1702.10i) q^{11} -11783.0 q^{13} +(3871.69 + 6141.40i) q^{14} +(-2048.00 - 3547.24i) q^{16} +(5146.31 - 8913.67i) q^{17} +(-3935.41 - 6816.33i) q^{19} -6086.73 q^{20} -15723.3 q^{22} +(46141.4 + 79919.2i) q^{23} +(34540.0 - 59825.0i) q^{25} +(47132.1 + 81635.2i) q^{26} +(27062.1 - 51389.5i) q^{28} +4539.61 q^{29} +(-80418.5 + 139289. i) q^{31} +(-16384.0 + 28377.9i) q^{32} -82341.0 q^{34} +(-46027.2 - 73009.8i) q^{35} +(175425. + 303845. i) q^{37} +(-31483.3 + 54530.6i) q^{38} +(24346.9 + 42170.1i) q^{40} +446392. q^{41} +711226. q^{43} +(62893.3 + 108934. i) q^{44} +(369131. - 639354. i) q^{46} +(-401283. - 695043. i) q^{47} +(821053. - 63994.6i) q^{49} -552640. q^{50} +(377057. - 653082. i) q^{52} +(-31994.8 + 55416.5i) q^{53} +186921. q^{55} +(-464285. + 18066.3i) q^{56} +(-18158.5 - 31451.4i) q^{58} +(688429. - 1.19239e6i) q^{59} +(-179998. - 311766. i) q^{61} +1.28670e6 q^{62} +262144. q^{64} +(-560313. - 970491. i) q^{65} +(892775. - 1.54633e6i) q^{67} +(329364. + 570475. i) q^{68} +(-321718. + 610925. i) q^{70} +3.63355e6 q^{71} +(1.68195e6 - 2.91322e6i) q^{73} +(1.40340e6 - 2.43076e6i) q^{74} +503732. q^{76} +(-831066. + 1.57815e6i) q^{77} +(-1.40754e6 - 2.43794e6i) q^{79} +(194775. - 337361. i) q^{80} +(-1.78557e6 - 3.09269e6i) q^{82} +9.21428e6 q^{83} +978881. q^{85} +(-2.84490e6 - 4.92752e6i) q^{86} +(503146. - 871475. i) q^{88} +(2.47734e6 + 4.29088e6i) q^{89} +(1.06849e7 - 415772. i) q^{91} -5.90610e6 q^{92} +(-3.21026e6 + 5.56034e6i) q^{94} +(374278. - 648268. i) q^{95} +7.92217e6 q^{97} +(-3.72758e6 - 5.43244e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 192 q^{4} - 110 q^{5} + 635 q^{7} + 3072 q^{8} - 880 q^{10} + 548 q^{11} + 19898 q^{13} - 4568 q^{14} - 12288 q^{16} + 20972 q^{17} + 28383 q^{19} + 14080 q^{20} - 8768 q^{22} + 32732 q^{23}+ \cdots - 6110208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 47.5526 + 82.3635i 0.170129 + 0.294672i 0.938465 0.345375i \(-0.112248\pi\)
−0.768336 + 0.640047i \(0.778915\pi\)
\(6\) 0 0
\(7\) −906.806 + 35.2857i −0.999244 + 0.0388826i
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 380.420 658.908i 0.120300 0.208365i
\(11\) 982.708 1702.10i 0.222613 0.385577i −0.732988 0.680242i \(-0.761875\pi\)
0.955601 + 0.294665i \(0.0952081\pi\)
\(12\) 0 0
\(13\) −11783.0 −1.48749 −0.743747 0.668461i \(-0.766953\pi\)
−0.743747 + 0.668461i \(0.766953\pi\)
\(14\) 3871.69 + 6141.40i 0.377097 + 0.598162i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) 5146.31 8913.67i 0.254053 0.440033i −0.710585 0.703612i \(-0.751569\pi\)
0.964638 + 0.263579i \(0.0849028\pi\)
\(18\) 0 0
\(19\) −3935.41 6816.33i −0.131629 0.227989i 0.792676 0.609644i \(-0.208688\pi\)
−0.924305 + 0.381655i \(0.875354\pi\)
\(20\) −6086.73 −0.170129
\(21\) 0 0
\(22\) −15723.3 −0.314822
\(23\) 46141.4 + 79919.2i 0.790758 + 1.36963i 0.925498 + 0.378751i \(0.123646\pi\)
−0.134741 + 0.990881i \(0.543020\pi\)
\(24\) 0 0
\(25\) 34540.0 59825.0i 0.442112 0.765761i
\(26\) 47132.1 + 81635.2i 0.525908 + 0.910900i
\(27\) 0 0
\(28\) 27062.1 51389.5i 0.232974 0.442406i
\(29\) 4539.61 0.0345641 0.0172821 0.999851i \(-0.494499\pi\)
0.0172821 + 0.999851i \(0.494499\pi\)
\(30\) 0 0
\(31\) −80418.5 + 139289.i −0.484831 + 0.839751i −0.999848 0.0174285i \(-0.994452\pi\)
0.515018 + 0.857180i \(0.327785\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −82341.0 −0.359286
\(35\) −46027.2 73009.8i −0.181458 0.287835i
\(36\) 0 0
\(37\) 175425. + 303845.i 0.569358 + 0.986157i 0.996630 + 0.0820337i \(0.0261415\pi\)
−0.427272 + 0.904123i \(0.640525\pi\)
\(38\) −31483.3 + 54530.6i −0.0930759 + 0.161212i
\(39\) 0 0
\(40\) 24346.9 + 42170.1i 0.0601498 + 0.104182i
\(41\) 446392. 1.01152 0.505758 0.862675i \(-0.331213\pi\)
0.505758 + 0.862675i \(0.331213\pi\)
\(42\) 0 0
\(43\) 711226. 1.36417 0.682084 0.731273i \(-0.261074\pi\)
0.682084 + 0.731273i \(0.261074\pi\)
\(44\) 62893.3 + 108934.i 0.111306 + 0.192788i
\(45\) 0 0
\(46\) 369131. 639354.i 0.559150 0.968476i
\(47\) −401283. 695043.i −0.563778 0.976493i −0.997162 0.0752833i \(-0.976014\pi\)
0.433384 0.901209i \(-0.357319\pi\)
\(48\) 0 0
\(49\) 821053. 63994.6i 0.996976 0.0777065i
\(50\) −552640. −0.625241
\(51\) 0 0
\(52\) 377057. 653082.i 0.371873 0.644104i
\(53\) −31994.8 + 55416.5i −0.0295198 + 0.0511298i −0.880408 0.474217i \(-0.842731\pi\)
0.850888 + 0.525347i \(0.176064\pi\)
\(54\) 0 0
\(55\) 186921. 0.151492
\(56\) −464285. + 18066.3i −0.353286 + 0.0137471i
\(57\) 0 0
\(58\) −18158.5 31451.4i −0.0122203 0.0211661i
\(59\) 688429. 1.19239e6i 0.436392 0.755853i −0.561016 0.827805i \(-0.689589\pi\)
0.997408 + 0.0719517i \(0.0229228\pi\)
\(60\) 0 0
\(61\) −179998. 311766.i −0.101535 0.175863i 0.810783 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(62\) 1.28670e6 0.685654
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −560313. 970491.i −0.253066 0.438323i
\(66\) 0 0
\(67\) 892775. 1.54633e6i 0.362644 0.628117i −0.625751 0.780023i \(-0.715208\pi\)
0.988395 + 0.151905i \(0.0485409\pi\)
\(68\) 329364. + 570475.i 0.127027 + 0.220017i
\(69\) 0 0
\(70\) −321718. + 610925.i −0.112107 + 0.212885i
\(71\) 3.63355e6 1.20483 0.602416 0.798182i \(-0.294205\pi\)
0.602416 + 0.798182i \(0.294205\pi\)
\(72\) 0 0
\(73\) 1.68195e6 2.91322e6i 0.506037 0.876482i −0.493938 0.869497i \(-0.664443\pi\)
0.999976 0.00698545i \(-0.00222356\pi\)
\(74\) 1.40340e6 2.43076e6i 0.402597 0.697318i
\(75\) 0 0
\(76\) 503732. 0.131629
\(77\) −831066. + 1.57815e6i −0.207452 + 0.393941i
\(78\) 0 0
\(79\) −1.40754e6 2.43794e6i −0.321194 0.556324i 0.659541 0.751669i \(-0.270751\pi\)
−0.980735 + 0.195345i \(0.937417\pi\)
\(80\) 194775. 337361.i 0.0425323 0.0736681i
\(81\) 0 0
\(82\) −1.78557e6 3.09269e6i −0.357625 0.619425i
\(83\) 9.21428e6 1.76884 0.884419 0.466694i \(-0.154555\pi\)
0.884419 + 0.466694i \(0.154555\pi\)
\(84\) 0 0
\(85\) 978881. 0.172888
\(86\) −2.84490e6 4.92752e6i −0.482307 0.835379i
\(87\) 0 0
\(88\) 503146. 871475.i 0.0787055 0.136322i
\(89\) 2.47734e6 + 4.29088e6i 0.372495 + 0.645180i 0.989949 0.141427i \(-0.0451690\pi\)
−0.617454 + 0.786607i \(0.711836\pi\)
\(90\) 0 0
\(91\) 1.06849e7 415772.i 1.48637 0.0578377i
\(92\) −5.90610e6 −0.790758
\(93\) 0 0
\(94\) −3.21026e6 + 5.56034e6i −0.398651 + 0.690485i
\(95\) 374278. 648268.i 0.0447880 0.0775750i
\(96\) 0 0
\(97\) 7.92217e6 0.881339 0.440670 0.897669i \(-0.354741\pi\)
0.440670 + 0.897669i \(0.354741\pi\)
\(98\) −3.72758e6 5.43244e6i −0.400070 0.583047i
\(99\) 0 0
\(100\) 2.21056e6 + 3.82880e6i 0.221056 + 0.382880i
\(101\) −2.95700e6 + 5.12167e6i −0.285579 + 0.494637i −0.972749 0.231859i \(-0.925519\pi\)
0.687170 + 0.726496i \(0.258853\pi\)
\(102\) 0 0
\(103\) −5.97730e6 1.03530e7i −0.538982 0.933545i −0.998959 0.0456139i \(-0.985476\pi\)
0.459977 0.887931i \(-0.347858\pi\)
\(104\) −6.03291e6 −0.525908
\(105\) 0 0
\(106\) 511916. 0.0417473
\(107\) 4.86542e6 + 8.42715e6i 0.383952 + 0.665024i 0.991623 0.129164i \(-0.0412295\pi\)
−0.607671 + 0.794189i \(0.707896\pi\)
\(108\) 0 0
\(109\) −1.01906e7 + 1.76506e7i −0.753714 + 1.30547i 0.192297 + 0.981337i \(0.438406\pi\)
−0.946011 + 0.324135i \(0.894927\pi\)
\(110\) −747684. 1.29503e6i −0.0535604 0.0927694i
\(111\) 0 0
\(112\) 1.98231e6 + 3.14439e6i 0.133324 + 0.211482i
\(113\) −2.06664e7 −1.34738 −0.673691 0.739013i \(-0.735292\pi\)
−0.673691 + 0.739013i \(0.735292\pi\)
\(114\) 0 0
\(115\) −4.38828e6 + 7.60073e6i −0.269062 + 0.466029i
\(116\) −145268. + 251611.i −0.00864104 + 0.0149667i
\(117\) 0 0
\(118\) −1.10149e7 −0.617152
\(119\) −4.35218e6 + 8.26457e6i −0.236751 + 0.449579i
\(120\) 0 0
\(121\) 7.81216e6 + 1.35311e7i 0.400887 + 0.694357i
\(122\) −1.43999e6 + 2.49413e6i −0.0717958 + 0.124354i
\(123\) 0 0
\(124\) −5.14678e6 8.91449e6i −0.242415 0.419876i
\(125\) 1.40000e7 0.641123
\(126\) 0 0
\(127\) 1.98603e6 0.0860345 0.0430173 0.999074i \(-0.486303\pi\)
0.0430173 + 0.999074i \(0.486303\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −4.48250e6 + 7.76393e6i −0.178945 + 0.309941i
\(131\) 1.15403e7 + 1.99883e7i 0.448504 + 0.776832i 0.998289 0.0584743i \(-0.0186236\pi\)
−0.549785 + 0.835306i \(0.685290\pi\)
\(132\) 0 0
\(133\) 3.80917e6 + 6.04223e6i 0.140395 + 0.222698i
\(134\) −1.42844e7 −0.512856
\(135\) 0 0
\(136\) 2.63491e6 4.56380e6i 0.0898214 0.155575i
\(137\) 2.07691e7 3.59731e7i 0.690073 1.19524i −0.281741 0.959491i \(-0.590912\pi\)
0.971814 0.235751i \(-0.0757549\pi\)
\(138\) 0 0
\(139\) −3.32535e7 −1.05023 −0.525117 0.851030i \(-0.675978\pi\)
−0.525117 + 0.851030i \(0.675978\pi\)
\(140\) 5.51948e6 214775.i 0.170001 0.00661507i
\(141\) 0 0
\(142\) −1.45342e7 2.51740e7i −0.425973 0.737806i
\(143\) −1.15793e7 + 2.00559e7i −0.331135 + 0.573543i
\(144\) 0 0
\(145\) 215870. + 373898.i 0.00588037 + 0.0101851i
\(146\) −2.69112e7 −0.715645
\(147\) 0 0
\(148\) −2.24544e7 −0.569358
\(149\) 2.63327e7 + 4.56096e7i 0.652144 + 1.12955i 0.982602 + 0.185726i \(0.0594635\pi\)
−0.330458 + 0.943821i \(0.607203\pi\)
\(150\) 0 0
\(151\) −3.24457e7 + 5.61976e7i −0.766899 + 1.32831i 0.172338 + 0.985038i \(0.444868\pi\)
−0.939237 + 0.343270i \(0.888465\pi\)
\(152\) −2.01493e6 3.48996e6i −0.0465380 0.0806061i
\(153\) 0 0
\(154\) 1.42580e7 554809.i 0.314584 0.0122411i
\(155\) −1.52964e7 −0.329935
\(156\) 0 0
\(157\) −1.88920e7 + 3.27219e7i −0.389609 + 0.674822i −0.992397 0.123079i \(-0.960723\pi\)
0.602788 + 0.797901i \(0.294056\pi\)
\(158\) −1.12604e7 + 1.95035e7i −0.227118 + 0.393380i
\(159\) 0 0
\(160\) −3.11640e6 −0.0601498
\(161\) −4.46613e7 7.08432e7i −0.843414 1.33785i
\(162\) 0 0
\(163\) −4.70433e7 8.14813e7i −0.850826 1.47367i −0.880464 0.474114i \(-0.842769\pi\)
0.0296372 0.999561i \(-0.490565\pi\)
\(164\) −1.42845e7 + 2.47416e7i −0.252879 + 0.437999i
\(165\) 0 0
\(166\) −3.68571e7 6.38384e7i −0.625379 1.08319i
\(167\) 1.02438e8 1.70198 0.850989 0.525184i \(-0.176004\pi\)
0.850989 + 0.525184i \(0.176004\pi\)
\(168\) 0 0
\(169\) 7.60912e7 1.21264
\(170\) −3.91552e6 6.78189e6i −0.0611250 0.105872i
\(171\) 0 0
\(172\) −2.27592e7 + 3.94202e7i −0.341042 + 0.590702i
\(173\) −9.69306e6 1.67889e7i −0.142331 0.246525i 0.786043 0.618172i \(-0.212126\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(174\) 0 0
\(175\) −2.92101e7 + 5.54685e7i −0.412003 + 0.782372i
\(176\) −8.05034e6 −0.111306
\(177\) 0 0
\(178\) 1.98187e7 3.43270e7i 0.263394 0.456211i
\(179\) 1.95660e7 3.38893e7i 0.254986 0.441649i −0.709906 0.704297i \(-0.751262\pi\)
0.964892 + 0.262648i \(0.0845958\pi\)
\(180\) 0 0
\(181\) 9.90133e7 1.24113 0.620567 0.784154i \(-0.286903\pi\)
0.620567 + 0.784154i \(0.286903\pi\)
\(182\) −4.56203e7 7.23642e7i −0.560929 0.889763i
\(183\) 0 0
\(184\) 2.36244e7 + 4.09187e7i 0.279575 + 0.484238i
\(185\) −1.66838e7 + 2.88972e7i −0.193729 + 0.335548i
\(186\) 0 0
\(187\) −1.01146e7 1.75191e7i −0.113111 0.195914i
\(188\) 5.13642e7 0.563778
\(189\) 0 0
\(190\) −5.98844e6 −0.0633397
\(191\) 9.46547e6 + 1.63947e7i 0.0982936 + 0.170250i 0.910978 0.412454i \(-0.135328\pi\)
−0.812685 + 0.582703i \(0.801995\pi\)
\(192\) 0 0
\(193\) −1.80881e7 + 3.13295e7i −0.181110 + 0.313692i −0.942259 0.334885i \(-0.891302\pi\)
0.761149 + 0.648577i \(0.224636\pi\)
\(194\) −3.16887e7 5.48864e7i −0.311600 0.539708i
\(195\) 0 0
\(196\) −2.27267e7 + 4.75552e7i −0.215596 + 0.451130i
\(197\) −1.13940e8 −1.06181 −0.530903 0.847432i \(-0.678147\pi\)
−0.530903 + 0.847432i \(0.678147\pi\)
\(198\) 0 0
\(199\) 5.23862e7 9.07356e7i 0.471228 0.816191i −0.528230 0.849101i \(-0.677144\pi\)
0.999458 + 0.0329100i \(0.0104775\pi\)
\(200\) 1.76845e7 3.06304e7i 0.156310 0.270737i
\(201\) 0 0
\(202\) 4.73120e7 0.403870
\(203\) −4.11655e6 + 160183.i −0.0345380 + 0.00134395i
\(204\) 0 0
\(205\) 2.12271e7 + 3.67664e7i 0.172088 + 0.298066i
\(206\) −4.78184e7 + 8.28239e7i −0.381118 + 0.660116i
\(207\) 0 0
\(208\) 2.41316e7 + 4.17972e7i 0.185937 + 0.322052i
\(209\) −1.54694e7 −0.117209
\(210\) 0 0
\(211\) 1.99022e8 1.45852 0.729261 0.684236i \(-0.239864\pi\)
0.729261 + 0.684236i \(0.239864\pi\)
\(212\) −2.04766e6 3.54666e6i −0.0147599 0.0255649i
\(213\) 0 0
\(214\) 3.89233e7 6.74172e7i 0.271495 0.470243i
\(215\) 3.38206e7 + 5.85790e7i 0.232085 + 0.401983i
\(216\) 0 0
\(217\) 6.80091e7 1.29146e8i 0.451812 0.857968i
\(218\) 1.63050e8 1.06591
\(219\) 0 0
\(220\) −5.98148e6 + 1.03602e7i −0.0378729 + 0.0655978i
\(221\) −6.06391e7 + 1.05030e8i −0.377903 + 0.654546i
\(222\) 0 0
\(223\) −7.56972e7 −0.457101 −0.228551 0.973532i \(-0.573399\pi\)
−0.228551 + 0.973532i \(0.573399\pi\)
\(224\) 1.38558e7 2.63114e7i 0.0823688 0.156414i
\(225\) 0 0
\(226\) 8.26657e7 + 1.43181e8i 0.476372 + 0.825100i
\(227\) 5.04095e7 8.73118e7i 0.286037 0.495430i −0.686823 0.726824i \(-0.740995\pi\)
0.972860 + 0.231394i \(0.0743287\pi\)
\(228\) 0 0
\(229\) −1.49807e8 2.59474e8i −0.824344 1.42781i −0.902419 0.430859i \(-0.858211\pi\)
0.0780748 0.996948i \(-0.475123\pi\)
\(230\) 7.02125e7 0.380511
\(231\) 0 0
\(232\) 2.32428e6 0.0122203
\(233\) 8.00429e7 + 1.38638e8i 0.414550 + 0.718022i 0.995381 0.0960024i \(-0.0306056\pi\)
−0.580831 + 0.814024i \(0.697272\pi\)
\(234\) 0 0
\(235\) 3.81641e7 6.61021e7i 0.191830 0.332260i
\(236\) 4.40594e7 + 7.63132e7i 0.218196 + 0.377927i
\(237\) 0 0
\(238\) 7.46673e7 2.90546e6i 0.359014 0.0139700i
\(239\) 1.62871e8 0.771703 0.385851 0.922561i \(-0.373908\pi\)
0.385851 + 0.922561i \(0.373908\pi\)
\(240\) 0 0
\(241\) −1.07114e8 + 1.85526e8i −0.492929 + 0.853779i −0.999967 0.00814543i \(-0.997407\pi\)
0.507038 + 0.861924i \(0.330741\pi\)
\(242\) 6.24972e7 1.08248e8i 0.283470 0.490984i
\(243\) 0 0
\(244\) 2.30398e7 0.101535
\(245\) 4.43140e7 + 6.45816e7i 0.192513 + 0.280561i
\(246\) 0 0
\(247\) 4.63710e7 + 8.03170e7i 0.195798 + 0.339131i
\(248\) −4.11743e7 + 7.13159e7i −0.171413 + 0.296897i
\(249\) 0 0
\(250\) −5.59998e7 9.69945e7i −0.226671 0.392606i
\(251\) 3.42740e8 1.36807 0.684033 0.729451i \(-0.260224\pi\)
0.684033 + 0.729451i \(0.260224\pi\)
\(252\) 0 0
\(253\) 1.81374e8 0.704131
\(254\) −7.94412e6 1.37596e7i −0.0304178 0.0526852i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) −2.40807e8 4.17090e8i −0.884919 1.53272i −0.845807 0.533489i \(-0.820881\pi\)
−0.0391117 0.999235i \(-0.512453\pi\)
\(258\) 0 0
\(259\) −1.69798e8 2.69339e8i −0.607272 0.963273i
\(260\) 7.17201e7 0.253066
\(261\) 0 0
\(262\) 9.23222e7 1.59907e8i 0.317140 0.549303i
\(263\) −1.55787e8 + 2.69832e8i −0.528065 + 0.914635i 0.471400 + 0.881920i \(0.343749\pi\)
−0.999465 + 0.0327154i \(0.989585\pi\)
\(264\) 0 0
\(265\) −6.08573e6 −0.0200887
\(266\) 2.66251e7 5.05596e7i 0.0867372 0.164709i
\(267\) 0 0
\(268\) 5.71376e7 + 9.89652e7i 0.181322 + 0.314059i
\(269\) 1.27652e8 2.21099e8i 0.399847 0.692555i −0.593860 0.804568i \(-0.702397\pi\)
0.993707 + 0.112014i \(0.0357300\pi\)
\(270\) 0 0
\(271\) −4.71187e7 8.16120e7i −0.143814 0.249093i 0.785116 0.619349i \(-0.212603\pi\)
−0.928930 + 0.370256i \(0.879270\pi\)
\(272\) −4.21586e7 −0.127027
\(273\) 0 0
\(274\) −3.32305e8 −0.975910
\(275\) −6.78855e7 1.17581e8i −0.196840 0.340936i
\(276\) 0 0
\(277\) 6.18031e7 1.07046e8i 0.174715 0.302616i −0.765347 0.643617i \(-0.777433\pi\)
0.940063 + 0.341002i \(0.110766\pi\)
\(278\) 1.33014e8 + 2.30387e8i 0.371314 + 0.643134i
\(279\) 0 0
\(280\) −2.35659e7 3.73810e7i −0.0641552 0.101765i
\(281\) −4.28566e8 −1.15225 −0.576123 0.817363i \(-0.695435\pi\)
−0.576123 + 0.817363i \(0.695435\pi\)
\(282\) 0 0
\(283\) −1.51802e8 + 2.62928e8i −0.398130 + 0.689581i −0.993495 0.113874i \(-0.963674\pi\)
0.595366 + 0.803455i \(0.297007\pi\)
\(284\) −1.16274e8 + 2.01392e8i −0.301208 + 0.521708i
\(285\) 0 0
\(286\) 1.85268e8 0.468296
\(287\) −4.04791e8 + 1.57513e7i −1.01075 + 0.0393304i
\(288\) 0 0
\(289\) 1.52200e8 + 2.63619e8i 0.370914 + 0.642442i
\(290\) 1.72696e6 2.99119e6i 0.00415805 0.00720195i
\(291\) 0 0
\(292\) 1.07645e8 + 1.86446e8i 0.253019 + 0.438241i
\(293\) −4.09102e8 −0.950156 −0.475078 0.879944i \(-0.657580\pi\)
−0.475078 + 0.879944i \(0.657580\pi\)
\(294\) 0 0
\(295\) 1.30946e8 0.296972
\(296\) 8.98176e7 + 1.55569e8i 0.201298 + 0.348659i
\(297\) 0 0
\(298\) 2.10662e8 3.64877e8i 0.461135 0.798710i
\(299\) −5.43685e8 9.41691e8i −1.17625 2.03732i
\(300\) 0 0
\(301\) −6.44944e8 + 2.50961e7i −1.36314 + 0.0530425i
\(302\) 5.19132e8 1.08456
\(303\) 0 0
\(304\) −1.61194e7 + 2.79197e7i −0.0329073 + 0.0569971i
\(305\) 1.71188e7 2.96506e7i 0.0345480 0.0598389i
\(306\) 0 0
\(307\) 4.05634e8 0.800111 0.400056 0.916491i \(-0.368991\pi\)
0.400056 + 0.916491i \(0.368991\pi\)
\(308\) −6.08759e7 9.65632e7i −0.118718 0.188315i
\(309\) 0 0
\(310\) 6.11857e7 + 1.05977e8i 0.116650 + 0.202043i
\(311\) 3.27246e8 5.66807e8i 0.616898 1.06850i −0.373150 0.927771i \(-0.621722\pi\)
0.990048 0.140728i \(-0.0449443\pi\)
\(312\) 0 0
\(313\) 1.15882e8 + 2.00714e8i 0.213605 + 0.369975i 0.952840 0.303472i \(-0.0981460\pi\)
−0.739235 + 0.673448i \(0.764813\pi\)
\(314\) 3.02272e8 0.550990
\(315\) 0 0
\(316\) 1.80166e8 0.321194
\(317\) −8.76270e7 1.51774e8i −0.154501 0.267603i 0.778376 0.627798i \(-0.216044\pi\)
−0.932877 + 0.360195i \(0.882710\pi\)
\(318\) 0 0
\(319\) 4.46111e6 7.72687e6i 0.00769442 0.0133271i
\(320\) 1.24656e7 + 2.15911e7i 0.0212662 + 0.0368341i
\(321\) 0 0
\(322\) −3.12170e8 + 5.92795e8i −0.521070 + 0.989485i
\(323\) −8.10114e7 −0.133763
\(324\) 0 0
\(325\) −4.06986e8 + 7.04920e8i −0.657639 + 1.13906i
\(326\) −3.76346e8 + 6.51851e8i −0.601625 + 1.04205i
\(327\) 0 0
\(328\) 2.28553e8 0.357625
\(329\) 3.88411e8 + 6.16110e8i 0.601321 + 0.953833i
\(330\) 0 0
\(331\) −6.22285e7 1.07783e8i −0.0943172 0.163362i 0.815006 0.579452i \(-0.196733\pi\)
−0.909323 + 0.416090i \(0.863400\pi\)
\(332\) −2.94857e8 + 5.10707e8i −0.442209 + 0.765929i
\(333\) 0 0
\(334\) −4.09752e8 7.09712e8i −0.601740 1.04224i
\(335\) 1.69815e8 0.246785
\(336\) 0 0
\(337\) −7.96655e8 −1.13388 −0.566938 0.823760i \(-0.691872\pi\)
−0.566938 + 0.823760i \(0.691872\pi\)
\(338\) −3.04365e8 5.27175e8i −0.428732 0.742586i
\(339\) 0 0
\(340\) −3.13242e7 + 5.42551e7i −0.0432219 + 0.0748625i
\(341\) 1.58056e8 + 2.73761e8i 0.215859 + 0.373879i
\(342\) 0 0
\(343\) −7.42278e8 + 8.70022e7i −0.993201 + 0.116413i
\(344\) 3.64148e8 0.482307
\(345\) 0 0
\(346\) −7.75445e7 + 1.34311e8i −0.100643 + 0.174319i
\(347\) −3.40840e8 + 5.90353e8i −0.437923 + 0.758505i −0.997529 0.0702539i \(-0.977619\pi\)
0.559606 + 0.828759i \(0.310952\pi\)
\(348\) 0 0
\(349\) −9.65104e8 −1.21530 −0.607652 0.794203i \(-0.707888\pi\)
−0.607652 + 0.794203i \(0.707888\pi\)
\(350\) 5.01138e8 1.95003e7i 0.624768 0.0243110i
\(351\) 0 0
\(352\) 3.22014e7 + 5.57744e7i 0.0393527 + 0.0681610i
\(353\) −7.71034e8 + 1.33547e9i −0.932958 + 1.61593i −0.154722 + 0.987958i \(0.549448\pi\)
−0.778236 + 0.627972i \(0.783885\pi\)
\(354\) 0 0
\(355\) 1.72785e8 + 2.99272e8i 0.204977 + 0.355031i
\(356\) −3.17099e8 −0.372495
\(357\) 0 0
\(358\) −3.13056e8 −0.360605
\(359\) 6.75450e8 + 1.16991e9i 0.770482 + 1.33451i 0.937299 + 0.348526i \(0.113318\pi\)
−0.166817 + 0.985988i \(0.553349\pi\)
\(360\) 0 0
\(361\) 4.15961e8 7.20466e8i 0.465347 0.806005i
\(362\) −3.96053e8 6.85984e8i −0.438807 0.760036i
\(363\) 0 0
\(364\) −3.18873e8 + 6.05523e8i −0.346548 + 0.658076i
\(365\) 3.19924e8 0.344367
\(366\) 0 0
\(367\) −3.69324e8 + 6.39688e8i −0.390010 + 0.675518i −0.992450 0.122646i \(-0.960862\pi\)
0.602440 + 0.798164i \(0.294195\pi\)
\(368\) 1.88995e8 3.27349e8i 0.197689 0.342408i
\(369\) 0 0
\(370\) 2.66941e8 0.273974
\(371\) 2.70576e7 5.13810e7i 0.0275094 0.0522389i
\(372\) 0 0
\(373\) −3.69601e8 6.40168e8i −0.368767 0.638724i 0.620606 0.784123i \(-0.286887\pi\)
−0.989373 + 0.145399i \(0.953553\pi\)
\(374\) −8.09171e7 + 1.40153e8i −0.0799815 + 0.138532i
\(375\) 0 0
\(376\) −2.05457e8 3.55862e8i −0.199326 0.345242i
\(377\) −5.34904e7 −0.0514139
\(378\) 0 0
\(379\) 1.38862e9 1.31023 0.655115 0.755529i \(-0.272620\pi\)
0.655115 + 0.755529i \(0.272620\pi\)
\(380\) 2.39538e7 + 4.14891e7i 0.0223940 + 0.0387875i
\(381\) 0 0
\(382\) 7.57237e7 1.31157e8i 0.0695041 0.120385i
\(383\) −7.44411e8 1.28936e9i −0.677044 1.17267i −0.975867 0.218366i \(-0.929927\pi\)
0.298823 0.954309i \(-0.403406\pi\)
\(384\) 0 0
\(385\) −1.69501e8 + 6.59564e6i −0.151377 + 0.00589040i
\(386\) 2.89410e8 0.256128
\(387\) 0 0
\(388\) −2.53509e8 + 4.39091e8i −0.220335 + 0.381631i
\(389\) 3.52737e8 6.10959e8i 0.303828 0.526245i −0.673172 0.739486i \(-0.735069\pi\)
0.977000 + 0.213241i \(0.0684019\pi\)
\(390\) 0 0
\(391\) 9.49832e8 0.803578
\(392\) 4.20379e8 3.27652e7i 0.352484 0.0274734i
\(393\) 0 0
\(394\) 4.55761e8 + 7.89401e8i 0.375405 + 0.650221i
\(395\) 1.33865e8 2.31860e8i 0.109289 0.189294i
\(396\) 0 0
\(397\) −7.71562e8 1.33638e9i −0.618877 1.07193i −0.989691 0.143219i \(-0.954255\pi\)
0.370814 0.928707i \(-0.379079\pi\)
\(398\) −8.38180e8 −0.666417
\(399\) 0 0
\(400\) −2.82952e8 −0.221056
\(401\) 9.60469e8 + 1.66358e9i 0.743838 + 1.28836i 0.950736 + 0.310002i \(0.100330\pi\)
−0.206898 + 0.978363i \(0.566337\pi\)
\(402\) 0 0
\(403\) 9.47573e8 1.64124e9i 0.721182 1.24912i
\(404\) −1.89248e8 3.27787e8i −0.142789 0.247319i
\(405\) 0 0
\(406\) 1.75760e7 + 2.78796e7i 0.0130340 + 0.0206750i
\(407\) 6.89566e8 0.506985
\(408\) 0 0
\(409\) −7.74628e8 + 1.34170e9i −0.559837 + 0.969666i 0.437672 + 0.899134i \(0.355803\pi\)
−0.997510 + 0.0705317i \(0.977530\pi\)
\(410\) 1.69817e8 2.94131e8i 0.121685 0.210764i
\(411\) 0 0
\(412\) 7.65094e8 0.538982
\(413\) −5.82197e8 + 1.10556e9i −0.406672 + 0.772250i
\(414\) 0 0
\(415\) 4.38163e8 + 7.58920e8i 0.300931 + 0.521228i
\(416\) 1.93053e8 3.34378e8i 0.131477 0.227725i
\(417\) 0 0
\(418\) 6.18777e7 + 1.07175e8i 0.0414398 + 0.0717758i
\(419\) −5.42846e6 −0.00360519 −0.00180259 0.999998i \(-0.500574\pi\)
−0.00180259 + 0.999998i \(0.500574\pi\)
\(420\) 0 0
\(421\) 2.83478e9 1.85154 0.925769 0.378091i \(-0.123419\pi\)
0.925769 + 0.378091i \(0.123419\pi\)
\(422\) −7.96089e8 1.37887e9i −0.515665 0.893159i
\(423\) 0 0
\(424\) −1.63813e7 + 2.83733e7i −0.0104368 + 0.0180771i
\(425\) −3.55507e8 6.15757e8i −0.224640 0.389088i
\(426\) 0 0
\(427\) 1.74224e8 + 2.76360e8i 0.108296 + 0.171782i
\(428\) −6.22773e8 −0.383952
\(429\) 0 0
\(430\) 2.70565e8 4.68632e8i 0.164109 0.284245i
\(431\) 1.22536e9 2.12239e9i 0.737216 1.27690i −0.216529 0.976276i \(-0.569473\pi\)
0.953744 0.300619i \(-0.0971932\pi\)
\(432\) 0 0
\(433\) 1.55968e9 0.923269 0.461635 0.887070i \(-0.347263\pi\)
0.461635 + 0.887070i \(0.347263\pi\)
\(434\) −1.16678e9 + 4.54020e7i −0.685135 + 0.0266600i
\(435\) 0 0
\(436\) −6.52198e8 1.12964e9i −0.376857 0.652736i
\(437\) 3.63171e8 6.29030e8i 0.208174 0.360567i
\(438\) 0 0
\(439\) −2.60662e8 4.51480e8i −0.147046 0.254690i 0.783089 0.621910i \(-0.213643\pi\)
−0.930134 + 0.367220i \(0.880310\pi\)
\(440\) 9.57036e7 0.0535604
\(441\) 0 0
\(442\) 9.70226e8 0.534435
\(443\) −1.15868e9 2.00689e9i −0.633215 1.09676i −0.986890 0.161392i \(-0.948402\pi\)
0.353676 0.935368i \(-0.384932\pi\)
\(444\) 0 0
\(445\) −2.35608e8 + 4.08084e8i −0.126745 + 0.219528i
\(446\) 3.02789e8 + 5.24445e8i 0.161610 + 0.279916i
\(447\) 0 0
\(448\) −2.37714e8 + 9.24994e6i −0.124905 + 0.00486033i
\(449\) 2.77082e9 1.44459 0.722297 0.691583i \(-0.243086\pi\)
0.722297 + 0.691583i \(0.243086\pi\)
\(450\) 0 0
\(451\) 4.38673e8 7.59804e8i 0.225176 0.390017i
\(452\) 6.61326e8 1.14545e9i 0.336846 0.583434i
\(453\) 0 0
\(454\) −8.06552e8 −0.404517
\(455\) 5.42340e8 + 8.60276e8i 0.269918 + 0.428152i
\(456\) 0 0
\(457\) 1.25384e8 + 2.17171e8i 0.0614517 + 0.106437i 0.895115 0.445836i \(-0.147094\pi\)
−0.833663 + 0.552274i \(0.813760\pi\)
\(458\) −1.19846e9 + 2.07579e9i −0.582900 + 1.00961i
\(459\) 0 0
\(460\) −2.80850e8 4.86447e8i −0.134531 0.233014i
\(461\) −2.63549e9 −1.25287 −0.626437 0.779472i \(-0.715487\pi\)
−0.626437 + 0.779472i \(0.715487\pi\)
\(462\) 0 0
\(463\) 3.89548e9 1.82401 0.912006 0.410178i \(-0.134533\pi\)
0.912006 + 0.410178i \(0.134533\pi\)
\(464\) −9.29713e6 1.61031e7i −0.00432052 0.00748336i
\(465\) 0 0
\(466\) 6.40343e8 1.10911e9i 0.293131 0.507718i
\(467\) 1.45172e9 + 2.51446e9i 0.659591 + 1.14244i 0.980722 + 0.195410i \(0.0626037\pi\)
−0.321131 + 0.947035i \(0.604063\pi\)
\(468\) 0 0
\(469\) −7.55011e8 + 1.43373e9i −0.337947 + 0.641743i
\(470\) −6.10625e8 −0.271289
\(471\) 0 0
\(472\) 3.52475e8 6.10505e8i 0.154288 0.267234i
\(473\) 6.98927e8 1.21058e9i 0.303681 0.525992i
\(474\) 0 0
\(475\) −5.43716e8 −0.232780
\(476\) −3.18799e8 5.05689e8i −0.135485 0.214911i
\(477\) 0 0
\(478\) −6.51482e8 1.12840e9i −0.272838 0.472570i
\(479\) 1.19799e9 2.07498e9i 0.498056 0.862658i −0.501942 0.864902i \(-0.667381\pi\)
0.999997 + 0.00224334i \(0.000714078\pi\)
\(480\) 0 0
\(481\) −2.06704e9 3.58021e9i −0.846916 1.46690i
\(482\) 1.71382e9 0.697107
\(483\) 0 0
\(484\) −9.99956e8 −0.400887
\(485\) 3.76719e8 + 6.52497e8i 0.149942 + 0.259706i
\(486\) 0 0
\(487\) 6.75499e8 1.17000e9i 0.265017 0.459022i −0.702551 0.711633i \(-0.747956\pi\)
0.967568 + 0.252611i \(0.0812892\pi\)
\(488\) −9.21591e7 1.59624e8i −0.0358979 0.0621770i
\(489\) 0 0
\(490\) 2.70179e8 5.65343e8i 0.103744 0.217083i
\(491\) 2.89904e9 1.10527 0.552636 0.833423i \(-0.313622\pi\)
0.552636 + 0.833423i \(0.313622\pi\)
\(492\) 0 0
\(493\) 2.33623e7 4.04646e7i 0.00878113 0.0152094i
\(494\) 3.70968e8 6.42536e8i 0.138450 0.239802i
\(495\) 0 0
\(496\) 6.58788e8 0.242415
\(497\) −3.29493e9 + 1.28212e8i −1.20392 + 0.0468471i
\(498\) 0 0
\(499\) 5.44922e8 + 9.43833e8i 0.196328 + 0.340051i 0.947335 0.320244i \(-0.103765\pi\)
−0.751007 + 0.660294i \(0.770432\pi\)
\(500\) −4.47998e8 + 7.75956e8i −0.160281 + 0.277614i
\(501\) 0 0
\(502\) −1.37096e9 2.37457e9i −0.483684 0.837766i
\(503\) 4.47095e9 1.56643 0.783216 0.621750i \(-0.213578\pi\)
0.783216 + 0.621750i \(0.213578\pi\)
\(504\) 0 0
\(505\) −5.62451e8 −0.194341
\(506\) −7.25496e8 1.25660e9i −0.248948 0.431190i
\(507\) 0 0
\(508\) −6.35529e7 + 1.10077e8i −0.0215086 + 0.0372540i
\(509\) 1.58472e9 + 2.74482e9i 0.532649 + 0.922575i 0.999273 + 0.0381191i \(0.0121366\pi\)
−0.466624 + 0.884456i \(0.654530\pi\)
\(510\) 0 0
\(511\) −1.42241e9 + 2.70108e9i −0.471575 + 0.895496i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −1.92646e9 + 3.33672e9i −0.625732 + 1.08380i
\(515\) 5.68472e8 9.84622e8i 0.183393 0.317646i
\(516\) 0 0
\(517\) −1.57738e9 −0.502017
\(518\) −1.18684e9 + 2.25375e9i −0.375179 + 0.712445i
\(519\) 0 0
\(520\) −2.86880e8 4.96891e8i −0.0894724 0.154971i
\(521\) −7.53997e8 + 1.30596e9i −0.233581 + 0.404574i −0.958859 0.283881i \(-0.908378\pi\)
0.725278 + 0.688456i \(0.241711\pi\)
\(522\) 0 0
\(523\) −1.15180e9 1.99497e9i −0.352062 0.609790i 0.634548 0.772883i \(-0.281186\pi\)
−0.986611 + 0.163093i \(0.947853\pi\)
\(524\) −1.47715e9 −0.448504
\(525\) 0 0
\(526\) 2.49260e9 0.746796
\(527\) 8.27717e8 + 1.43365e9i 0.246346 + 0.426683i
\(528\) 0 0
\(529\) −2.55564e9 + 4.42651e9i −0.750595 + 1.30007i
\(530\) 2.43429e7 + 4.21632e7i 0.00710243 + 0.0123018i
\(531\) 0 0
\(532\) −4.56788e8 + 1.77746e7i −0.131530 + 0.00511809i
\(533\) −5.25985e9 −1.50462
\(534\) 0 0
\(535\) −4.62726e8 + 8.01465e8i −0.130643 + 0.226280i
\(536\) 4.57101e8 7.91722e8i 0.128214 0.222073i
\(537\) 0 0
\(538\) −2.04243e9 −0.565469
\(539\) 6.97930e8 1.46040e9i 0.191978 0.401709i
\(540\) 0 0
\(541\) 3.21839e9 + 5.57442e9i 0.873873 + 1.51359i 0.857958 + 0.513720i \(0.171733\pi\)
0.0159155 + 0.999873i \(0.494934\pi\)
\(542\) −3.76950e8 + 6.52896e8i −0.101692 + 0.176135i
\(543\) 0 0
\(544\) 1.68634e8 + 2.92083e8i 0.0449107 + 0.0777876i
\(545\) −1.93836e9 −0.512915
\(546\) 0 0
\(547\) 4.02910e9 1.05257 0.526287 0.850307i \(-0.323584\pi\)
0.526287 + 0.850307i \(0.323584\pi\)
\(548\) 1.32922e9 + 2.30228e9i 0.345036 + 0.597621i
\(549\) 0 0
\(550\) −5.43084e8 + 9.40649e8i −0.139187 + 0.241078i
\(551\) −1.78652e7 3.09435e7i −0.00454965 0.00788023i
\(552\) 0 0
\(553\) 1.36239e9 + 2.16107e9i 0.342582 + 0.543414i
\(554\) −9.88849e8 −0.247085
\(555\) 0 0
\(556\) 1.06411e9 1.84310e9i 0.262558 0.454764i
\(557\) −2.36357e9 + 4.09383e9i −0.579530 + 1.00378i 0.416003 + 0.909363i \(0.363430\pi\)
−0.995533 + 0.0944121i \(0.969903\pi\)
\(558\) 0 0
\(559\) −8.38040e9 −2.02919
\(560\) −1.64719e8 + 3.12794e8i −0.0396357 + 0.0752662i
\(561\) 0 0
\(562\) 1.71426e9 + 2.96919e9i 0.407381 + 0.705604i
\(563\) −2.52081e9 + 4.36617e9i −0.595333 + 1.03115i 0.398166 + 0.917313i \(0.369647\pi\)
−0.993500 + 0.113834i \(0.963687\pi\)
\(564\) 0 0
\(565\) −9.82741e8 1.70216e9i −0.229229 0.397036i
\(566\) 2.42883e9 0.563040
\(567\) 0 0
\(568\) 1.86038e9 0.425973
\(569\) −2.28115e9 3.95106e9i −0.519111 0.899127i −0.999753 0.0222104i \(-0.992930\pi\)
0.480642 0.876917i \(-0.340404\pi\)
\(570\) 0 0
\(571\) 3.10593e9 5.37963e9i 0.698177 1.20928i −0.270921 0.962602i \(-0.587328\pi\)
0.969098 0.246676i \(-0.0793385\pi\)
\(572\) −7.41073e8 1.28358e9i −0.165568 0.286771i
\(573\) 0 0
\(574\) 1.72829e9 + 2.74147e9i 0.381439 + 0.605051i
\(575\) 6.37490e9 1.39841
\(576\) 0 0
\(577\) 4.81150e8 8.33376e8i 0.104271 0.180603i −0.809169 0.587576i \(-0.800082\pi\)
0.913440 + 0.406973i \(0.133416\pi\)
\(578\) 1.21760e9 2.10895e9i 0.262276 0.454275i
\(579\) 0 0
\(580\) −2.76314e7 −0.00588037
\(581\) −8.35557e9 + 3.25132e8i −1.76750 + 0.0687771i
\(582\) 0 0
\(583\) 6.28830e7 + 1.08917e8i 0.0131430 + 0.0227643i
\(584\) 8.61157e8 1.49157e9i 0.178911 0.309883i
\(585\) 0 0
\(586\) 1.63641e9 + 2.83434e9i 0.335931 + 0.581849i
\(587\) −7.88681e9 −1.60942 −0.804708 0.593671i \(-0.797678\pi\)
−0.804708 + 0.593671i \(0.797678\pi\)
\(588\) 0 0
\(589\) 1.26592e9 0.255272
\(590\) −5.23785e8 9.07222e8i −0.104996 0.181858i
\(591\) 0 0
\(592\) 7.18541e8 1.24455e9i 0.142340 0.246539i
\(593\) 1.19425e8 + 2.06850e8i 0.0235182 + 0.0407347i 0.877545 0.479494i \(-0.159180\pi\)
−0.854027 + 0.520229i \(0.825847\pi\)
\(594\) 0 0
\(595\) −8.87656e8 + 3.45405e7i −0.172757 + 0.00672232i
\(596\) −3.37059e9 −0.652144
\(597\) 0 0
\(598\) −4.34948e9 + 7.53352e9i −0.831732 + 1.44060i
\(599\) 4.74012e9 8.21013e9i 0.901147 1.56083i 0.0751399 0.997173i \(-0.476060\pi\)
0.826007 0.563660i \(-0.190607\pi\)
\(600\) 0 0
\(601\) 1.13408e8 0.0213100 0.0106550 0.999943i \(-0.496608\pi\)
0.0106550 + 0.999943i \(0.496608\pi\)
\(602\) 2.75365e9 + 4.36792e9i 0.514424 + 0.815994i
\(603\) 0 0
\(604\) −2.07653e9 3.59665e9i −0.383450 0.664154i
\(605\) −7.42976e8 + 1.28687e9i −0.136405 + 0.236261i
\(606\) 0 0
\(607\) −3.26388e9 5.65320e9i −0.592343 1.02597i −0.993916 0.110141i \(-0.964870\pi\)
0.401573 0.915827i \(-0.368464\pi\)
\(608\) 2.57911e8 0.0465380
\(609\) 0 0
\(610\) −2.73900e8 −0.0488582
\(611\) 4.72833e9 + 8.18971e9i 0.838617 + 1.45253i
\(612\) 0 0
\(613\) −2.64156e9 + 4.57531e9i −0.463179 + 0.802249i −0.999117 0.0420080i \(-0.986625\pi\)
0.535939 + 0.844257i \(0.319958\pi\)
\(614\) −1.62254e9 2.81032e9i −0.282882 0.489966i
\(615\) 0 0
\(616\) −4.25506e8 + 8.08013e8i −0.0733454 + 0.139279i
\(617\) −3.54184e9 −0.607058 −0.303529 0.952822i \(-0.598165\pi\)
−0.303529 + 0.952822i \(0.598165\pi\)
\(618\) 0 0
\(619\) −1.02848e9 + 1.78138e9i −0.174292 + 0.301883i −0.939916 0.341405i \(-0.889097\pi\)
0.765624 + 0.643289i \(0.222430\pi\)
\(620\) 4.89485e8 8.47814e8i 0.0824838 0.142866i
\(621\) 0 0
\(622\) −5.23594e9 −0.872426
\(623\) −2.39787e9 3.80358e9i −0.397300 0.630209i
\(624\) 0 0
\(625\) −2.03270e9 3.52075e9i −0.333038 0.576839i
\(626\) 9.27058e8 1.60571e9i 0.151042 0.261612i
\(627\) 0 0
\(628\) −1.20909e9 2.09420e9i −0.194804 0.337411i
\(629\) 3.61117e9 0.578589
\(630\) 0 0
\(631\) −8.96586e9 −1.42066 −0.710328 0.703870i \(-0.751454\pi\)
−0.710328 + 0.703870i \(0.751454\pi\)
\(632\) −7.20663e8 1.24822e9i −0.113559 0.196690i
\(633\) 0 0
\(634\) −7.01016e8 + 1.21420e9i −0.109248 + 0.189224i
\(635\) 9.44408e7 + 1.63576e8i 0.0146370 + 0.0253520i
\(636\) 0 0
\(637\) −9.67449e9 + 7.54050e8i −1.48300 + 0.115588i
\(638\) −7.13778e7 −0.0108816
\(639\) 0 0
\(640\) 9.97250e7 1.72729e8i 0.0150374 0.0260456i
\(641\) 7.49838e7 1.29876e8i 0.0112451 0.0194771i −0.860348 0.509707i \(-0.829754\pi\)
0.871593 + 0.490230i \(0.163087\pi\)
\(642\) 0 0
\(643\) 8.16574e9 1.21132 0.605658 0.795725i \(-0.292910\pi\)
0.605658 + 0.795725i \(0.292910\pi\)
\(644\) 5.35569e9 2.08401e8i 0.790160 0.0307467i
\(645\) 0 0
\(646\) 3.24045e8 + 5.61263e8i 0.0472925 + 0.0819130i
\(647\) 3.46080e9 5.99428e9i 0.502356 0.870106i −0.497640 0.867384i \(-0.665800\pi\)
0.999996 0.00272280i \(-0.000866696\pi\)
\(648\) 0 0
\(649\) −1.35305e9 2.34355e9i −0.194293 0.336525i
\(650\) 6.51177e9 0.930042
\(651\) 0 0
\(652\) 6.02154e9 0.850826
\(653\) −1.24757e7 2.16085e7i −0.00175335 0.00303688i 0.865147 0.501518i \(-0.167225\pi\)
−0.866901 + 0.498481i \(0.833891\pi\)
\(654\) 0 0
\(655\) −1.09754e9 + 1.90099e9i −0.152607 + 0.264324i
\(656\) −9.14211e8 1.58346e9i −0.126440 0.219000i
\(657\) 0 0
\(658\) 2.71489e9 5.15543e9i 0.371502 0.705463i
\(659\) 1.65846e9 0.225739 0.112870 0.993610i \(-0.463996\pi\)
0.112870 + 0.993610i \(0.463996\pi\)
\(660\) 0 0
\(661\) 6.15465e9 1.06602e10i 0.828893 1.43568i −0.0700151 0.997546i \(-0.522305\pi\)
0.898908 0.438138i \(-0.144362\pi\)
\(662\) −4.97828e8 + 8.62263e8i −0.0666924 + 0.115515i
\(663\) 0 0
\(664\) 4.71771e9 0.625379
\(665\) −3.16523e8 + 6.01060e8i −0.0417378 + 0.0792578i
\(666\) 0 0
\(667\) 2.09464e8 + 3.62802e8i 0.0273319 + 0.0473402i
\(668\) −3.27802e9 + 5.67769e9i −0.425494 + 0.736978i
\(669\) 0 0
\(670\) −6.79260e8 1.17651e9i −0.0872517 0.151124i
\(671\) −7.07543e8 −0.0904116
\(672\) 0 0
\(673\) 4.85194e9 0.613569 0.306784 0.951779i \(-0.400747\pi\)
0.306784 + 0.951779i \(0.400747\pi\)
\(674\) 3.18662e9 + 5.51939e9i 0.400886 + 0.694355i
\(675\) 0 0
\(676\) −2.43492e9 + 4.21740e9i −0.303159 + 0.525087i
\(677\) −4.40705e9 7.63323e9i −0.545868 0.945471i −0.998552 0.0537999i \(-0.982867\pi\)
0.452684 0.891671i \(-0.350467\pi\)
\(678\) 0 0
\(679\) −7.18387e9 + 2.79539e8i −0.880673 + 0.0342688i
\(680\) 5.01187e8 0.0611250
\(681\) 0 0
\(682\) 1.26445e9 2.19008e9i 0.152635 0.264372i
\(683\) −5.23834e9 + 9.07307e9i −0.629102 + 1.08964i 0.358630 + 0.933480i \(0.383244\pi\)
−0.987732 + 0.156157i \(0.950089\pi\)
\(684\) 0 0
\(685\) 3.95049e9 0.469606
\(686\) 3.57188e9 + 4.79464e9i 0.422438 + 0.567051i
\(687\) 0 0
\(688\) −1.45659e9 2.52289e9i −0.170521 0.295351i
\(689\) 3.76995e8 6.52975e8i 0.0439105 0.0760552i
\(690\) 0 0
\(691\) 2.45431e9 + 4.25099e9i 0.282980 + 0.490136i 0.972117 0.234495i \(-0.0753435\pi\)
−0.689137 + 0.724631i \(0.742010\pi\)
\(692\) 1.24071e9 0.142331
\(693\) 0 0
\(694\) 5.45344e9 0.619317
\(695\) −1.58129e9 2.73887e9i −0.178675 0.309475i
\(696\) 0 0
\(697\) 2.29727e9 3.97899e9i 0.256979 0.445101i
\(698\) 3.86041e9 + 6.68643e9i 0.429675 + 0.744219i
\(699\) 0 0
\(700\) −2.13965e9 3.39398e9i −0.235776 0.373996i
\(701\) 9.55909e9 1.04810 0.524051 0.851687i \(-0.324420\pi\)
0.524051 + 0.851687i \(0.324420\pi\)
\(702\) 0 0
\(703\) 1.38074e9 2.39151e9i 0.149888 0.259614i
\(704\) 2.57611e8 4.46195e8i 0.0278266 0.0481971i
\(705\) 0 0
\(706\) 1.23365e10 1.31940
\(707\) 2.50070e9 4.74870e9i 0.266130 0.505367i
\(708\) 0 0
\(709\) 3.46644e9 + 6.00404e9i 0.365276 + 0.632677i 0.988820 0.149111i \(-0.0476412\pi\)
−0.623544 + 0.781788i \(0.714308\pi\)
\(710\) 1.38228e9 2.39417e9i 0.144941 0.251045i
\(711\) 0 0
\(712\) 1.26840e9 + 2.19693e9i 0.131697 + 0.228106i
\(713\) −1.48425e10 −1.53353
\(714\) 0 0
\(715\) −2.20250e9 −0.225343
\(716\) 1.25222e9 + 2.16892e9i 0.127493 + 0.220824i
\(717\) 0 0
\(718\) 5.40360e9 9.35930e9i 0.544813 0.943644i
\(719\) −5.22335e9 9.04711e9i −0.524081 0.907734i −0.999607 0.0280327i \(-0.991076\pi\)
0.475526 0.879701i \(-0.342258\pi\)
\(720\) 0 0
\(721\) 5.78556e9 + 9.17724e9i 0.574873 + 0.911882i
\(722\) −6.65538e9 −0.658101
\(723\) 0 0
\(724\) −3.16843e9 + 5.48787e9i −0.310283 + 0.537427i
\(725\) 1.56798e8 2.71583e8i 0.0152812 0.0264679i
\(726\) 0 0
\(727\) 1.31125e10 1.26566 0.632828 0.774293i \(-0.281894\pi\)
0.632828 + 0.774293i \(0.281894\pi\)
\(728\) 5.47068e9 2.12875e8i 0.525511 0.0204487i
\(729\) 0 0
\(730\) −1.27970e9 2.21650e9i −0.121752 0.210881i
\(731\) 3.66019e9 6.33964e9i 0.346572 0.600280i
\(732\) 0 0
\(733\) 5.15193e9 + 8.92341e9i 0.483177 + 0.836887i 0.999813 0.0193179i \(-0.00614945\pi\)
−0.516636 + 0.856205i \(0.672816\pi\)
\(734\) 5.90918e9 0.551558
\(735\) 0 0
\(736\) −3.02392e9 −0.279575
\(737\) −1.75467e9 3.03918e9i −0.161458 0.279654i
\(738\) 0 0
\(739\) 3.46618e9 6.00360e9i 0.315933 0.547213i −0.663702 0.747997i \(-0.731016\pi\)
0.979635 + 0.200784i \(0.0643491\pi\)
\(740\) −1.06776e9 1.84942e9i −0.0968644 0.167774i
\(741\) 0 0
\(742\) −4.64209e8 + 1.80633e7i −0.0417157 + 0.00162324i
\(743\) 1.63033e10 1.45820 0.729098 0.684409i \(-0.239940\pi\)
0.729098 + 0.684409i \(0.239940\pi\)
\(744\) 0 0
\(745\) −2.50437e9 + 4.33770e9i −0.221897 + 0.384338i
\(746\) −2.95681e9 + 5.12134e9i −0.260758 + 0.451646i
\(747\) 0 0
\(748\) 1.29467e9 0.113111
\(749\) −4.70935e9 7.47011e9i −0.409519 0.649592i
\(750\) 0 0
\(751\) 2.17154e7 + 3.76122e7i 0.00187080 + 0.00324033i 0.866959 0.498379i \(-0.166071\pi\)
−0.865088 + 0.501619i \(0.832738\pi\)
\(752\) −1.64366e9 + 2.84689e9i −0.140945 + 0.244123i
\(753\) 0 0
\(754\) 2.13961e8 + 3.70592e8i 0.0181776 + 0.0314845i
\(755\) −6.17151e9 −0.521888
\(756\) 0 0
\(757\) −1.40955e10 −1.18098 −0.590491 0.807044i \(-0.701066\pi\)
−0.590491 + 0.807044i \(0.701066\pi\)
\(758\) −5.55450e9 9.62067e9i −0.463236 0.802348i
\(759\) 0 0
\(760\) 1.91630e8 3.31913e8i 0.0158349 0.0274269i
\(761\) 5.41737e9 + 9.38316e9i 0.445597 + 0.771797i 0.998094 0.0617185i \(-0.0196581\pi\)
−0.552497 + 0.833515i \(0.686325\pi\)
\(762\) 0 0
\(763\) 8.61808e9 1.63653e10i 0.702384 1.33379i
\(764\) −1.21158e9 −0.0982936
\(765\) 0 0
\(766\) −5.95529e9 + 1.03149e10i −0.478743 + 0.829206i
\(767\) −8.11177e9 + 1.40500e10i −0.649130 + 1.12433i
\(768\) 0 0
\(769\) −3.10964e9 −0.246585 −0.123293 0.992370i \(-0.539345\pi\)
−0.123293 + 0.992370i \(0.539345\pi\)
\(770\) 7.23701e8 + 1.14796e9i 0.0571270 + 0.0906166i
\(771\) 0 0
\(772\) −1.15764e9 2.00509e9i −0.0905551 0.156846i
\(773\) −2.16694e9 + 3.75326e9i −0.168741 + 0.292267i −0.937977 0.346697i \(-0.887303\pi\)
0.769237 + 0.638964i \(0.220637\pi\)
\(774\) 0 0
\(775\) 5.55531e9 + 9.62208e9i 0.428699 + 0.742528i
\(776\) 4.05615e9 0.311600
\(777\) 0 0
\(778\) −5.64380e9 −0.429678
\(779\) −1.75674e9 3.04275e9i −0.133145 0.230614i
\(780\) 0 0
\(781\) 3.57072e9 6.18466e9i 0.268211 0.464555i
\(782\) −3.79933e9 6.58063e9i −0.284108 0.492089i
\(783\) 0 0
\(784\) −1.90852e9 2.78141e9i −0.141446 0.206138i
\(785\) −3.59345e9 −0.265135
\(786\) 0 0
\(787\) 6.84958e9 1.18638e10i 0.500902 0.867587i −0.499098 0.866546i \(-0.666335\pi\)
0.999999 0.00104158i \(-0.000331546\pi\)
\(788\) 3.64609e9 6.31521e9i 0.265452 0.459776i
\(789\) 0 0
\(790\) −2.14183e9 −0.154558
\(791\) 1.87404e10 7.29229e8i 1.34636 0.0523898i
\(792\) 0 0
\(793\) 2.12092e9 + 3.67355e9i 0.151032 + 0.261595i
\(794\) −6.17250e9 + 1.06911e10i −0.437612 + 0.757966i
\(795\) 0 0
\(796\) 3.35272e9 + 5.80708e9i 0.235614 + 0.408096i
\(797\) 1.25491e10 0.878025 0.439012 0.898481i \(-0.355328\pi\)
0.439012 + 0.898481i \(0.355328\pi\)
\(798\) 0 0
\(799\) −8.26051e9 −0.572919
\(800\) 1.13181e9 + 1.96035e9i 0.0781551 + 0.135369i
\(801\) 0 0
\(802\) 7.68375e9 1.33087e10i 0.525973 0.911011i
\(803\) −3.30573e9 5.72569e9i −0.225301 0.390232i
\(804\) 0 0
\(805\) 3.71113e9 7.04723e9i 0.250738 0.476138i
\(806\) −1.51612e10 −1.01991
\(807\) 0 0
\(808\) −1.51398e9 + 2.62229e9i −0.100967 + 0.174881i
\(809\) −7.35066e9 + 1.27317e10i −0.488097 + 0.845409i −0.999906 0.0136899i \(-0.995642\pi\)
0.511809 + 0.859099i \(0.328976\pi\)
\(810\) 0 0
\(811\) −1.13444e9 −0.0746810 −0.0373405 0.999303i \(-0.511889\pi\)
−0.0373405 + 0.999303i \(0.511889\pi\)
\(812\) 1.22851e8 2.33288e8i 0.00805256 0.0152914i
\(813\) 0 0
\(814\) −2.75826e9 4.77745e9i −0.179246 0.310464i
\(815\) 4.47406e9 7.74929e9i 0.289501 0.501430i
\(816\) 0 0
\(817\) −2.79897e9 4.84795e9i −0.179565 0.311015i
\(818\) 1.23940e10 0.791729
\(819\) 0 0
\(820\) −2.71707e9 −0.172088
\(821\) 1.38267e10 + 2.39485e10i 0.872002 + 1.51035i 0.859922 + 0.510425i \(0.170512\pi\)
0.0120795 + 0.999927i \(0.496155\pi\)
\(822\) 0 0
\(823\) −2.51993e9 + 4.36465e9i −0.157576 + 0.272929i −0.933994 0.357289i \(-0.883701\pi\)
0.776418 + 0.630218i \(0.217035\pi\)
\(824\) −3.06038e9 5.30073e9i −0.190559 0.330058i
\(825\) 0 0
\(826\) 9.98834e9 3.88667e8i 0.616685 0.0239965i
\(827\) 1.34824e9 0.0828891 0.0414446 0.999141i \(-0.486804\pi\)
0.0414446 + 0.999141i \(0.486804\pi\)
\(828\) 0 0
\(829\) 1.01197e9 1.75279e9i 0.0616920 0.106854i −0.833530 0.552474i \(-0.813684\pi\)
0.895222 + 0.445621i \(0.147017\pi\)
\(830\) 3.50530e9 6.07136e9i 0.212790 0.368564i
\(831\) 0 0
\(832\) −3.08885e9 −0.185937
\(833\) 3.65497e9 7.64793e9i 0.219092 0.458444i
\(834\) 0 0
\(835\) 4.87119e9 + 8.43715e9i 0.289556 + 0.501526i
\(836\) 4.95022e8 8.57403e8i 0.0293023 0.0507532i
\(837\) 0 0
\(838\) 2.17139e7 + 3.76095e7i 0.00127463 + 0.00220772i
\(839\) 9.19653e9 0.537598 0.268799 0.963196i \(-0.413373\pi\)
0.268799 + 0.963196i \(0.413373\pi\)
\(840\) 0 0
\(841\) −1.72293e10 −0.998805
\(842\) −1.13391e10 1.96399e10i −0.654617 1.13383i
\(843\) 0 0
\(844\) −6.36871e9 + 1.10309e10i −0.364630 + 0.631559i
\(845\) 3.61833e9 + 6.26713e9i 0.206305 + 0.357331i
\(846\) 0 0
\(847\) −7.56157e9 1.19944e10i −0.427582 0.678244i
\(848\) 2.62101e8 0.0147599
\(849\) 0 0
\(850\) −2.84406e9 + 4.92605e9i −0.158844 + 0.275127i
\(851\) −1.61887e10 + 2.80397e10i −0.900448 + 1.55962i
\(852\) 0 0
\(853\) −2.80320e10 −1.54644 −0.773220 0.634138i \(-0.781355\pi\)
−0.773220 + 0.634138i \(0.781355\pi\)
\(854\) 1.21778e9 2.31250e9i 0.0669063 0.127052i
\(855\) 0 0
\(856\) 2.49109e9 + 4.31470e9i 0.135747 + 0.235122i
\(857\) 1.00958e10 1.74864e10i 0.547906 0.949000i −0.450512 0.892770i \(-0.648759\pi\)
0.998418 0.0562301i \(-0.0179080\pi\)
\(858\) 0 0
\(859\) 5.94937e9 + 1.03046e10i 0.320254 + 0.554697i 0.980540 0.196317i \(-0.0628983\pi\)
−0.660286 + 0.751014i \(0.729565\pi\)
\(860\) −4.32904e9 −0.232085
\(861\) 0 0
\(862\) −1.96058e10 −1.04258
\(863\) −3.49693e9 6.05687e9i −0.185204 0.320782i 0.758441 0.651741i \(-0.225961\pi\)
−0.943645 + 0.330959i \(0.892628\pi\)
\(864\) 0 0
\(865\) 9.21860e8 1.59671e9i 0.0484293 0.0838821i
\(866\) −6.23873e9 1.08058e10i −0.326425 0.565385i
\(867\) 0 0
\(868\) 4.98169e9 + 7.90211e9i 0.258558 + 0.410132i
\(869\) −5.53282e9 −0.286007
\(870\) 0 0
\(871\) −1.05196e10 + 1.82205e10i −0.539430 + 0.934320i
\(872\) −5.21758e9 + 9.03712e9i −0.266478 + 0.461554i
\(873\) 0 0
\(874\) −5.81073e9 −0.294402
\(875\) −1.26952e10 + 4.93998e8i −0.640638 + 0.0249286i
\(876\) 0 0
\(877\) −7.11756e9 1.23280e10i −0.356314 0.617154i 0.631028 0.775760i \(-0.282633\pi\)
−0.987342 + 0.158606i \(0.949300\pi\)
\(878\) −2.08530e9 + 3.61184e9i −0.103977 + 0.180093i
\(879\) 0 0
\(880\) −3.82814e8 6.63054e8i −0.0189365 0.0327989i
\(881\) 2.34184e10 1.15383 0.576914 0.816805i \(-0.304257\pi\)
0.576914 + 0.816805i \(0.304257\pi\)
\(882\) 0 0
\(883\) 1.15637e10 0.565241 0.282621 0.959232i \(-0.408796\pi\)
0.282621 + 0.959232i \(0.408796\pi\)
\(884\) −3.88090e9 6.72192e9i −0.188951 0.327273i
\(885\) 0 0
\(886\) −9.26945e9 + 1.60552e10i −0.447750 + 0.775526i
\(887\) −3.72367e9 6.44958e9i −0.179159 0.310312i 0.762434 0.647066i \(-0.224004\pi\)
−0.941593 + 0.336754i \(0.890671\pi\)
\(888\) 0 0
\(889\) −1.80094e9 + 7.00785e7i −0.0859694 + 0.00334525i
\(890\) 3.76972e9 0.179244
\(891\) 0 0
\(892\) 2.42231e9 4.19556e9i 0.114275 0.197931i
\(893\) −3.15843e9 + 5.47056e9i −0.148419 + 0.257070i
\(894\) 0 0
\(895\) 3.72165e9 0.173522
\(896\) 1.01494e9 + 1.60993e9i 0.0471371 + 0.0747703i
\(897\) 0 0
\(898\) −1.10833e10 1.91968e10i −0.510741 0.884630i
\(899\) −3.65069e8 + 6.32318e8i −0.0167578 + 0.0290253i
\(900\) 0 0
\(901\) 3.29310e8 + 5.70381e8i 0.0149992 + 0.0259794i
\(902\) −7.01877e9 −0.318448
\(903\) 0 0
\(904\) −1.05812e10 −0.476372
\(905\) 4.70834e9 + 8.15508e9i 0.211153 + 0.365728i
\(906\) 0 0
\(907\) −9.50494e9 + 1.64630e10i −0.422984 + 0.732630i −0.996230 0.0867537i \(-0.972351\pi\)
0.573246 + 0.819383i \(0.305684\pi\)
\(908\) 3.22621e9 + 5.58796e9i 0.143018 + 0.247715i
\(909\) 0 0
\(910\) 3.79081e9 7.19855e9i 0.166758 0.316665i
\(911\) −8.43646e9 −0.369697 −0.184849 0.982767i \(-0.559179\pi\)
−0.184849 + 0.982767i \(0.559179\pi\)
\(912\) 0 0
\(913\) 9.05494e9 1.56836e10i 0.393766 0.682022i
\(914\) 1.00307e9 1.73737e9i 0.0434529 0.0752626i
\(915\) 0 0
\(916\) 1.91753e10 0.824344
\(917\) −1.11701e10 1.77183e10i −0.478370 0.758806i
\(918\) 0 0
\(919\) 8.63092e9 + 1.49492e10i 0.366820 + 0.635351i 0.989066 0.147471i \(-0.0471132\pi\)
−0.622247 + 0.782821i \(0.713780\pi\)
\(920\) −2.24680e9 + 3.89157e9i −0.0951278 + 0.164766i
\(921\) 0 0
\(922\) 1.05419e10 + 1.82592e10i 0.442958 + 0.767225i
\(923\) −4.28142e10 −1.79218
\(924\) 0 0
\(925\) 2.42367e10 1.00688
\(926\) −1.55819e10 2.69887e10i −0.644885 1.11697i
\(927\) 0 0
\(928\) −7.43770e7 + 1.28825e8i −0.00305507 + 0.00529153i
\(929\) 1.51806e10 + 2.62936e10i 0.621205 + 1.07596i 0.989262 + 0.146156i \(0.0466900\pi\)
−0.368056 + 0.929804i \(0.619977\pi\)
\(930\) 0 0
\(931\) −3.66739e9 5.34472e9i −0.148947 0.217071i
\(932\) −1.02455e10 −0.414550
\(933\) 0 0
\(934\) 1.16138e10 2.01157e10i 0.466401 0.807830i
\(935\) 9.61954e8 1.66615e9i 0.0384870 0.0666614i
\(936\) 0 0
\(937\) −7.46897e9 −0.296601 −0.148300 0.988942i \(-0.547380\pi\)
−0.148300 + 0.988942i \(0.547380\pi\)
\(938\) 1.29532e10 5.04035e8i 0.512468 0.0199412i
\(939\) 0 0
\(940\) 2.44250e9 + 4.23054e9i 0.0959152 + 0.166130i
\(941\) 8.47872e9 1.46856e10i 0.331716 0.574549i −0.651132 0.758964i \(-0.725706\pi\)
0.982848 + 0.184415i \(0.0590390\pi\)
\(942\) 0 0
\(943\) 2.05971e10 + 3.56753e10i 0.799864 + 1.38541i
\(944\) −5.63961e9 −0.218196
\(945\) 0 0
\(946\) −1.11828e10 −0.429470
\(947\) −3.93228e9 6.81090e9i −0.150459 0.260603i 0.780937 0.624610i \(-0.214742\pi\)
−0.931396 + 0.364007i \(0.881409\pi\)
\(948\) 0 0
\(949\) −1.98184e10 + 3.43265e10i −0.752727 + 1.30376i
\(950\) 2.17487e9 + 3.76698e9i 0.0823000 + 0.142548i
\(951\) 0 0
\(952\) −2.22832e9 + 4.23146e9i −0.0837043 + 0.158950i
\(953\) −2.00508e10 −0.750425 −0.375212 0.926939i \(-0.622430\pi\)
−0.375212 + 0.926939i \(0.622430\pi\)
\(954\) 0 0
\(955\) −9.00215e8 + 1.55922e9i −0.0334452 + 0.0579288i
\(956\) −5.21186e9 + 9.02721e9i −0.192926 + 0.334157i
\(957\) 0 0
\(958\) −1.91678e10 −0.704357
\(959\) −1.75642e10 + 3.33535e10i −0.643077 + 1.22117i
\(960\) 0 0
\(961\) 8.22039e8 + 1.42381e9i 0.0298786 + 0.0517513i
\(962\) −1.65363e10 + 2.86417e10i −0.598860 + 1.03726i
\(963\) 0 0
\(964\) −6.85526e9 1.18737e10i −0.246465 0.426889i
\(965\) −3.44055e9 −0.123249
\(966\) 0 0
\(967\) −3.35149e10 −1.19192 −0.595958 0.803016i \(-0.703228\pi\)
−0.595958 + 0.803016i \(0.703228\pi\)
\(968\) 3.99982e9 + 6.92790e9i 0.141735 + 0.245492i
\(969\) 0 0
\(970\) 3.01376e9 5.21998e9i 0.106025 0.183640i
\(971\) 1.98936e10 + 3.44567e10i 0.697342 + 1.20783i 0.969385 + 0.245547i \(0.0789674\pi\)
−0.272043 + 0.962285i \(0.587699\pi\)
\(972\) 0 0
\(973\) 3.01545e10 1.17337e9i 1.04944 0.0408358i
\(974\) −1.08080e10 −0.374790
\(975\) 0 0
\(976\) −7.37273e8 + 1.27699e9i −0.0253836 + 0.0439658i
\(977\) 2.72987e10 4.72827e10i 0.936507 1.62208i 0.164583 0.986363i \(-0.447372\pi\)
0.771924 0.635715i \(-0.219294\pi\)
\(978\) 0 0
\(979\) 9.73800e9 0.331689
\(980\) −4.99753e9 + 3.89518e8i −0.169615 + 0.0132201i
\(981\) 0 0
\(982\) −1.15962e10 2.00851e10i −0.390772 0.676838i
\(983\) 1.73751e10 3.00945e10i 0.583431 1.01053i −0.411638 0.911347i \(-0.635043\pi\)
0.995069 0.0991843i \(-0.0316233\pi\)
\(984\) 0 0
\(985\) −5.41815e9 9.38451e9i −0.180644 0.312885i
\(986\) −3.73796e8 −0.0124184
\(987\) 0 0
\(988\) −5.93549e9 −0.195798
\(989\) 3.28170e10 + 5.68407e10i 1.07873 + 1.86841i
\(990\) 0 0
\(991\) −8.18462e9 + 1.41762e10i −0.267141 + 0.462702i −0.968122 0.250478i \(-0.919412\pi\)
0.700981 + 0.713180i \(0.252746\pi\)
\(992\) −2.63515e9 4.56422e9i −0.0857067 0.148448i
\(993\) 0 0
\(994\) 1.40680e10 + 2.23151e10i 0.454338 + 0.720686i
\(995\) 9.96440e9 0.320679
\(996\) 0 0
\(997\) 1.62152e10 2.80855e10i 0.518189 0.897530i −0.481587 0.876398i \(-0.659940\pi\)
0.999777 0.0211323i \(-0.00672712\pi\)
\(998\) 4.35938e9 7.55067e9i 0.138825 0.240452i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.h.109.2 6
3.2 odd 2 42.8.e.e.25.2 6
7.2 even 3 inner 126.8.g.h.37.2 6
21.2 odd 6 42.8.e.e.37.2 yes 6
21.5 even 6 294.8.e.ba.79.2 6
21.11 odd 6 294.8.a.v.1.2 3
21.17 even 6 294.8.a.w.1.2 3
21.20 even 2 294.8.e.ba.67.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.e.25.2 6 3.2 odd 2
42.8.e.e.37.2 yes 6 21.2 odd 6
126.8.g.h.37.2 6 7.2 even 3 inner
126.8.g.h.109.2 6 1.1 even 1 trivial
294.8.a.v.1.2 3 21.11 odd 6
294.8.a.w.1.2 3 21.17 even 6
294.8.e.ba.67.2 6 21.20 even 2
294.8.e.ba.79.2 6 21.5 even 6