Properties

Label 126.8.g.e.37.2
Level $126$
Weight $8$
Character 126.37
Analytic conductor $39.361$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,0,-128,-238] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2389})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 598x^{2} + 597x + 356409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.2
Root \(-11.9693 - 20.7315i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.8.g.e.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-10.6226 + 18.3989i) q^{5} +(-642.284 + 641.104i) q^{7} -512.000 q^{8} +(84.9808 + 147.191i) q^{10} +(1633.07 + 2828.56i) q^{11} +10238.0 q^{13} +(1872.57 + 7014.29i) q^{14} +(-2048.00 + 3547.24i) q^{16} +(-18264.6 - 31635.1i) q^{17} +(16200.6 - 28060.3i) q^{19} +1359.69 q^{20} +26129.1 q^{22} +(8370.58 - 14498.3i) q^{23} +(38836.8 + 67267.3i) q^{25} +(40951.9 - 70930.7i) q^{26} +(56086.7 + 15083.6i) q^{28} -43984.4 q^{29} +(-66921.6 - 115912. i) q^{31} +(16384.0 + 28377.9i) q^{32} -292233. q^{34} +(-4972.88 - 18627.5i) q^{35} +(289939. - 502188. i) q^{37} +(-129605. - 224482. i) q^{38} +(5438.77 - 9420.23i) q^{40} +532967. q^{41} -365375. q^{43} +(104517. - 181028. i) q^{44} +(-66964.6 - 115986. i) q^{46} +(-103432. + 179149. i) q^{47} +(1513.36 - 823542. i) q^{49} +621389. q^{50} +(-327615. - 567446. i) q^{52} +(-544104. - 942416. i) q^{53} -69389.9 q^{55} +(328849. - 328245. i) q^{56} +(-175938. + 304733. i) q^{58} +(80826.2 + 139995. i) q^{59} +(422154. - 731192. i) q^{61} -1.07075e6 q^{62} +262144. q^{64} +(-108754. + 188367. i) q^{65} +(-613923. - 1.06335e6i) q^{67} +(-1.16893e6 + 2.02465e6i) q^{68} +(-148947. - 40056.8i) q^{70} -1.10759e6 q^{71} +(-819423. - 1.41928e6i) q^{73} +(-2.31951e6 - 4.01751e6i) q^{74} -2.07368e6 q^{76} +(-2.86230e6 - 769770. i) q^{77} +(2.49711e6 - 4.32512e6i) q^{79} +(-43510.2 - 75361.8i) q^{80} +(2.13187e6 - 3.69251e6i) q^{82} +3.38355e6 q^{83} +776069. q^{85} +(-1.46150e6 + 2.53139e6i) q^{86} +(-836132. - 1.44822e6i) q^{88} +(3.26848e6 - 5.66118e6i) q^{89} +(-6.57568e6 + 6.56361e6i) q^{91} -1.07143e6 q^{92} +(827454. + 1.43319e6i) q^{94} +(344185. + 596146. i) q^{95} +1.35914e6 q^{97} +(-5.69961e6 - 3.30465e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 128 q^{4} - 238 q^{5} + 168 q^{7} - 2048 q^{8} + 1904 q^{10} + 5848 q^{11} + 2632 q^{13} + 2016 q^{14} - 8192 q^{16} - 47642 q^{17} + 41048 q^{19} + 30464 q^{20} + 93568 q^{22} - 49316 q^{23}+ \cdots - 20499248 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −10.6226 + 18.3989i −0.0380046 + 0.0658259i −0.884402 0.466726i \(-0.845433\pi\)
0.846397 + 0.532552i \(0.178767\pi\)
\(6\) 0 0
\(7\) −642.284 + 641.104i −0.707756 + 0.706457i
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 84.9808 + 147.191i 0.0268733 + 0.0465459i
\(11\) 1633.07 + 2828.56i 0.369939 + 0.640754i 0.989556 0.144151i \(-0.0460451\pi\)
−0.619616 + 0.784905i \(0.712712\pi\)
\(12\) 0 0
\(13\) 10238.0 1.29245 0.646223 0.763149i \(-0.276348\pi\)
0.646223 + 0.763149i \(0.276348\pi\)
\(14\) 1872.57 + 7014.29i 0.182385 + 0.683181i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −18264.6 31635.1i −0.901650 1.56170i −0.825352 0.564619i \(-0.809023\pi\)
−0.0762982 0.997085i \(-0.524310\pi\)
\(18\) 0 0
\(19\) 16200.6 28060.3i 0.541868 0.938543i −0.456929 0.889503i \(-0.651051\pi\)
0.998797 0.0490398i \(-0.0156161\pi\)
\(20\) 1359.69 0.0380046
\(21\) 0 0
\(22\) 26129.1 0.523173
\(23\) 8370.58 14498.3i 0.143452 0.248467i −0.785342 0.619062i \(-0.787513\pi\)
0.928795 + 0.370595i \(0.120846\pi\)
\(24\) 0 0
\(25\) 38836.8 + 67267.3i 0.497111 + 0.861022i
\(26\) 40951.9 70930.7i 0.456948 0.791458i
\(27\) 0 0
\(28\) 56086.7 + 15083.6i 0.482844 + 0.129853i
\(29\) −43984.4 −0.334893 −0.167446 0.985881i \(-0.553552\pi\)
−0.167446 + 0.985881i \(0.553552\pi\)
\(30\) 0 0
\(31\) −66921.6 115912.i −0.403460 0.698813i 0.590681 0.806905i \(-0.298859\pi\)
−0.994141 + 0.108092i \(0.965526\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −292233. −1.27513
\(35\) −4972.88 18627.5i −0.0196052 0.0734373i
\(36\) 0 0
\(37\) 289939. 502188.i 0.941022 1.62990i 0.177496 0.984122i \(-0.443200\pi\)
0.763526 0.645777i \(-0.223466\pi\)
\(38\) −129605. 224482.i −0.383159 0.663650i
\(39\) 0 0
\(40\) 5438.77 9420.23i 0.0134366 0.0232730i
\(41\) 532967. 1.20769 0.603847 0.797100i \(-0.293634\pi\)
0.603847 + 0.797100i \(0.293634\pi\)
\(42\) 0 0
\(43\) −365375. −0.700809 −0.350404 0.936598i \(-0.613956\pi\)
−0.350404 + 0.936598i \(0.613956\pi\)
\(44\) 104517. 181028.i 0.184970 0.320377i
\(45\) 0 0
\(46\) −66964.6 115986.i −0.101436 0.175693i
\(47\) −103432. + 179149.i −0.145315 + 0.251693i −0.929491 0.368846i \(-0.879753\pi\)
0.784175 + 0.620539i \(0.213086\pi\)
\(48\) 0 0
\(49\) 1513.36 823542.i 0.00183762 0.999998i
\(50\) 621389. 0.703022
\(51\) 0 0
\(52\) −327615. 567446.i −0.323111 0.559645i
\(53\) −544104. 942416.i −0.502015 0.869515i −0.999997 0.00232824i \(-0.999259\pi\)
0.497982 0.867187i \(-0.334074\pi\)
\(54\) 0 0
\(55\) −69389.9 −0.0562376
\(56\) 328849. 328245.i 0.250230 0.249770i
\(57\) 0 0
\(58\) −175938. + 304733.i −0.118402 + 0.205079i
\(59\) 80826.2 + 139995.i 0.0512354 + 0.0887423i 0.890506 0.454972i \(-0.150351\pi\)
−0.839270 + 0.543714i \(0.817017\pi\)
\(60\) 0 0
\(61\) 422154. 731192.i 0.238131 0.412456i −0.722047 0.691844i \(-0.756798\pi\)
0.960178 + 0.279389i \(0.0901318\pi\)
\(62\) −1.07075e6 −0.570578
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −108754. + 188367.i −0.0491188 + 0.0850763i
\(66\) 0 0
\(67\) −613923. 1.06335e6i −0.249375 0.431929i 0.713978 0.700168i \(-0.246892\pi\)
−0.963352 + 0.268239i \(0.913558\pi\)
\(68\) −1.16893e6 + 2.02465e6i −0.450825 + 0.780852i
\(69\) 0 0
\(70\) −148947. 40056.8i −0.0519024 0.0139583i
\(71\) −1.10759e6 −0.367259 −0.183630 0.982995i \(-0.558785\pi\)
−0.183630 + 0.982995i \(0.558785\pi\)
\(72\) 0 0
\(73\) −819423. 1.41928e6i −0.246535 0.427011i 0.716027 0.698072i \(-0.245959\pi\)
−0.962562 + 0.271062i \(0.912625\pi\)
\(74\) −2.31951e6 4.01751e6i −0.665403 1.15251i
\(75\) 0 0
\(76\) −2.07368e6 −0.541868
\(77\) −2.86230e6 769770.i −0.714492 0.192151i
\(78\) 0 0
\(79\) 2.49711e6 4.32512e6i 0.569826 0.986968i −0.426757 0.904366i \(-0.640344\pi\)
0.996583 0.0826011i \(-0.0263227\pi\)
\(80\) −43510.2 75361.8i −0.00950114 0.0164565i
\(81\) 0 0
\(82\) 2.13187e6 3.69251e6i 0.426984 0.739559i
\(83\) 3.38355e6 0.649531 0.324765 0.945795i \(-0.394715\pi\)
0.324765 + 0.945795i \(0.394715\pi\)
\(84\) 0 0
\(85\) 776069. 0.137067
\(86\) −1.46150e6 + 2.53139e6i −0.247773 + 0.429156i
\(87\) 0 0
\(88\) −836132. 1.44822e6i −0.130793 0.226541i
\(89\) 3.26848e6 5.66118e6i 0.491452 0.851220i −0.508500 0.861062i \(-0.669800\pi\)
0.999952 + 0.00984263i \(0.00313306\pi\)
\(90\) 0 0
\(91\) −6.57568e6 + 6.56361e6i −0.914736 + 0.913057i
\(92\) −1.07143e6 −0.143452
\(93\) 0 0
\(94\) 827454. + 1.43319e6i 0.102753 + 0.177974i
\(95\) 344185. + 596146.i 0.0411869 + 0.0713379i
\(96\) 0 0
\(97\) 1.35914e6 0.151204 0.0756022 0.997138i \(-0.475912\pi\)
0.0756022 + 0.997138i \(0.475912\pi\)
\(98\) −5.69961e6 3.30465e6i −0.611722 0.354678i
\(99\) 0 0
\(100\) 2.48556e6 4.30511e6i 0.248556 0.430511i
\(101\) 5.84618e6 + 1.01259e7i 0.564608 + 0.977930i 0.997086 + 0.0762853i \(0.0243060\pi\)
−0.432478 + 0.901644i \(0.642361\pi\)
\(102\) 0 0
\(103\) 1.08658e6 1.88202e6i 0.0979790 0.169705i −0.812869 0.582447i \(-0.802096\pi\)
0.910848 + 0.412742i \(0.135429\pi\)
\(104\) −5.24184e6 −0.456948
\(105\) 0 0
\(106\) −8.70567e6 −0.709956
\(107\) 5.38290e6 9.32345e6i 0.424789 0.735756i −0.571612 0.820524i \(-0.693682\pi\)
0.996401 + 0.0847685i \(0.0270151\pi\)
\(108\) 0 0
\(109\) 6.18768e6 + 1.07174e7i 0.457652 + 0.792676i 0.998836 0.0482280i \(-0.0153574\pi\)
−0.541185 + 0.840904i \(0.682024\pi\)
\(110\) −277559. + 480747.i −0.0198830 + 0.0344383i
\(111\) 0 0
\(112\) −958754. 3.59132e6i −0.0644829 0.241541i
\(113\) 1.93909e7 1.26422 0.632112 0.774877i \(-0.282188\pi\)
0.632112 + 0.774877i \(0.282188\pi\)
\(114\) 0 0
\(115\) 177835. + 308019.i 0.0109037 + 0.0188858i
\(116\) 1.40750e6 + 2.43786e6i 0.0837232 + 0.145013i
\(117\) 0 0
\(118\) 1.29322e6 0.0724578
\(119\) 3.20125e7 + 8.60925e6i 1.74142 + 0.468329i
\(120\) 0 0
\(121\) 4.40974e6 7.63790e6i 0.226290 0.391945i
\(122\) −3.37723e6 5.84954e6i −0.168384 0.291650i
\(123\) 0 0
\(124\) −4.28298e6 + 7.41834e6i −0.201730 + 0.349406i
\(125\) −3.30997e6 −0.151579
\(126\) 0 0
\(127\) −1.41475e6 −0.0612868 −0.0306434 0.999530i \(-0.509756\pi\)
−0.0306434 + 0.999530i \(0.509756\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 870031. + 1.50694e6i 0.0347323 + 0.0601580i
\(131\) −1.77615e7 + 3.07638e7i −0.690287 + 1.19561i 0.281457 + 0.959574i \(0.409182\pi\)
−0.971744 + 0.236038i \(0.924151\pi\)
\(132\) 0 0
\(133\) 7.58418e6 + 2.84089e7i 0.279530 + 1.04707i
\(134\) −9.82277e6 −0.352669
\(135\) 0 0
\(136\) 9.35146e6 + 1.61972e7i 0.318781 + 0.552146i
\(137\) −2.21508e7 3.83663e7i −0.735982 1.27476i −0.954291 0.298878i \(-0.903387\pi\)
0.218309 0.975880i \(-0.429946\pi\)
\(138\) 0 0
\(139\) 2.97789e7 0.940496 0.470248 0.882534i \(-0.344164\pi\)
0.470248 + 0.882534i \(0.344164\pi\)
\(140\) −873309. + 871705.i −0.0268980 + 0.0268486i
\(141\) 0 0
\(142\) −4.43034e6 + 7.67357e6i −0.129846 + 0.224900i
\(143\) 1.67193e7 + 2.89587e7i 0.478126 + 0.828139i
\(144\) 0 0
\(145\) 467229. 809264.i 0.0127275 0.0220446i
\(146\) −1.31108e7 −0.348653
\(147\) 0 0
\(148\) −3.71121e7 −0.941022
\(149\) −2.04028e7 + 3.53387e7i −0.505286 + 0.875181i 0.494695 + 0.869067i \(0.335280\pi\)
−0.999981 + 0.00611484i \(0.998054\pi\)
\(150\) 0 0
\(151\) 1.78291e7 + 3.08810e7i 0.421416 + 0.729914i 0.996078 0.0884767i \(-0.0281999\pi\)
−0.574662 + 0.818391i \(0.694867\pi\)
\(152\) −8.29471e6 + 1.43669e7i −0.191579 + 0.331825i
\(153\) 0 0
\(154\) −1.67823e7 + 1.67515e7i −0.370279 + 0.369599i
\(155\) 2.84353e6 0.0613333
\(156\) 0 0
\(157\) 2.60341e7 + 4.50923e7i 0.536899 + 0.929937i 0.999069 + 0.0431455i \(0.0137379\pi\)
−0.462169 + 0.886792i \(0.652929\pi\)
\(158\) −1.99769e7 3.46009e7i −0.402928 0.697891i
\(159\) 0 0
\(160\) −696163. −0.0134366
\(161\) 3.91862e6 + 1.46784e7i 0.0740018 + 0.277197i
\(162\) 0 0
\(163\) −2.72230e7 + 4.71516e7i −0.492356 + 0.852785i −0.999961 0.00880425i \(-0.997197\pi\)
0.507605 + 0.861590i \(0.330531\pi\)
\(164\) −1.70550e7 2.95400e7i −0.301924 0.522947i
\(165\) 0 0
\(166\) 1.35342e7 2.34419e7i 0.229644 0.397755i
\(167\) 3.69146e7 0.613325 0.306662 0.951818i \(-0.400788\pi\)
0.306662 + 0.951818i \(0.400788\pi\)
\(168\) 0 0
\(169\) 4.20675e7 0.670414
\(170\) 3.10427e6 5.37676e6i 0.0484606 0.0839363i
\(171\) 0 0
\(172\) 1.16920e7 + 2.02512e7i 0.175202 + 0.303459i
\(173\) −3.84918e7 + 6.66697e7i −0.565206 + 0.978965i 0.431825 + 0.901958i \(0.357870\pi\)
−0.997031 + 0.0770076i \(0.975463\pi\)
\(174\) 0 0
\(175\) −6.80696e7 1.83063e7i −0.960108 0.258206i
\(176\) −1.33781e7 −0.184970
\(177\) 0 0
\(178\) −2.61478e7 4.52894e7i −0.347509 0.601903i
\(179\) 2.50183e7 + 4.33329e7i 0.326041 + 0.564719i 0.981722 0.190318i \(-0.0609520\pi\)
−0.655682 + 0.755037i \(0.727619\pi\)
\(180\) 0 0
\(181\) 1.63228e7 0.204606 0.102303 0.994753i \(-0.467379\pi\)
0.102303 + 0.994753i \(0.467379\pi\)
\(182\) 1.91713e7 + 7.18121e7i 0.235723 + 0.882973i
\(183\) 0 0
\(184\) −4.28574e6 + 7.42311e6i −0.0507181 + 0.0878463i
\(185\) 6.15980e6 + 1.06691e7i 0.0715263 + 0.123887i
\(186\) 0 0
\(187\) 5.96546e7 1.03325e8i 0.667112 1.15547i
\(188\) 1.32393e7 0.145315
\(189\) 0 0
\(190\) 5.50696e6 0.0582471
\(191\) 7.45240e7 1.29079e8i 0.773890 1.34042i −0.161526 0.986869i \(-0.551641\pi\)
0.935416 0.353549i \(-0.115025\pi\)
\(192\) 0 0
\(193\) −3.16993e7 5.49049e7i −0.317395 0.549744i 0.662549 0.749019i \(-0.269475\pi\)
−0.979944 + 0.199275i \(0.936141\pi\)
\(194\) 5.43658e6 9.41643e6i 0.0534588 0.0925934i
\(195\) 0 0
\(196\) −4.56937e7 + 2.62695e7i −0.433471 + 0.249204i
\(197\) −2.93791e7 −0.273783 −0.136892 0.990586i \(-0.543711\pi\)
−0.136892 + 0.990586i \(0.543711\pi\)
\(198\) 0 0
\(199\) −2.45848e7 4.25821e7i −0.221147 0.383037i 0.734010 0.679139i \(-0.237647\pi\)
−0.955156 + 0.296102i \(0.904313\pi\)
\(200\) −1.98845e7 3.44409e7i −0.175755 0.304417i
\(201\) 0 0
\(202\) 9.35388e7 0.798476
\(203\) 2.82505e7 2.81986e7i 0.237022 0.236587i
\(204\) 0 0
\(205\) −5.66150e6 + 9.80600e6i −0.0458979 + 0.0794975i
\(206\) −8.69268e6 1.50562e7i −0.0692816 0.119999i
\(207\) 0 0
\(208\) −2.09674e7 + 3.63165e7i −0.161556 + 0.279823i
\(209\) 1.05827e8 0.801834
\(210\) 0 0
\(211\) −2.55314e8 −1.87105 −0.935526 0.353258i \(-0.885074\pi\)
−0.935526 + 0.353258i \(0.885074\pi\)
\(212\) −3.48227e7 + 6.03146e7i −0.251007 + 0.434758i
\(213\) 0 0
\(214\) −4.30632e7 7.45876e7i −0.300371 0.520258i
\(215\) 3.88124e6 6.72250e6i 0.0266339 0.0461314i
\(216\) 0 0
\(217\) 1.17294e8 + 3.15444e7i 0.779232 + 0.209562i
\(218\) 9.90028e7 0.647217
\(219\) 0 0
\(220\) 2.22048e6 + 3.84598e6i 0.0140594 + 0.0243516i
\(221\) −1.86992e8 3.23880e8i −1.16533 2.01842i
\(222\) 0 0
\(223\) −3.35491e7 −0.202588 −0.101294 0.994857i \(-0.532298\pi\)
−0.101294 + 0.994857i \(0.532298\pi\)
\(224\) −2.87164e7 7.72282e6i −0.170711 0.0459100i
\(225\) 0 0
\(226\) 7.75638e7 1.34344e8i 0.446971 0.774177i
\(227\) 7.55391e6 + 1.30838e7i 0.0428629 + 0.0742407i 0.886661 0.462420i \(-0.153019\pi\)
−0.843798 + 0.536661i \(0.819685\pi\)
\(228\) 0 0
\(229\) 5.15808e7 8.93406e7i 0.283834 0.491615i −0.688492 0.725244i \(-0.741727\pi\)
0.972326 + 0.233629i \(0.0750603\pi\)
\(230\) 2.84535e6 0.0154202
\(231\) 0 0
\(232\) 2.25200e7 0.118402
\(233\) 5.19814e7 9.00345e7i 0.269217 0.466298i −0.699443 0.714689i \(-0.746568\pi\)
0.968660 + 0.248391i \(0.0799018\pi\)
\(234\) 0 0
\(235\) −2.19743e6 3.80606e6i −0.0110453 0.0191310i
\(236\) 5.17288e6 8.95968e6i 0.0256177 0.0443711i
\(237\) 0 0
\(238\) 1.87696e8 1.87352e8i 0.902478 0.900821i
\(239\) −1.40545e8 −0.665919 −0.332960 0.942941i \(-0.608047\pi\)
−0.332960 + 0.942941i \(0.608047\pi\)
\(240\) 0 0
\(241\) −1.52501e8 2.64139e8i −0.701798 1.21555i −0.967835 0.251587i \(-0.919047\pi\)
0.266036 0.963963i \(-0.414286\pi\)
\(242\) −3.52780e7 6.11032e7i −0.160011 0.277147i
\(243\) 0 0
\(244\) −5.40357e7 −0.238131
\(245\) 1.51362e7 + 8.77600e6i 0.0657559 + 0.0381255i
\(246\) 0 0
\(247\) 1.65861e8 2.87280e8i 0.700335 1.21302i
\(248\) 3.42638e7 + 5.93467e7i 0.142645 + 0.247068i
\(249\) 0 0
\(250\) −1.32399e7 + 2.29322e7i −0.0535913 + 0.0928229i
\(251\) −7.20544e7 −0.287609 −0.143804 0.989606i \(-0.545934\pi\)
−0.143804 + 0.989606i \(0.545934\pi\)
\(252\) 0 0
\(253\) 5.46790e7 0.212275
\(254\) −5.65901e6 + 9.80169e6i −0.0216682 + 0.0375304i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −2.89343e6 + 5.01156e6i −0.0106328 + 0.0184165i −0.871293 0.490763i \(-0.836718\pi\)
0.860660 + 0.509180i \(0.170051\pi\)
\(258\) 0 0
\(259\) 1.35732e8 + 5.08428e8i 0.485438 + 1.81836i
\(260\) 1.39205e7 0.0491188
\(261\) 0 0
\(262\) 1.42092e8 + 2.46110e8i 0.488106 + 0.845425i
\(263\) 1.16636e8 + 2.02020e8i 0.395356 + 0.684778i 0.993147 0.116875i \(-0.0372877\pi\)
−0.597790 + 0.801653i \(0.703954\pi\)
\(264\) 0 0
\(265\) 2.31192e7 0.0763155
\(266\) 2.27160e8 + 6.10910e7i 0.740023 + 0.199018i
\(267\) 0 0
\(268\) −3.92911e7 + 6.80542e7i −0.124687 + 0.215965i
\(269\) −2.06500e8 3.57668e8i −0.646825 1.12033i −0.983877 0.178848i \(-0.942763\pi\)
0.337051 0.941486i \(-0.390570\pi\)
\(270\) 0 0
\(271\) −1.45930e7 + 2.52758e7i −0.0445401 + 0.0771457i −0.887436 0.460931i \(-0.847516\pi\)
0.842896 + 0.538077i \(0.180849\pi\)
\(272\) 1.49623e8 0.450825
\(273\) 0 0
\(274\) −3.54413e8 −1.04084
\(275\) −1.26847e8 + 2.19705e8i −0.367802 + 0.637052i
\(276\) 0 0
\(277\) −3.26538e8 5.65581e8i −0.923113 1.59888i −0.794568 0.607175i \(-0.792303\pi\)
−0.128545 0.991704i \(-0.541031\pi\)
\(278\) 1.19116e8 2.06314e8i 0.332516 0.575934i
\(279\) 0 0
\(280\) 2.54612e6 + 9.53728e6i 0.00693147 + 0.0259640i
\(281\) −5.17554e8 −1.39150 −0.695750 0.718284i \(-0.744928\pi\)
−0.695750 + 0.718284i \(0.744928\pi\)
\(282\) 0 0
\(283\) −7.16532e6 1.24107e7i −0.0187924 0.0325494i 0.856476 0.516186i \(-0.172649\pi\)
−0.875269 + 0.483637i \(0.839315\pi\)
\(284\) 3.54427e7 + 6.13886e7i 0.0918148 + 0.159028i
\(285\) 0 0
\(286\) 2.67509e8 0.676173
\(287\) −3.42316e8 + 3.41688e8i −0.854753 + 0.853184i
\(288\) 0 0
\(289\) −4.62019e8 + 8.00241e8i −1.12595 + 1.95020i
\(290\) −3.73783e6 6.47411e6i −0.00899967 0.0155879i
\(291\) 0 0
\(292\) −5.24431e7 + 9.08341e7i −0.123267 + 0.213505i
\(293\) 4.59597e8 1.06743 0.533716 0.845664i \(-0.320795\pi\)
0.533716 + 0.845664i \(0.320795\pi\)
\(294\) 0 0
\(295\) −3.43434e6 −0.00778872
\(296\) −1.48449e8 + 2.57120e8i −0.332702 + 0.576256i
\(297\) 0 0
\(298\) 1.63222e8 + 2.82709e8i 0.357291 + 0.618847i
\(299\) 8.56977e7 1.48433e8i 0.185404 0.321130i
\(300\) 0 0
\(301\) 2.34675e8 2.34244e8i 0.496002 0.495091i
\(302\) 2.85266e8 0.595972
\(303\) 0 0
\(304\) 6.63577e7 + 1.14935e8i 0.135467 + 0.234636i
\(305\) 8.96875e6 + 1.55343e7i 0.0181002 + 0.0313504i
\(306\) 0 0
\(307\) −2.28161e8 −0.450046 −0.225023 0.974354i \(-0.572246\pi\)
−0.225023 + 0.974354i \(0.572246\pi\)
\(308\) 4.89286e7 + 1.83277e8i 0.0954190 + 0.357422i
\(309\) 0 0
\(310\) 1.13741e7 1.97005e7i 0.0216846 0.0375588i
\(311\) 3.56536e8 + 6.17538e8i 0.672112 + 1.16413i 0.977304 + 0.211842i \(0.0679462\pi\)
−0.305192 + 0.952291i \(0.598720\pi\)
\(312\) 0 0
\(313\) 6.97714e7 1.20848e8i 0.128609 0.222758i −0.794529 0.607226i \(-0.792282\pi\)
0.923138 + 0.384469i \(0.125615\pi\)
\(314\) 4.16545e8 0.759291
\(315\) 0 0
\(316\) −3.19630e8 −0.569826
\(317\) −7.69441e7 + 1.33271e8i −0.135665 + 0.234979i −0.925851 0.377888i \(-0.876650\pi\)
0.790186 + 0.612867i \(0.209984\pi\)
\(318\) 0 0
\(319\) −7.18297e7 1.24413e8i −0.123890 0.214584i
\(320\) −2.78465e6 + 4.82316e6i −0.00475057 + 0.00822823i
\(321\) 0 0
\(322\) 1.17369e8 + 3.15647e7i 0.195911 + 0.0526873i
\(323\) −1.18359e9 −1.95430
\(324\) 0 0
\(325\) 3.97610e8 + 6.88681e8i 0.642489 + 1.11282i
\(326\) 2.17784e8 + 3.77213e8i 0.348148 + 0.603010i
\(327\) 0 0
\(328\) −2.72879e8 −0.426984
\(329\) −4.84207e7 1.81375e8i −0.0749627 0.280796i
\(330\) 0 0
\(331\) −6.99907e7 + 1.21227e8i −0.106082 + 0.183740i −0.914180 0.405309i \(-0.867164\pi\)
0.808098 + 0.589048i \(0.200497\pi\)
\(332\) −1.08274e8 1.87536e8i −0.162383 0.281255i
\(333\) 0 0
\(334\) 1.47658e8 2.55752e8i 0.216843 0.375583i
\(335\) 2.60858e7 0.0379095
\(336\) 0 0
\(337\) −9.36806e7 −0.133335 −0.0666676 0.997775i \(-0.521237\pi\)
−0.0666676 + 0.997775i \(0.521237\pi\)
\(338\) 1.68270e8 2.91452e8i 0.237027 0.410543i
\(339\) 0 0
\(340\) −2.48342e7 4.30141e7i −0.0342668 0.0593519i
\(341\) 2.18575e8 3.78584e8i 0.298511 0.517037i
\(342\) 0 0
\(343\) 5.27004e8 + 5.29917e8i 0.705155 + 0.709053i
\(344\) 1.87072e8 0.247773
\(345\) 0 0
\(346\) 3.07934e8 + 5.33358e8i 0.399661 + 0.692233i
\(347\) −2.85722e8 4.94886e8i −0.367106 0.635846i 0.622006 0.783012i \(-0.286318\pi\)
−0.989112 + 0.147167i \(0.952985\pi\)
\(348\) 0 0
\(349\) −2.32123e8 −0.292300 −0.146150 0.989262i \(-0.546688\pi\)
−0.146150 + 0.989262i \(0.546688\pi\)
\(350\) −3.99108e8 + 3.98375e8i −0.497568 + 0.496654i
\(351\) 0 0
\(352\) −5.35125e7 + 9.26863e7i −0.0653967 + 0.113270i
\(353\) 5.79874e8 + 1.00437e9i 0.701653 + 1.21530i 0.967886 + 0.251390i \(0.0808876\pi\)
−0.266233 + 0.963909i \(0.585779\pi\)
\(354\) 0 0
\(355\) 1.17654e7 2.03783e7i 0.0139575 0.0241752i
\(356\) −4.18366e8 −0.491452
\(357\) 0 0
\(358\) 4.00292e8 0.461091
\(359\) 4.85816e8 8.41458e8i 0.554168 0.959847i −0.443800 0.896126i \(-0.646370\pi\)
0.997968 0.0637210i \(-0.0202968\pi\)
\(360\) 0 0
\(361\) −7.79833e7 1.35071e8i −0.0872421 0.151108i
\(362\) 6.52911e7 1.13087e8i 0.0723392 0.125295i
\(363\) 0 0
\(364\) 5.74214e8 + 1.54426e8i 0.624049 + 0.167828i
\(365\) 3.48176e7 0.0374778
\(366\) 0 0
\(367\) 8.51399e8 + 1.47467e9i 0.899088 + 1.55727i 0.828663 + 0.559749i \(0.189102\pi\)
0.0704252 + 0.997517i \(0.477564\pi\)
\(368\) 3.42859e7 + 5.93849e7i 0.0358631 + 0.0621167i
\(369\) 0 0
\(370\) 9.85569e7 0.101153
\(371\) 9.53657e8 + 2.56471e8i 0.969579 + 0.260753i
\(372\) 0 0
\(373\) −1.88494e8 + 3.26481e8i −0.188068 + 0.325744i −0.944606 0.328206i \(-0.893556\pi\)
0.756538 + 0.653950i \(0.226889\pi\)
\(374\) −4.77237e8 8.26599e8i −0.471719 0.817042i
\(375\) 0 0
\(376\) 5.29570e7 9.17243e7i 0.0513767 0.0889870i
\(377\) −4.50311e8 −0.432831
\(378\) 0 0
\(379\) 8.86999e8 0.836924 0.418462 0.908234i \(-0.362569\pi\)
0.418462 + 0.908234i \(0.362569\pi\)
\(380\) 2.20278e7 3.81534e7i 0.0205935 0.0356689i
\(381\) 0 0
\(382\) −5.96192e8 1.03264e9i −0.547223 0.947818i
\(383\) −2.17148e8 + 3.76111e8i −0.197497 + 0.342074i −0.947716 0.319115i \(-0.896614\pi\)
0.750220 + 0.661189i \(0.229948\pi\)
\(384\) 0 0
\(385\) 4.45680e7 4.44861e7i 0.0398025 0.0397294i
\(386\) −5.07189e8 −0.448864
\(387\) 0 0
\(388\) −4.34926e7 7.53314e7i −0.0378011 0.0654734i
\(389\) 7.57986e7 + 1.31287e8i 0.0652886 + 0.113083i 0.896822 0.442392i \(-0.145870\pi\)
−0.831533 + 0.555475i \(0.812537\pi\)
\(390\) 0 0
\(391\) −6.11540e8 −0.517376
\(392\) −774841. + 4.21653e8i −0.000649697 + 0.353553i
\(393\) 0 0
\(394\) −1.17517e8 + 2.03545e8i −0.0967971 + 0.167657i
\(395\) 5.30515e7 + 9.18880e7i 0.0433120 + 0.0750186i
\(396\) 0 0
\(397\) 8.52585e8 1.47672e9i 0.683866 1.18449i −0.289926 0.957049i \(-0.593631\pi\)
0.973792 0.227441i \(-0.0730360\pi\)
\(398\) −3.93357e8 −0.312749
\(399\) 0 0
\(400\) −3.18151e8 −0.248556
\(401\) 5.75883e8 9.97459e8i 0.445994 0.772484i −0.552127 0.833760i \(-0.686184\pi\)
0.998121 + 0.0612759i \(0.0195169\pi\)
\(402\) 0 0
\(403\) −6.85141e8 1.18670e9i −0.521450 0.903177i
\(404\) 3.74155e8 6.48056e8i 0.282304 0.488965i
\(405\) 0 0
\(406\) −8.23638e7 3.08519e8i −0.0610795 0.228792i
\(407\) 1.89396e9 1.39248
\(408\) 0 0
\(409\) −5.71985e8 9.90706e8i −0.413383 0.716001i 0.581874 0.813279i \(-0.302320\pi\)
−0.995257 + 0.0972783i \(0.968986\pi\)
\(410\) 4.52920e7 + 7.84480e7i 0.0324547 + 0.0562132i
\(411\) 0 0
\(412\) −1.39083e8 −0.0979790
\(413\) −1.41665e8 3.80985e7i −0.0989548 0.0266123i
\(414\) 0 0
\(415\) −3.59421e7 + 6.22536e7i −0.0246851 + 0.0427559i
\(416\) 1.67739e8 + 2.90532e8i 0.114237 + 0.197864i
\(417\) 0 0
\(418\) 4.23308e8 7.33191e8i 0.283491 0.491021i
\(419\) −1.72282e9 −1.14417 −0.572084 0.820195i \(-0.693865\pi\)
−0.572084 + 0.820195i \(0.693865\pi\)
\(420\) 0 0
\(421\) −2.50496e9 −1.63611 −0.818056 0.575139i \(-0.804948\pi\)
−0.818056 + 0.575139i \(0.804948\pi\)
\(422\) −1.02126e9 + 1.76887e9i −0.661517 + 1.14578i
\(423\) 0 0
\(424\) 2.78581e8 + 4.82517e8i 0.177489 + 0.307420i
\(425\) 1.41868e9 2.45722e9i 0.896441 1.55268i
\(426\) 0 0
\(427\) 1.97628e8 + 7.40278e8i 0.122843 + 0.460147i
\(428\) −6.89011e8 −0.424789
\(429\) 0 0
\(430\) −3.10499e7 5.37800e7i −0.0188330 0.0326198i
\(431\) 1.14303e9 + 1.97978e9i 0.687679 + 1.19110i 0.972587 + 0.232541i \(0.0747039\pi\)
−0.284907 + 0.958555i \(0.591963\pi\)
\(432\) 0 0
\(433\) −2.07332e9 −1.22732 −0.613660 0.789570i \(-0.710303\pi\)
−0.613660 + 0.789570i \(0.710303\pi\)
\(434\) 6.87722e8 6.86460e8i 0.403830 0.403089i
\(435\) 0 0
\(436\) 3.96011e8 6.85912e8i 0.228826 0.396338i
\(437\) −2.71217e8 4.69761e8i −0.155465 0.269273i
\(438\) 0 0
\(439\) 8.79323e8 1.52303e9i 0.496047 0.859178i −0.503943 0.863737i \(-0.668118\pi\)
0.999990 + 0.00455873i \(0.00145109\pi\)
\(440\) 3.55276e7 0.0198830
\(441\) 0 0
\(442\) −2.99187e9 −1.64803
\(443\) −9.64736e8 + 1.67097e9i −0.527224 + 0.913179i 0.472272 + 0.881453i \(0.343434\pi\)
−0.999497 + 0.0317264i \(0.989899\pi\)
\(444\) 0 0
\(445\) 6.94395e7 + 1.20273e8i 0.0373548 + 0.0647005i
\(446\) −1.34196e8 + 2.32435e8i −0.0716257 + 0.124059i
\(447\) 0 0
\(448\) −1.68371e8 + 1.68062e8i −0.0884695 + 0.0883071i
\(449\) −3.29325e9 −1.71697 −0.858484 0.512840i \(-0.828593\pi\)
−0.858484 + 0.512840i \(0.828593\pi\)
\(450\) 0 0
\(451\) 8.70373e8 + 1.50753e9i 0.446774 + 0.773835i
\(452\) −6.20510e8 1.07476e9i −0.316056 0.547425i
\(453\) 0 0
\(454\) 1.20863e8 0.0606172
\(455\) −5.09122e7 1.90708e8i −0.0253386 0.0949136i
\(456\) 0 0
\(457\) 9.57310e8 1.65811e9i 0.469187 0.812655i −0.530193 0.847877i \(-0.677880\pi\)
0.999380 + 0.0352218i \(0.0112138\pi\)
\(458\) −4.12647e8 7.14725e8i −0.200701 0.347624i
\(459\) 0 0
\(460\) 1.13814e7 1.97132e7i 0.00545185 0.00944288i
\(461\) 1.84068e9 0.875032 0.437516 0.899211i \(-0.355858\pi\)
0.437516 + 0.899211i \(0.355858\pi\)
\(462\) 0 0
\(463\) −1.67942e8 −0.0786367 −0.0393184 0.999227i \(-0.512519\pi\)
−0.0393184 + 0.999227i \(0.512519\pi\)
\(464\) 9.00801e7 1.56023e8i 0.0418616 0.0725064i
\(465\) 0 0
\(466\) −4.15852e8 7.20276e8i −0.190365 0.329722i
\(467\) 6.89538e8 1.19432e9i 0.313292 0.542638i −0.665781 0.746147i \(-0.731901\pi\)
0.979073 + 0.203510i \(0.0652348\pi\)
\(468\) 0 0
\(469\) 1.07603e9 + 2.89381e8i 0.481636 + 0.129528i
\(470\) −3.51588e7 −0.0156204
\(471\) 0 0
\(472\) −4.13830e7 7.16775e7i −0.0181144 0.0313751i
\(473\) −5.96684e8 1.03349e9i −0.259257 0.449046i
\(474\) 0 0
\(475\) 2.51672e9 1.07748
\(476\) −5.47226e8 2.04981e9i −0.232564 0.871141i
\(477\) 0 0
\(478\) −5.62179e8 + 9.73722e8i −0.235438 + 0.407791i
\(479\) 2.26505e9 + 3.92318e9i 0.941679 + 1.63104i 0.762268 + 0.647261i \(0.224086\pi\)
0.179411 + 0.983774i \(0.442581\pi\)
\(480\) 0 0
\(481\) 2.96838e9 5.14139e9i 1.21622 2.10655i
\(482\) −2.44001e9 −0.992493
\(483\) 0 0
\(484\) −5.64447e8 −0.226290
\(485\) −1.44376e7 + 2.50067e7i −0.00574646 + 0.00995316i
\(486\) 0 0
\(487\) −7.69774e8 1.33329e9i −0.302003 0.523085i 0.674586 0.738196i \(-0.264322\pi\)
−0.976590 + 0.215111i \(0.930989\pi\)
\(488\) −2.16143e8 + 3.74370e8i −0.0841921 + 0.145825i
\(489\) 0 0
\(490\) 1.21347e8 6.97625e7i 0.0465952 0.0267877i
\(491\) 1.85780e9 0.708295 0.354148 0.935190i \(-0.384771\pi\)
0.354148 + 0.935190i \(0.384771\pi\)
\(492\) 0 0
\(493\) 8.03356e8 + 1.39145e9i 0.301956 + 0.523003i
\(494\) −1.32689e9 2.29824e9i −0.495211 0.857731i
\(495\) 0 0
\(496\) 5.48222e8 0.201730
\(497\) 7.11384e8 7.10078e8i 0.259930 0.259453i
\(498\) 0 0
\(499\) −2.67677e9 + 4.63630e9i −0.964405 + 1.67040i −0.253198 + 0.967414i \(0.581482\pi\)
−0.711206 + 0.702983i \(0.751851\pi\)
\(500\) 1.05919e8 + 1.83457e8i 0.0378948 + 0.0656357i
\(501\) 0 0
\(502\) −2.88218e8 + 4.99207e8i −0.101685 + 0.176124i
\(503\) −5.43979e9 −1.90587 −0.952936 0.303170i \(-0.901955\pi\)
−0.952936 + 0.303170i \(0.901955\pi\)
\(504\) 0 0
\(505\) −2.48406e8 −0.0858308
\(506\) 2.18716e8 3.78827e8i 0.0750505 0.129991i
\(507\) 0 0
\(508\) 4.52721e7 + 7.84135e7i 0.0153217 + 0.0265380i
\(509\) 9.12084e8 1.57978e9i 0.306565 0.530986i −0.671044 0.741418i \(-0.734154\pi\)
0.977609 + 0.210432i \(0.0674870\pi\)
\(510\) 0 0
\(511\) 1.43621e9 + 3.86246e8i 0.476151 + 0.128053i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 2.31474e7 + 4.00925e7i 0.00751850 + 0.0130224i
\(515\) 2.30847e7 + 3.99839e7i 0.00744730 + 0.0128991i
\(516\) 0 0
\(517\) −6.75645e8 −0.215031
\(518\) 4.06542e9 + 1.09333e9i 1.28514 + 0.345619i
\(519\) 0 0
\(520\) 5.56820e7 9.64440e7i 0.0173661 0.0300790i
\(521\) −2.07430e8 3.59280e8i −0.0642599 0.111301i 0.832106 0.554617i \(-0.187135\pi\)
−0.896365 + 0.443316i \(0.853802\pi\)
\(522\) 0 0
\(523\) 1.60836e9 2.78576e9i 0.491616 0.851505i −0.508337 0.861158i \(-0.669740\pi\)
0.999953 + 0.00965354i \(0.00307287\pi\)
\(524\) 2.27347e9 0.690287
\(525\) 0 0
\(526\) 1.86618e9 0.559118
\(527\) −2.44459e9 + 4.23415e9i −0.727559 + 1.26017i
\(528\) 0 0
\(529\) 1.56228e9 + 2.70595e9i 0.458843 + 0.794739i
\(530\) 9.24769e7 1.60175e8i 0.0269816 0.0467335i
\(531\) 0 0
\(532\) 1.33189e9 1.32944e9i 0.383511 0.382806i
\(533\) 5.45650e9 1.56088
\(534\) 0 0
\(535\) 1.14361e8 + 1.98079e8i 0.0322878 + 0.0559242i
\(536\) 3.14329e8 + 5.44433e8i 0.0881672 + 0.152710i
\(537\) 0 0
\(538\) −3.30400e9 −0.914749
\(539\) 2.33191e9 1.34062e9i 0.641433 0.368761i
\(540\) 0 0
\(541\) 1.14907e9 1.99025e9i 0.312002 0.540403i −0.666794 0.745242i \(-0.732334\pi\)
0.978796 + 0.204839i \(0.0656672\pi\)
\(542\) 1.16744e8 + 2.02206e8i 0.0314946 + 0.0545503i
\(543\) 0 0
\(544\) 5.98493e8 1.03662e9i 0.159391 0.276073i
\(545\) −2.62917e8 −0.0695714
\(546\) 0 0
\(547\) −6.33362e9 −1.65461 −0.827306 0.561752i \(-0.810128\pi\)
−0.827306 + 0.561752i \(0.810128\pi\)
\(548\) −1.41765e9 + 2.45544e9i −0.367991 + 0.637379i
\(549\) 0 0
\(550\) 1.01477e9 + 1.75764e9i 0.260075 + 0.450464i
\(551\) −7.12574e8 + 1.23421e9i −0.181468 + 0.314311i
\(552\) 0 0
\(553\) 1.16900e9 + 4.37886e9i 0.293952 + 1.10109i
\(554\) −5.22461e9 −1.30548
\(555\) 0 0
\(556\) −9.52925e8 1.65051e9i −0.235124 0.407247i
\(557\) −3.75684e9 6.50705e9i −0.921149 1.59548i −0.797640 0.603134i \(-0.793918\pi\)
−0.123510 0.992343i \(-0.539415\pi\)
\(558\) 0 0
\(559\) −3.74070e9 −0.905757
\(560\) 7.62607e7 + 2.05091e7i 0.0183503 + 0.00493502i
\(561\) 0 0
\(562\) −2.07022e9 + 3.58572e9i −0.491970 + 0.852117i
\(563\) 2.39314e9 + 4.14504e9i 0.565183 + 0.978926i 0.997033 + 0.0769801i \(0.0245278\pi\)
−0.431850 + 0.901946i \(0.642139\pi\)
\(564\) 0 0
\(565\) −2.05982e8 + 3.56772e8i −0.0480463 + 0.0832187i
\(566\) −1.14645e8 −0.0265765
\(567\) 0 0
\(568\) 5.67084e8 0.129846
\(569\) 2.60548e9 4.51283e9i 0.592919 1.02697i −0.400918 0.916114i \(-0.631309\pi\)
0.993837 0.110852i \(-0.0353580\pi\)
\(570\) 0 0
\(571\) 3.04516e9 + 5.27437e9i 0.684516 + 1.18562i 0.973589 + 0.228310i \(0.0733199\pi\)
−0.289072 + 0.957307i \(0.593347\pi\)
\(572\) 1.07004e9 1.85336e9i 0.239063 0.414070i
\(573\) 0 0
\(574\) 9.98017e8 + 3.73839e9i 0.220265 + 0.825073i
\(575\) 1.30035e9 0.285247
\(576\) 0 0
\(577\) 1.01575e9 + 1.75934e9i 0.220127 + 0.381271i 0.954846 0.297100i \(-0.0960195\pi\)
−0.734719 + 0.678371i \(0.762686\pi\)
\(578\) 3.69615e9 + 6.40192e9i 0.796164 + 1.37900i
\(579\) 0 0
\(580\) −5.98053e7 −0.0127275
\(581\) −2.17320e9 + 2.16921e9i −0.459709 + 0.458865i
\(582\) 0 0
\(583\) 1.77712e9 3.07807e9i 0.371430 0.643336i
\(584\) 4.19545e8 + 7.26673e8i 0.0871632 + 0.150971i
\(585\) 0 0
\(586\) 1.83839e9 3.18418e9i 0.377394 0.653666i
\(587\) 7.84037e9 1.59994 0.799970 0.600041i \(-0.204849\pi\)
0.799970 + 0.600041i \(0.204849\pi\)
\(588\) 0 0
\(589\) −4.33668e9 −0.874488
\(590\) −1.37374e7 + 2.37938e7i −0.00275373 + 0.00476960i
\(591\) 0 0
\(592\) 1.18759e9 + 2.05696e9i 0.235256 + 0.407475i
\(593\) −7.96578e8 + 1.37971e9i −0.156869 + 0.271705i −0.933738 0.357957i \(-0.883473\pi\)
0.776869 + 0.629662i \(0.216807\pi\)
\(594\) 0 0
\(595\) −4.98456e8 + 4.97541e8i −0.0970102 + 0.0968321i
\(596\) 2.61156e9 0.505286
\(597\) 0 0
\(598\) −6.85582e8 1.18746e9i −0.131101 0.227073i
\(599\) 3.97790e8 + 6.88992e8i 0.0756240 + 0.130985i 0.901357 0.433076i \(-0.142572\pi\)
−0.825733 + 0.564060i \(0.809238\pi\)
\(600\) 0 0
\(601\) 6.44884e8 0.121177 0.0605886 0.998163i \(-0.480702\pi\)
0.0605886 + 0.998163i \(0.480702\pi\)
\(602\) −6.84190e8 2.56285e9i −0.127817 0.478779i
\(603\) 0 0
\(604\) 1.14106e9 1.97638e9i 0.210708 0.364957i
\(605\) 9.36859e7 + 1.62269e8i 0.0172001 + 0.0297914i
\(606\) 0 0
\(607\) −1.62737e9 + 2.81869e9i −0.295343 + 0.511549i −0.975065 0.221921i \(-0.928767\pi\)
0.679721 + 0.733470i \(0.262101\pi\)
\(608\) 1.06172e9 0.191579
\(609\) 0 0
\(610\) 1.43500e8 0.0255975
\(611\) −1.05893e9 + 1.83412e9i −0.187812 + 0.325300i
\(612\) 0 0
\(613\) −1.95906e9 3.39319e9i −0.343508 0.594973i 0.641574 0.767061i \(-0.278282\pi\)
−0.985081 + 0.172089i \(0.944948\pi\)
\(614\) −9.12643e8 + 1.58074e9i −0.159115 + 0.275596i
\(615\) 0 0
\(616\) 1.46550e9 + 3.94122e8i 0.252611 + 0.0679357i
\(617\) −6.38504e9 −1.09437 −0.547187 0.837010i \(-0.684301\pi\)
−0.547187 + 0.837010i \(0.684301\pi\)
\(618\) 0 0
\(619\) 5.48911e9 + 9.50741e9i 0.930217 + 1.61118i 0.782948 + 0.622087i \(0.213715\pi\)
0.147269 + 0.989096i \(0.452952\pi\)
\(620\) −9.09928e7 1.57604e8i −0.0153333 0.0265581i
\(621\) 0 0
\(622\) 5.70457e9 0.950510
\(623\) 1.53011e9 + 5.73152e9i 0.253522 + 0.949645i
\(624\) 0 0
\(625\) −2.99897e9 + 5.19436e9i −0.491351 + 0.851044i
\(626\) −5.58171e8 9.66780e8i −0.0909404 0.157513i
\(627\) 0 0
\(628\) 1.66618e9 2.88591e9i 0.268450 0.464969i
\(629\) −2.11824e10 −3.39389
\(630\) 0 0
\(631\) −6.75136e9 −1.06977 −0.534883 0.844926i \(-0.679644\pi\)
−0.534883 + 0.844926i \(0.679644\pi\)
\(632\) −1.27852e9 + 2.21446e9i −0.201464 + 0.348946i
\(633\) 0 0
\(634\) 6.15553e8 + 1.06617e9i 0.0959297 + 0.166155i
\(635\) 1.50283e7 2.60299e7i 0.00232918 0.00403426i
\(636\) 0 0
\(637\) 1.54937e7 8.43139e9i 0.00237503 1.29244i
\(638\) −1.14927e9 −0.175207
\(639\) 0 0
\(640\) 2.22772e7 + 3.85853e7i 0.00335916 + 0.00581824i
\(641\) 2.66451e9 + 4.61507e9i 0.399590 + 0.692110i 0.993675 0.112292i \(-0.0358192\pi\)
−0.594085 + 0.804402i \(0.702486\pi\)
\(642\) 0 0
\(643\) 3.64486e9 0.540683 0.270342 0.962764i \(-0.412863\pi\)
0.270342 + 0.962764i \(0.412863\pi\)
\(644\) 6.88164e8 6.86901e8i 0.101529 0.101343i
\(645\) 0 0
\(646\) −4.73435e9 + 8.20014e9i −0.690950 + 1.19676i
\(647\) −4.98373e8 8.63207e8i −0.0723418 0.125300i 0.827585 0.561340i \(-0.189714\pi\)
−0.899927 + 0.436040i \(0.856381\pi\)
\(648\) 0 0
\(649\) −2.63990e8 + 4.57244e8i −0.0379080 + 0.0656585i
\(650\) 6.36176e9 0.908617
\(651\) 0 0
\(652\) 3.48454e9 0.492356
\(653\) 1.25807e9 2.17905e9i 0.176811 0.306246i −0.763975 0.645245i \(-0.776755\pi\)
0.940787 + 0.338999i \(0.110088\pi\)
\(654\) 0 0
\(655\) −3.77346e8 6.53583e8i −0.0524681 0.0908774i
\(656\) −1.09152e9 + 1.89056e9i −0.150962 + 0.261474i
\(657\) 0 0
\(658\) −1.45029e9 3.90031e8i −0.198455 0.0533714i
\(659\) −2.14485e9 −0.291944 −0.145972 0.989289i \(-0.546631\pi\)
−0.145972 + 0.989289i \(0.546631\pi\)
\(660\) 0 0
\(661\) 2.15616e9 + 3.73457e9i 0.290386 + 0.502962i 0.973901 0.226974i \(-0.0728831\pi\)
−0.683515 + 0.729936i \(0.739550\pi\)
\(662\) 5.59925e8 + 9.69819e8i 0.0750114 + 0.129924i
\(663\) 0 0
\(664\) −1.73238e9 −0.229644
\(665\) −6.03256e8 1.62236e8i −0.0795474 0.0213930i
\(666\) 0 0
\(667\) −3.68175e8 + 6.37698e8i −0.0480412 + 0.0832098i
\(668\) −1.18127e9 2.04601e9i −0.153331 0.265577i
\(669\) 0 0
\(670\) 1.04343e8 1.80728e8i 0.0134030 0.0232147i
\(671\) 2.75763e9 0.352377
\(672\) 0 0
\(673\) 8.49626e9 1.07442 0.537211 0.843448i \(-0.319478\pi\)
0.537211 + 0.843448i \(0.319478\pi\)
\(674\) −3.74722e8 + 6.49038e8i −0.0471411 + 0.0816509i
\(675\) 0 0
\(676\) −1.34616e9 2.33162e9i −0.167604 0.290298i
\(677\) 3.85081e9 6.66980e9i 0.476971 0.826138i −0.522681 0.852528i \(-0.675068\pi\)
0.999652 + 0.0263906i \(0.00840138\pi\)
\(678\) 0 0
\(679\) −8.72956e8 + 8.71353e8i −0.107016 + 0.106819i
\(680\) −3.97347e8 −0.0484606
\(681\) 0 0
\(682\) −1.74860e9 3.02867e9i −0.211079 0.365600i
\(683\) −4.85022e9 8.40083e9i −0.582491 1.00890i −0.995183 0.0980333i \(-0.968745\pi\)
0.412692 0.910871i \(-0.364588\pi\)
\(684\) 0 0
\(685\) 9.41196e8 0.111883
\(686\) 5.77939e9 1.53152e9i 0.683515 0.181129i
\(687\) 0 0
\(688\) 7.48289e8 1.29607e9i 0.0876011 0.151730i
\(689\) −5.57052e9 9.64843e9i −0.648827 1.12380i
\(690\) 0 0
\(691\) 1.42444e9 2.46720e9i 0.164237 0.284466i −0.772147 0.635444i \(-0.780817\pi\)
0.936384 + 0.350977i \(0.114151\pi\)
\(692\) 4.92695e9 0.565206
\(693\) 0 0
\(694\) −4.57156e9 −0.519166
\(695\) −3.16329e8 + 5.47899e8i −0.0357432 + 0.0619090i
\(696\) 0 0
\(697\) −9.73441e9 1.68605e10i −1.08892 1.88606i
\(698\) −9.28491e8 + 1.60819e9i −0.103344 + 0.178996i
\(699\) 0 0
\(700\) 1.16359e9 + 4.35860e9i 0.128221 + 0.480291i
\(701\) 4.47816e9 0.491006 0.245503 0.969396i \(-0.421047\pi\)
0.245503 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) −9.39436e9 1.62715e10i −1.01982 1.76638i
\(704\) 4.28100e8 + 7.41490e8i 0.0462424 + 0.0800942i
\(705\) 0 0
\(706\) 9.27799e9 0.992287
\(707\) −1.02466e10 2.75567e9i −1.09047 0.293265i
\(708\) 0 0
\(709\) 4.19450e9 7.26510e9i 0.441997 0.765560i −0.555841 0.831289i \(-0.687604\pi\)
0.997838 + 0.0657281i \(0.0209370\pi\)
\(710\) −9.41235e7 1.63027e8i −0.00986947 0.0170944i
\(711\) 0 0
\(712\) −1.67346e9 + 2.89852e9i −0.173754 + 0.300952i
\(713\) −2.24069e9 −0.231509
\(714\) 0 0
\(715\) −7.10411e8 −0.0726840
\(716\) 1.60117e9 2.77331e9i 0.163020 0.282360i
\(717\) 0 0
\(718\) −3.88653e9 6.73167e9i −0.391856 0.678714i
\(719\) −6.19091e8 + 1.07230e9i −0.0621160 + 0.107588i −0.895411 0.445240i \(-0.853118\pi\)
0.833295 + 0.552829i \(0.186452\pi\)
\(720\) 0 0
\(721\) 5.08676e8 + 1.90540e9i 0.0505437 + 0.189327i
\(722\) −1.24773e9 −0.123379
\(723\) 0 0
\(724\) −5.22329e8 9.04700e8i −0.0511516 0.0885971i
\(725\) −1.70821e9 2.95872e9i −0.166479 0.288350i
\(726\) 0 0
\(727\) −3.52132e9 −0.339888 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(728\) 3.36675e9 3.36057e9i 0.323408 0.322814i
\(729\) 0 0
\(730\) 1.39270e8 2.41224e8i 0.0132504 0.0229504i
\(731\) 6.67342e9 + 1.15587e10i 0.631884 + 1.09446i
\(732\) 0 0
\(733\) −3.95436e9 + 6.84915e9i −0.370862 + 0.642352i −0.989698 0.143168i \(-0.954271\pi\)
0.618836 + 0.785520i \(0.287604\pi\)
\(734\) 1.36224e10 1.27150
\(735\) 0 0
\(736\) 5.48574e8 0.0507181
\(737\) 2.00516e9 3.47304e9i 0.184507 0.319576i
\(738\) 0 0
\(739\) −2.24356e9 3.88597e9i −0.204495 0.354196i 0.745477 0.666532i \(-0.232222\pi\)
−0.949972 + 0.312336i \(0.898889\pi\)
\(740\) 3.94227e8 6.82822e8i 0.0357632 0.0619436i
\(741\) 0 0
\(742\) 5.59151e9 5.58124e9i 0.502476 0.501553i
\(743\) 4.33508e9 0.387736 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(744\) 0 0
\(745\) −4.33461e8 7.50777e8i −0.0384064 0.0665218i
\(746\) 1.50795e9 + 2.61185e9i 0.132984 + 0.230336i
\(747\) 0 0
\(748\) −7.63579e9 −0.667112
\(749\) 2.51996e9 + 9.43930e9i 0.219133 + 0.820830i
\(750\) 0 0
\(751\) 5.94199e9 1.02918e10i 0.511908 0.886651i −0.487997 0.872845i \(-0.662272\pi\)
0.999905 0.0138052i \(-0.00439447\pi\)
\(752\) −4.23656e8 7.33794e8i −0.0363288 0.0629233i
\(753\) 0 0
\(754\) −1.80124e9 + 3.11985e9i −0.153029 + 0.265054i
\(755\) −7.57567e8 −0.0640630
\(756\) 0 0
\(757\) 1.37796e10 1.15452 0.577260 0.816560i \(-0.304122\pi\)
0.577260 + 0.816560i \(0.304122\pi\)
\(758\) 3.54799e9 6.14531e9i 0.295897 0.512509i
\(759\) 0 0
\(760\) −1.76223e8 3.05227e8i −0.0145618 0.0252217i
\(761\) 4.26500e9 7.38719e9i 0.350810 0.607622i −0.635581 0.772034i \(-0.719239\pi\)
0.986392 + 0.164412i \(0.0525728\pi\)
\(762\) 0 0
\(763\) −1.08452e10 2.91664e9i −0.883897 0.237710i
\(764\) −9.53907e9 −0.773890
\(765\) 0 0
\(766\) 1.73718e9 + 3.00889e9i 0.139651 + 0.241883i
\(767\) 8.27496e8 + 1.43327e9i 0.0662189 + 0.114695i
\(768\) 0 0
\(769\) −1.57605e10 −1.24976 −0.624881 0.780720i \(-0.714853\pi\)
−0.624881 + 0.780720i \(0.714853\pi\)
\(770\) −1.29937e8 4.86720e8i −0.0102569 0.0384204i
\(771\) 0 0
\(772\) −2.02876e9 + 3.51391e9i −0.158697 + 0.274872i
\(773\) −1.87506e9 3.24770e9i −0.146011 0.252899i 0.783738 0.621091i \(-0.213310\pi\)
−0.929750 + 0.368192i \(0.879977\pi\)
\(774\) 0 0
\(775\) 5.19804e9 9.00327e9i 0.401129 0.694776i
\(776\) −6.95882e8 −0.0534588
\(777\) 0 0
\(778\) 1.21278e9 0.0923320
\(779\) 8.63439e9 1.49552e10i 0.654411 1.13347i
\(780\) 0 0
\(781\) −1.80876e9 3.13287e9i −0.135864 0.235323i
\(782\) −2.44616e9 + 4.23687e9i −0.182920 + 0.316827i
\(783\) 0 0
\(784\) 2.91820e9 + 1.69198e9i 0.216276 + 0.125398i
\(785\) −1.10620e9 −0.0816186
\(786\) 0 0
\(787\) 1.01205e10 + 1.75292e10i 0.740099 + 1.28189i 0.952450 + 0.304696i \(0.0985549\pi\)
−0.212350 + 0.977194i \(0.568112\pi\)
\(788\) 9.40132e8 + 1.62836e9i 0.0684459 + 0.118552i
\(789\) 0 0
\(790\) 8.48825e8 0.0612524
\(791\) −1.24545e10 + 1.24316e10i −0.894763 + 0.893120i
\(792\) 0 0
\(793\) 4.32200e9 7.48592e9i 0.307772 0.533076i
\(794\) −6.82068e9 1.18138e10i −0.483566 0.837561i
\(795\) 0 0
\(796\) −1.57343e9 + 2.72525e9i −0.110573 + 0.191519i
\(797\) 1.96658e10 1.37597 0.687983 0.725727i \(-0.258496\pi\)
0.687983 + 0.725727i \(0.258496\pi\)
\(798\) 0 0
\(799\) 7.55654e9 0.524094
\(800\) −1.27260e9 + 2.20422e9i −0.0878777 + 0.152209i
\(801\) 0 0
\(802\) −4.60706e9 7.97967e9i −0.315365 0.546229i
\(803\) 2.67635e9 4.63558e9i 0.182406 0.315936i
\(804\) 0 0
\(805\) −3.11692e8 8.38247e7i −0.0210591 0.00566352i
\(806\) −1.09623e10 −0.737441
\(807\) 0 0
\(808\) −2.99324e9 5.18445e9i −0.199619 0.345750i
\(809\) 2.91367e9 + 5.04662e9i 0.193473 + 0.335105i 0.946399 0.323000i \(-0.104692\pi\)
−0.752926 + 0.658105i \(0.771358\pi\)
\(810\) 0 0
\(811\) 1.13903e10 0.749829 0.374914 0.927059i \(-0.377672\pi\)
0.374914 + 0.927059i \(0.377672\pi\)
\(812\) −2.46694e9 6.63445e8i −0.161701 0.0434869i
\(813\) 0 0
\(814\) 7.57584e9 1.31217e10i 0.492318 0.852719i
\(815\) −5.78358e8 1.00175e9i −0.0374236 0.0648195i
\(816\) 0 0
\(817\) −5.91930e9 + 1.02525e10i −0.379746 + 0.657739i
\(818\) −9.15175e9 −0.584612
\(819\) 0 0
\(820\) 7.24672e8 0.0458979
\(821\) 5.98364e9 1.03640e10i 0.377367 0.653619i −0.613311 0.789841i \(-0.710163\pi\)
0.990678 + 0.136222i \(0.0434961\pi\)
\(822\) 0 0
\(823\) 1.24348e10 + 2.15376e10i 0.777568 + 1.34679i 0.933340 + 0.358994i \(0.116880\pi\)
−0.155772 + 0.987793i \(0.549787\pi\)
\(824\) −5.56331e8 + 9.63594e8i −0.0346408 + 0.0599997i
\(825\) 0 0
\(826\) −8.30613e8 + 8.29088e8i −0.0512824 + 0.0511883i
\(827\) −1.05586e10 −0.649137 −0.324569 0.945862i \(-0.605219\pi\)
−0.324569 + 0.945862i \(0.605219\pi\)
\(828\) 0 0
\(829\) 5.93269e9 + 1.02757e10i 0.361668 + 0.626428i 0.988236 0.152939i \(-0.0488739\pi\)
−0.626567 + 0.779367i \(0.715541\pi\)
\(830\) 2.87537e8 + 4.98029e8i 0.0174550 + 0.0302330i
\(831\) 0 0
\(832\) 2.68382e9 0.161556
\(833\) −2.60805e10 + 1.49938e10i −1.56336 + 0.898779i
\(834\) 0 0
\(835\) −3.92129e8 + 6.79188e8i −0.0233092 + 0.0403726i
\(836\) −3.38646e9 5.86552e9i −0.200458 0.347204i
\(837\) 0 0
\(838\) −6.89127e9 + 1.19360e10i −0.404525 + 0.700657i
\(839\) −4.68285e9 −0.273743 −0.136872 0.990589i \(-0.543705\pi\)
−0.136872 + 0.990589i \(0.543705\pi\)
\(840\) 0 0
\(841\) −1.53152e10 −0.887847
\(842\) −1.00198e10 + 1.73548e10i −0.578453 + 1.00191i
\(843\) 0 0
\(844\) 8.17004e9 + 1.41509e10i 0.467763 + 0.810189i
\(845\) −4.46866e8 + 7.73995e8i −0.0254788 + 0.0441306i
\(846\) 0 0
\(847\) 2.06439e9 + 7.73280e9i 0.116734 + 0.437265i
\(848\) 4.45730e9 0.251007
\(849\) 0 0
\(850\) −1.13494e10 1.96577e10i −0.633879 1.09791i
\(851\) −4.85391e9 8.40721e9i −0.269984 0.467626i
\(852\) 0 0
\(853\) −5.76473e9 −0.318022 −0.159011 0.987277i \(-0.550831\pi\)
−0.159011 + 0.987277i \(0.550831\pi\)
\(854\) 5.91930e9 + 1.59190e9i 0.325213 + 0.0874610i
\(855\) 0 0
\(856\) −2.75604e9 + 4.77361e9i −0.150185 + 0.260129i
\(857\) 1.23111e10 + 2.13235e10i 0.668135 + 1.15724i 0.978425 + 0.206602i \(0.0662406\pi\)
−0.310290 + 0.950642i \(0.600426\pi\)
\(858\) 0 0
\(859\) −1.49943e10 + 2.59709e10i −0.807144 + 1.39801i 0.107691 + 0.994184i \(0.465654\pi\)
−0.914834 + 0.403829i \(0.867679\pi\)
\(860\) −4.96798e8 −0.0266339
\(861\) 0 0
\(862\) 1.82884e10 0.972526
\(863\) 4.28994e8 7.43040e8i 0.0227203 0.0393527i −0.854442 0.519547i \(-0.826101\pi\)
0.877162 + 0.480195i \(0.159434\pi\)
\(864\) 0 0
\(865\) −8.17766e8 1.41641e9i −0.0429608 0.0744103i
\(866\) −8.29326e9 + 1.43644e10i −0.433923 + 0.751577i
\(867\) 0 0
\(868\) −2.00504e9 7.51052e9i −0.104065 0.389808i
\(869\) 1.63118e10 0.843204
\(870\) 0 0
\(871\) −6.28533e9 1.08865e10i −0.322303 0.558245i
\(872\) −3.16809e9 5.48729e9i −0.161804 0.280253i
\(873\) 0 0
\(874\) −4.33947e9 −0.219860
\(875\) 2.12594e9 2.12204e9i 0.107281 0.107084i
\(876\) 0 0
\(877\) 2.82487e9 4.89282e9i 0.141416 0.244940i −0.786614 0.617445i \(-0.788168\pi\)
0.928030 + 0.372505i \(0.121501\pi\)
\(878\) −7.03459e9 1.21843e10i −0.350758 0.607531i
\(879\) 0 0
\(880\) 1.42110e8 2.46142e8i 0.00702970 0.0121758i
\(881\) 2.87116e10 1.41462 0.707312 0.706902i \(-0.249908\pi\)
0.707312 + 0.706902i \(0.249908\pi\)
\(882\) 0 0
\(883\) 1.38023e10 0.674668 0.337334 0.941385i \(-0.390475\pi\)
0.337334 + 0.941385i \(0.390475\pi\)
\(884\) −1.19675e10 + 2.07283e10i −0.582667 + 1.00921i
\(885\) 0 0
\(886\) 7.71789e9 + 1.33678e10i 0.372804 + 0.645715i
\(887\) −1.86125e10 + 3.22378e10i −0.895513 + 1.55107i −0.0623449 + 0.998055i \(0.519858\pi\)
−0.833168 + 0.553020i \(0.813475\pi\)
\(888\) 0 0
\(889\) 9.08672e8 9.07003e8i 0.0433761 0.0432965i
\(890\) 1.11103e9 0.0528277
\(891\) 0 0
\(892\) 1.07357e9 + 1.85948e9i 0.0506470 + 0.0877232i
\(893\) 3.35131e9 + 5.80464e9i 0.157483 + 0.272769i
\(894\) 0 0
\(895\) −1.06304e9 −0.0495642
\(896\) 4.90882e8 + 1.83875e9i 0.0227981 + 0.0853976i
\(897\) 0 0
\(898\) −1.31730e10 + 2.28163e10i −0.607040 + 1.05142i
\(899\) 2.94351e9 + 5.09830e9i 0.135116 + 0.234027i
\(900\) 0 0
\(901\) −1.98757e10 + 3.44256e10i −0.905284 + 1.56800i
\(902\) 1.39260e10 0.631834
\(903\) 0 0
\(904\) −9.92816e9 −0.446971
\(905\) −1.73390e8 + 3.00321e8i −0.00777597 + 0.0134684i
\(906\) 0 0
\(907\) 2.80129e9 + 4.85198e9i 0.124662 + 0.215920i 0.921601 0.388139i \(-0.126882\pi\)
−0.796939 + 0.604060i \(0.793549\pi\)
\(908\) 4.83450e8 8.37360e8i 0.0214314 0.0371203i
\(909\) 0 0
\(910\) −1.52491e9 4.10101e8i −0.0670810 0.0180404i
\(911\) 3.57046e10 1.56462 0.782312 0.622886i \(-0.214040\pi\)
0.782312 + 0.622886i \(0.214040\pi\)
\(912\) 0 0
\(913\) 5.52558e9 + 9.57059e9i 0.240287 + 0.416189i
\(914\) −7.65848e9 1.32649e10i −0.331765 0.574634i
\(915\) 0 0
\(916\) −6.60235e9 −0.283834
\(917\) −8.31489e9 3.11460e10i −0.356093 1.33386i
\(918\) 0 0
\(919\) −2.19020e9 + 3.79354e9i −0.0930850 + 0.161228i −0.908808 0.417215i \(-0.863006\pi\)
0.815723 + 0.578443i \(0.196340\pi\)
\(920\) −9.10513e7 1.57706e8i −0.00385504 0.00667713i
\(921\) 0 0
\(922\) 7.36270e9 1.27526e10i 0.309371 0.535845i
\(923\) −1.13394e10 −0.474663
\(924\) 0 0
\(925\) 4.50412e10 1.87117
\(926\) −6.71767e8 + 1.16353e9i −0.0278023 + 0.0481550i
\(927\) 0 0
\(928\) −7.20641e8 1.24819e9i −0.0296006 0.0512698i
\(929\) −9.08246e9 + 1.57313e10i −0.371662 + 0.643738i −0.989821 0.142315i \(-0.954545\pi\)
0.618159 + 0.786053i \(0.287879\pi\)
\(930\) 0 0
\(931\) −2.30843e10 1.33843e10i −0.937546 0.543592i
\(932\) −6.65362e9 −0.269217
\(933\) 0 0
\(934\) −5.51631e9 9.55452e9i −0.221531 0.383703i
\(935\) 1.26738e9 + 2.19516e9i 0.0507066 + 0.0878264i
\(936\) 0 0
\(937\) 2.55925e10 1.01631 0.508153 0.861267i \(-0.330328\pi\)
0.508153 + 0.861267i \(0.330328\pi\)
\(938\) 6.30900e9 6.29742e9i 0.249604 0.249145i
\(939\) 0 0
\(940\) −1.40635e8 + 2.43588e8i −0.00552264 + 0.00956550i
\(941\) 1.53193e10 + 2.65338e10i 0.599343 + 1.03809i 0.992918 + 0.118800i \(0.0379046\pi\)
−0.393576 + 0.919292i \(0.628762\pi\)
\(942\) 0 0
\(943\) 4.46124e9 7.72710e9i 0.173247 0.300072i
\(944\) −6.62128e8 −0.0256177
\(945\) 0 0
\(946\) −9.54694e9 −0.366645
\(947\) 1.13440e10 1.96484e10i 0.434052 0.751800i −0.563166 0.826344i \(-0.690417\pi\)
0.997218 + 0.0745437i \(0.0237500\pi\)
\(948\) 0 0
\(949\) −8.38923e9 1.45306e10i −0.318633 0.551888i
\(950\) 1.00669e10 1.74363e10i 0.380945 0.659816i
\(951\) 0 0
\(952\) −1.63904e10 4.40793e9i −0.615687 0.165579i
\(953\) 2.31130e10 0.865030 0.432515 0.901627i \(-0.357626\pi\)
0.432515 + 0.901627i \(0.357626\pi\)
\(954\) 0 0
\(955\) 1.58328e9 + 2.74232e9i 0.0588228 + 0.101884i
\(956\) 4.49743e9 + 7.78977e9i 0.166480 + 0.288352i
\(957\) 0 0
\(958\) 3.62407e10 1.33173
\(959\) 3.88239e10 + 1.04411e10i 1.42146 + 0.382278i
\(960\) 0 0
\(961\) 4.79931e9 8.31265e9i 0.174440 0.302140i
\(962\) −2.37471e10 4.11311e10i −0.859997 1.48956i
\(963\) 0 0
\(964\) −9.76005e9 + 1.69049e10i −0.350899 + 0.607775i
\(965\) 1.34692e9 0.0482498
\(966\) 0 0
\(967\) 1.63381e10 0.581043 0.290521 0.956868i \(-0.406171\pi\)
0.290521 + 0.956868i \(0.406171\pi\)
\(968\) −2.25779e9 + 3.91061e9i −0.0800055 + 0.138574i
\(969\) 0 0
\(970\) 1.15501e8 + 2.00054e8i 0.00406336 + 0.00703795i
\(971\) −2.36893e9 + 4.10311e9i −0.0830396 + 0.143829i −0.904554 0.426359i \(-0.859796\pi\)
0.821515 + 0.570188i \(0.193129\pi\)
\(972\) 0 0
\(973\) −1.91265e10 + 1.90914e10i −0.665642 + 0.664420i
\(974\) −1.23164e10 −0.427097
\(975\) 0 0
\(976\) 1.72914e9 + 2.99496e9i 0.0595328 + 0.103114i
\(977\) 8.57370e9 + 1.48501e10i 0.294129 + 0.509446i 0.974782 0.223160i \(-0.0716373\pi\)
−0.680653 + 0.732606i \(0.738304\pi\)
\(978\) 0 0
\(979\) 2.13506e10 0.727230
\(980\) 2.05771e6 1.11976e9i 6.98380e−5 0.0380045i
\(981\) 0 0
\(982\) 7.43121e9 1.28712e10i 0.250420 0.433741i
\(983\) −2.27209e10 3.93537e10i −0.762935 1.32144i −0.941332 0.337483i \(-0.890425\pi\)
0.178397 0.983959i \(-0.442909\pi\)
\(984\) 0 0
\(985\) 3.12083e8 5.40543e8i 0.0104050 0.0180220i
\(986\) 1.28537e10 0.427030
\(987\) 0 0
\(988\) −2.12302e10 −0.700335
\(989\) −3.05840e9 + 5.29731e9i −0.100533 + 0.174128i
\(990\) 0 0
\(991\) 1.63460e10 + 2.83122e10i 0.533525 + 0.924092i 0.999233 + 0.0391537i \(0.0124662\pi\)
−0.465708 + 0.884938i \(0.654200\pi\)
\(992\) 2.19289e9 3.79819e9i 0.0713223 0.123534i
\(993\) 0 0
\(994\) −2.07403e9 7.76892e9i −0.0669826 0.250904i
\(995\) 1.04462e9 0.0336184
\(996\) 0 0
\(997\) −2.70222e10 4.68038e10i −0.863550 1.49571i −0.868480 0.495724i \(-0.834903\pi\)
0.00493036 0.999988i \(-0.498431\pi\)
\(998\) 2.14142e10 + 3.70904e10i 0.681937 + 1.18115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.e.37.2 4
3.2 odd 2 14.8.c.a.9.2 4
7.4 even 3 inner 126.8.g.e.109.2 4
12.11 even 2 112.8.i.a.65.1 4
21.2 odd 6 98.8.a.h.1.1 2
21.5 even 6 98.8.a.k.1.2 2
21.11 odd 6 14.8.c.a.11.2 yes 4
21.17 even 6 98.8.c.h.67.1 4
21.20 even 2 98.8.c.h.79.1 4
84.11 even 6 112.8.i.a.81.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.c.a.9.2 4 3.2 odd 2
14.8.c.a.11.2 yes 4 21.11 odd 6
98.8.a.h.1.1 2 21.2 odd 6
98.8.a.k.1.2 2 21.5 even 6
98.8.c.h.67.1 4 21.17 even 6
98.8.c.h.79.1 4 21.20 even 2
112.8.i.a.65.1 4 12.11 even 2
112.8.i.a.81.1 4 84.11 even 6
126.8.g.e.37.2 4 1.1 even 1 trivial
126.8.g.e.109.2 4 7.4 even 3 inner