Properties

Label 126.8.g.h
Level $126$
Weight $8$
Character orbit 126.g
Analytic conductor $39.361$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 2119x^{4} - 65706x^{3} + 4519836x^{2} - 71825616x + 1150023744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (8 \beta_1 - 8) q^{2} - 64 \beta_1 q^{4} + (\beta_{3} + 37 \beta_1 - 37) q^{5} + ( - \beta_{4} + 2 \beta_{2} + \cdots + 78) q^{7} + 512 q^{8} + ( - 8 \beta_{2} - 296 \beta_1) q^{10} + (5 \beta_{5} - \beta_{4} + \cdots + 187 \beta_1) q^{11}+ \cdots + (880 \beta_{5} - 5016 \beta_{4} + \cdots - 1940384) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 192 q^{4} - 110 q^{5} + 635 q^{7} + 3072 q^{8} - 880 q^{10} + 548 q^{11} + 19898 q^{13} - 4568 q^{14} - 12288 q^{16} + 20972 q^{17} + 28383 q^{19} + 14080 q^{20} - 8768 q^{22} + 32732 q^{23}+ \cdots - 6110208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 2119x^{4} - 65706x^{3} + 4519836x^{2} - 71825616x + 1150023744 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 748007 \nu^{5} + 742355 \nu^{4} - 1573050245 \nu^{3} + 23770157970 \nu^{2} + \cdots + 53320105165680 ) / 53726255217936 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 728225 \nu^{5} - 41175703 \nu^{4} + 87251314657 \nu^{3} - 65641237782 \nu^{2} + \cdots - 29\!\cdots\!48 ) / 26863127608968 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 748007 \nu^{5} + 742355 \nu^{4} - 1573050245 \nu^{3} + 23770157970 \nu^{2} + \cdots - 406150052256 ) / 26863127608968 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 18599041 \nu^{5} + 2308123375 \nu^{4} + 83739829295 \nu^{3} + 3344056237766 \nu^{2} + \cdots + 41\!\cdots\!96 ) / 2984791956552 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 710240977 \nu^{5} + 4683229597 \nu^{4} - 969387646387 \nu^{3} + 66817667987142 \nu^{2} + \cdots + 45\!\cdots\!12 ) / 26863127608968 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta _1 + 2 ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{5} - \beta_{4} + \beta_{3} - 25\beta_{2} - 9896\beta_1 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} + 4\beta_{4} - 2093\beta_{3} + 2094\beta_{2} + 223252 ) / 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -8476\beta_{5} + 10595\beta_{4} + 82650\beta_{3} + 2119\beta_{2} + 20668652\beta _1 - 20668652 ) / 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 148375\beta_{5} - 29675\beta_{4} + 29675\beta_{3} - 5196005\beta_{2} - 787772236\beta_1 ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−26.0602 + 45.1375i
9.57894 16.5912i
16.9812 29.4123i
−26.0602 45.1375i
9.57894 + 16.5912i
16.9812 + 29.4123i
−4.00000 + 6.92820i 0 −32.0000 55.4256i −201.921 + 349.738i 0 514.742 + 747.384i 512.000 0 −1615.37 2797.90i
37.2 −4.00000 + 6.92820i 0 −32.0000 55.4256i 47.5526 82.3635i 0 −906.806 35.2857i 512.000 0 380.420 + 658.908i
37.3 −4.00000 + 6.92820i 0 −32.0000 55.4256i 99.3686 172.111i 0 709.564 565.740i 512.000 0 794.949 + 1376.89i
109.1 −4.00000 6.92820i 0 −32.0000 + 55.4256i −201.921 349.738i 0 514.742 747.384i 512.000 0 −1615.37 + 2797.90i
109.2 −4.00000 6.92820i 0 −32.0000 + 55.4256i 47.5526 + 82.3635i 0 −906.806 + 35.2857i 512.000 0 380.420 658.908i
109.3 −4.00000 6.92820i 0 −32.0000 + 55.4256i 99.3686 + 172.111i 0 709.564 + 565.740i 512.000 0 794.949 1376.89i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.8.g.h 6
3.b odd 2 1 42.8.e.e 6
7.c even 3 1 inner 126.8.g.h 6
21.c even 2 1 294.8.e.ba 6
21.g even 6 1 294.8.a.w 3
21.g even 6 1 294.8.e.ba 6
21.h odd 6 1 42.8.e.e 6
21.h odd 6 1 294.8.a.v 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.e.e 6 3.b odd 2 1
42.8.e.e 6 21.h odd 6 1
126.8.g.h 6 1.a even 1 1 trivial
126.8.g.h 6 7.c even 3 1 inner
294.8.a.v 3 21.h odd 6 1
294.8.a.w 3 21.g even 6 1
294.8.e.ba 6 21.c even 2 1
294.8.e.ba 6 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 110T_{5}^{5} + 111865T_{5}^{4} - 26240130T_{5}^{3} + 9113426325T_{5}^{2} - 761505247350T_{5} + 58262536340100 \) acting on \(S_{8}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 64)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 58262536340100 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 55\!\cdots\!07 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( (T^{3} + \cdots + 1384679947008)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 40\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 14\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 31\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 82770327433116)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 91\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 78\!\cdots\!72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots + 23\!\cdots\!76)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 20\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 22\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 28\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 81\!\cdots\!64)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 26\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 19\!\cdots\!29 \) Copy content Toggle raw display
$83$ \( (T^{3} + \cdots + 11\!\cdots\!98)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots + 14\!\cdots\!26)^{2} \) Copy content Toggle raw display
show more
show less