Properties

Label 126.8.g.e.37.1
Level $126$
Weight $8$
Character 126.37
Analytic conductor $39.361$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,0,-128,-238] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2389})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 598x^{2} + 597x + 356409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(12.4693 + 21.5975i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.8.g.e.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-108.377 + 187.715i) q^{5} +(726.284 - 544.110i) q^{7} -512.000 q^{8} +(867.019 + 1501.72i) q^{10} +(1290.93 + 2235.95i) q^{11} -8921.97 q^{13} +(-864.567 - 7208.28i) q^{14} +(-2048.00 + 3547.24i) q^{16} +(-5556.44 - 9624.03i) q^{17} +(4323.40 - 7488.34i) q^{19} +13872.3 q^{20} +20654.9 q^{22} +(-33028.6 + 57207.2i) q^{23} +(15571.2 + 26970.1i) q^{25} +(-35687.9 + 61813.2i) q^{26} +(-53398.7 - 22843.2i) q^{28} -128836. q^{29} +(102048. + 176752. i) q^{31} +(16384.0 + 28377.9i) q^{32} -88903.0 q^{34} +(23424.9 + 195304. i) q^{35} +(-245856. + 425834. i) q^{37} +(-34587.2 - 59906.7i) q^{38} +(55489.2 - 96110.2i) q^{40} +623293. q^{41} +422919. q^{43} +(82619.5 - 143101. i) q^{44} +(264229. + 457657. i) q^{46} +(-602714. + 1.04393e6i) q^{47} +(231433. - 790356. i) q^{49} +249139. q^{50} +(285503. + 494506. i) q^{52} +(-636483. - 1.10242e6i) q^{53} -559630. q^{55} +(-371857. + 278584. i) q^{56} +(-515342. + 892599. i) q^{58} +(840430. + 1.45567e6i) q^{59} +(-1.06128e6 + 1.83818e6i) q^{61} +1.63276e6 q^{62} +262144. q^{64} +(966940. - 1.67479e6i) q^{65} +(1.67466e6 + 2.90060e6i) q^{67} +(-355612. + 615938. i) q^{68} +(1.44680e6 + 618922. i) q^{70} -2.49257e6 q^{71} +(1.63676e6 + 2.83496e6i) q^{73} +(1.96684e6 + 3.40667e6i) q^{74} -553395. q^{76} +(2.15418e6 + 921530. i) q^{77} +(2.09920e6 - 3.63591e6i) q^{79} +(-443914. - 768881. i) q^{80} +(2.49317e6 - 4.31830e6i) q^{82} -3.35527e6 q^{83} +2.40877e6 q^{85} +(1.69168e6 - 2.93007e6i) q^{86} +(-660956. - 1.14481e6i) q^{88} +(1.19979e6 - 2.07810e6i) q^{89} +(-6.47988e6 + 4.85453e6i) q^{91} +4.22766e6 q^{92} +(4.82171e6 + 8.35145e6i) q^{94} +(937117. + 1.62313e6i) q^{95} +4.51506e6 q^{97} +(-4.55001e6 - 4.76483e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 128 q^{4} - 238 q^{5} + 168 q^{7} - 2048 q^{8} + 1904 q^{10} + 5848 q^{11} + 2632 q^{13} + 2016 q^{14} - 8192 q^{16} - 47642 q^{17} + 41048 q^{19} + 30464 q^{20} + 93568 q^{22} - 49316 q^{23}+ \cdots - 20499248 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −108.377 + 187.715i −0.387743 + 0.671590i −0.992146 0.125089i \(-0.960078\pi\)
0.604403 + 0.796679i \(0.293412\pi\)
\(6\) 0 0
\(7\) 726.284 544.110i 0.800319 0.599575i
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 867.019 + 1501.72i 0.274176 + 0.474886i
\(11\) 1290.93 + 2235.95i 0.292434 + 0.506511i 0.974385 0.224887i \(-0.0722015\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(12\) 0 0
\(13\) −8921.97 −1.12631 −0.563156 0.826350i \(-0.690413\pi\)
−0.563156 + 0.826350i \(0.690413\pi\)
\(14\) −864.567 7208.28i −0.0842075 0.702075i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −5556.44 9624.03i −0.274300 0.475101i 0.695659 0.718373i \(-0.255113\pi\)
−0.969958 + 0.243272i \(0.921779\pi\)
\(18\) 0 0
\(19\) 4323.40 7488.34i 0.144606 0.250466i −0.784620 0.619977i \(-0.787142\pi\)
0.929226 + 0.369512i \(0.120475\pi\)
\(20\) 13872.3 0.387743
\(21\) 0 0
\(22\) 20654.9 0.413564
\(23\) −33028.6 + 57207.2i −0.566034 + 0.980399i 0.430919 + 0.902391i \(0.358190\pi\)
−0.996953 + 0.0780088i \(0.975144\pi\)
\(24\) 0 0
\(25\) 15571.2 + 26970.1i 0.199311 + 0.345217i
\(26\) −35687.9 + 61813.2i −0.398212 + 0.689723i
\(27\) 0 0
\(28\) −53398.7 22843.2i −0.459703 0.196655i
\(29\) −128836. −0.980941 −0.490470 0.871458i \(-0.663175\pi\)
−0.490470 + 0.871458i \(0.663175\pi\)
\(30\) 0 0
\(31\) 102048. + 176752.i 0.615229 + 1.06561i 0.990344 + 0.138630i \(0.0442698\pi\)
−0.375115 + 0.926978i \(0.622397\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −88903.0 −0.387918
\(35\) 23424.9 + 195304.i 0.0923505 + 0.769967i
\(36\) 0 0
\(37\) −245856. + 425834.i −0.797947 + 1.38208i 0.123004 + 0.992406i \(0.460747\pi\)
−0.920951 + 0.389678i \(0.872586\pi\)
\(38\) −34587.2 59906.7i −0.102252 0.177106i
\(39\) 0 0
\(40\) 55489.2 96110.2i 0.137088 0.237443i
\(41\) 623293. 1.41237 0.706185 0.708027i \(-0.250415\pi\)
0.706185 + 0.708027i \(0.250415\pi\)
\(42\) 0 0
\(43\) 422919. 0.811181 0.405591 0.914055i \(-0.367066\pi\)
0.405591 + 0.914055i \(0.367066\pi\)
\(44\) 82619.5 143101.i 0.146217 0.253255i
\(45\) 0 0
\(46\) 264229. + 457657.i 0.400246 + 0.693247i
\(47\) −602714. + 1.04393e6i −0.846777 + 1.46666i 0.0372922 + 0.999304i \(0.488127\pi\)
−0.884069 + 0.467356i \(0.845207\pi\)
\(48\) 0 0
\(49\) 231433. 790356.i 0.281021 0.959702i
\(50\) 249139. 0.281868
\(51\) 0 0
\(52\) 285503. + 494506.i 0.281578 + 0.487708i
\(53\) −636483. 1.10242e6i −0.587247 1.01714i −0.994591 0.103867i \(-0.966878\pi\)
0.407344 0.913275i \(-0.366455\pi\)
\(54\) 0 0
\(55\) −559630. −0.453557
\(56\) −371857. + 278584.i −0.282955 + 0.211982i
\(57\) 0 0
\(58\) −515342. + 892599.i −0.346815 + 0.600701i
\(59\) 840430. + 1.45567e6i 0.532745 + 0.922741i 0.999269 + 0.0382328i \(0.0121729\pi\)
−0.466524 + 0.884509i \(0.654494\pi\)
\(60\) 0 0
\(61\) −1.06128e6 + 1.83818e6i −0.598651 + 1.03689i 0.394370 + 0.918952i \(0.370963\pi\)
−0.993021 + 0.117942i \(0.962370\pi\)
\(62\) 1.63276e6 0.870065
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 966940. 1.67479e6i 0.436720 0.756421i
\(66\) 0 0
\(67\) 1.67466e6 + 2.90060e6i 0.680245 + 1.17822i 0.974906 + 0.222618i \(0.0714602\pi\)
−0.294660 + 0.955602i \(0.595207\pi\)
\(68\) −355612. + 615938.i −0.137150 + 0.237550i
\(69\) 0 0
\(70\) 1.44680e6 + 618922.i 0.504157 + 0.215672i
\(71\) −2.49257e6 −0.826502 −0.413251 0.910617i \(-0.635607\pi\)
−0.413251 + 0.910617i \(0.635607\pi\)
\(72\) 0 0
\(73\) 1.63676e6 + 2.83496e6i 0.492443 + 0.852936i 0.999962 0.00870409i \(-0.00277063\pi\)
−0.507519 + 0.861641i \(0.669437\pi\)
\(74\) 1.96684e6 + 3.40667e6i 0.564234 + 0.977281i
\(75\) 0 0
\(76\) −553395. −0.144606
\(77\) 2.15418e6 + 921530.i 0.537731 + 0.230034i
\(78\) 0 0
\(79\) 2.09920e6 3.63591e6i 0.479025 0.829695i −0.520686 0.853748i \(-0.674324\pi\)
0.999711 + 0.0240529i \(0.00765703\pi\)
\(80\) −443914. 768881.i −0.0969357 0.167898i
\(81\) 0 0
\(82\) 2.49317e6 4.31830e6i 0.499348 0.864897i
\(83\) −3.35527e6 −0.644102 −0.322051 0.946722i \(-0.604372\pi\)
−0.322051 + 0.946722i \(0.604372\pi\)
\(84\) 0 0
\(85\) 2.40877e6 0.425431
\(86\) 1.69168e6 2.93007e6i 0.286796 0.496745i
\(87\) 0 0
\(88\) −660956. 1.14481e6i −0.103391 0.179079i
\(89\) 1.19979e6 2.07810e6i 0.180402 0.312466i −0.761615 0.648029i \(-0.775593\pi\)
0.942018 + 0.335564i \(0.108927\pi\)
\(90\) 0 0
\(91\) −6.47988e6 + 4.85453e6i −0.901409 + 0.675308i
\(92\) 4.22766e6 0.566034
\(93\) 0 0
\(94\) 4.82171e6 + 8.35145e6i 0.598762 + 1.03709i
\(95\) 937117. + 1.62313e6i 0.112140 + 0.194232i
\(96\) 0 0
\(97\) 4.51506e6 0.502299 0.251150 0.967948i \(-0.419191\pi\)
0.251150 + 0.967948i \(0.419191\pi\)
\(98\) −4.55001e6 4.76483e6i −0.488339 0.511395i
\(99\) 0 0
\(100\) 996555. 1.72608e6i 0.0996555 0.172608i
\(101\) 3.69997e6 + 6.40853e6i 0.357333 + 0.618919i 0.987514 0.157529i \(-0.0503527\pi\)
−0.630181 + 0.776448i \(0.717019\pi\)
\(102\) 0 0
\(103\) −9.22855e6 + 1.59843e7i −0.832153 + 1.44133i 0.0641744 + 0.997939i \(0.479559\pi\)
−0.896327 + 0.443393i \(0.853775\pi\)
\(104\) 4.56805e6 0.398212
\(105\) 0 0
\(106\) −1.01837e7 −0.830493
\(107\) −2.49697e6 + 4.32488e6i −0.197047 + 0.341296i −0.947570 0.319549i \(-0.896469\pi\)
0.750523 + 0.660845i \(0.229802\pi\)
\(108\) 0 0
\(109\) −9.34351e6 1.61834e7i −0.691062 1.19695i −0.971490 0.237080i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409524\pi\)
\(110\) −2.23852e6 + 3.87723e6i −0.160357 + 0.277746i
\(111\) 0 0
\(112\) 442658. + 3.69064e6i 0.0297718 + 0.248221i
\(113\) −2.49534e7 −1.62688 −0.813438 0.581651i \(-0.802407\pi\)
−0.813438 + 0.581651i \(0.802407\pi\)
\(114\) 0 0
\(115\) −7.15910e6 1.23999e7i −0.438951 0.760286i
\(116\) 4.12274e6 + 7.14079e6i 0.245235 + 0.424760i
\(117\) 0 0
\(118\) 1.34469e7 0.753415
\(119\) −9.27208e6 3.96647e6i −0.504386 0.215769i
\(120\) 0 0
\(121\) 6.41059e6 1.11035e7i 0.328965 0.569783i
\(122\) 8.49020e6 + 1.47055e7i 0.423310 + 0.733194i
\(123\) 0 0
\(124\) 6.53105e6 1.13121e7i 0.307614 0.532804i
\(125\) −2.36842e7 −1.08461
\(126\) 0 0
\(127\) −1.72080e7 −0.745449 −0.372724 0.927942i \(-0.621576\pi\)
−0.372724 + 0.927942i \(0.621576\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −7.73552e6 1.33983e7i −0.308807 0.534870i
\(131\) 1.34633e7 2.33191e7i 0.523242 0.906281i −0.476392 0.879233i \(-0.658056\pi\)
0.999634 0.0270484i \(-0.00861082\pi\)
\(132\) 0 0
\(133\) −934467. 7.79106e6i −0.0344416 0.287155i
\(134\) 2.67946e7 0.962012
\(135\) 0 0
\(136\) 2.84490e6 + 4.92751e6i 0.0969796 + 0.167974i
\(137\) −1.36301e7 2.36080e7i −0.452873 0.784399i 0.545690 0.837987i \(-0.316268\pi\)
−0.998563 + 0.0535877i \(0.982934\pi\)
\(138\) 0 0
\(139\) −1.36813e7 −0.432092 −0.216046 0.976383i \(-0.569316\pi\)
−0.216046 + 0.976383i \(0.569316\pi\)
\(140\) 1.00752e7 7.54805e6i 0.310318 0.232481i
\(141\) 0 0
\(142\) −9.97030e6 + 1.72691e7i −0.292213 + 0.506127i
\(143\) −1.15176e7 1.99491e7i −0.329372 0.570489i
\(144\) 0 0
\(145\) 1.39629e7 2.41844e7i 0.380353 0.658790i
\(146\) 2.61882e7 0.696420
\(147\) 0 0
\(148\) 3.14695e7 0.797947
\(149\) 1.21944e7 2.11214e7i 0.302002 0.523083i −0.674587 0.738195i \(-0.735678\pi\)
0.976589 + 0.215112i \(0.0690118\pi\)
\(150\) 0 0
\(151\) −1.69013e7 2.92740e7i −0.399486 0.691930i 0.594177 0.804335i \(-0.297478\pi\)
−0.993663 + 0.112405i \(0.964145\pi\)
\(152\) −2.21358e6 + 3.83403e6i −0.0511261 + 0.0885530i
\(153\) 0 0
\(154\) 1.50013e7 1.12385e7i 0.330983 0.247963i
\(155\) −4.42386e7 −0.954202
\(156\) 0 0
\(157\) −3.97833e6 6.89067e6i −0.0820450 0.142106i 0.822083 0.569367i \(-0.192812\pi\)
−0.904128 + 0.427261i \(0.859478\pi\)
\(158\) −1.67936e7 2.90873e7i −0.338722 0.586683i
\(159\) 0 0
\(160\) −7.10262e6 −0.137088
\(161\) 7.13886e6 + 5.95198e7i 0.134815 + 1.12401i
\(162\) 0 0
\(163\) 2.68214e7 4.64560e7i 0.485093 0.840205i −0.514761 0.857334i \(-0.672119\pi\)
0.999853 + 0.0171289i \(0.00545257\pi\)
\(164\) −1.99454e7 3.45464e7i −0.353093 0.611574i
\(165\) 0 0
\(166\) −1.34211e7 + 2.32460e7i −0.227724 + 0.394430i
\(167\) 8.20253e7 1.36283 0.681413 0.731899i \(-0.261366\pi\)
0.681413 + 0.731899i \(0.261366\pi\)
\(168\) 0 0
\(169\) 1.68530e7 0.268581
\(170\) 9.63508e6 1.66884e7i 0.150413 0.260522i
\(171\) 0 0
\(172\) −1.35334e7 2.34406e7i −0.202795 0.351252i
\(173\) −3.39592e7 + 5.88190e7i −0.498650 + 0.863687i −0.999999 0.00155811i \(-0.999504\pi\)
0.501349 + 0.865245i \(0.332837\pi\)
\(174\) 0 0
\(175\) 2.59838e7 + 1.11155e7i 0.366496 + 0.156782i
\(176\) −1.05753e7 −0.146217
\(177\) 0 0
\(178\) −9.59835e6 1.66248e7i −0.127564 0.220947i
\(179\) −3.04898e7 5.28098e7i −0.397346 0.688223i 0.596052 0.802946i \(-0.296735\pi\)
−0.993398 + 0.114723i \(0.963402\pi\)
\(180\) 0 0
\(181\) −1.53894e8 −1.92907 −0.964533 0.263963i \(-0.914970\pi\)
−0.964533 + 0.263963i \(0.914970\pi\)
\(182\) 7.71364e6 + 6.43120e7i 0.0948439 + 0.790756i
\(183\) 0 0
\(184\) 1.69106e7 2.92901e7i 0.200123 0.346624i
\(185\) −5.32904e7 9.23016e7i −0.618796 1.07179i
\(186\) 0 0
\(187\) 1.43459e7 2.48479e7i 0.160429 0.277871i
\(188\) 7.71474e7 0.846777
\(189\) 0 0
\(190\) 1.49939e7 0.158590
\(191\) 1.12603e7 1.95034e7i 0.116932 0.202532i −0.801618 0.597836i \(-0.796027\pi\)
0.918550 + 0.395304i \(0.129361\pi\)
\(192\) 0 0
\(193\) 6.76381e7 + 1.17153e8i 0.677237 + 1.17301i 0.975810 + 0.218622i \(0.0701563\pi\)
−0.298572 + 0.954387i \(0.596510\pi\)
\(194\) 1.80602e7 3.12813e7i 0.177590 0.307594i
\(195\) 0 0
\(196\) −5.12118e7 + 1.24641e7i −0.485818 + 0.118240i
\(197\) 8.96233e7 0.835197 0.417598 0.908632i \(-0.362872\pi\)
0.417598 + 0.908632i \(0.362872\pi\)
\(198\) 0 0
\(199\) 2.74707e7 + 4.75806e7i 0.247106 + 0.428000i 0.962722 0.270494i \(-0.0871870\pi\)
−0.715616 + 0.698494i \(0.753854\pi\)
\(200\) −7.97244e6 1.38087e7i −0.0704671 0.122053i
\(201\) 0 0
\(202\) 5.91995e7 0.505345
\(203\) −9.35712e7 + 7.01007e7i −0.785066 + 0.588147i
\(204\) 0 0
\(205\) −6.75508e7 + 1.17001e8i −0.547636 + 0.948534i
\(206\) 7.38284e7 + 1.27875e8i 0.588421 + 1.01918i
\(207\) 0 0
\(208\) 1.82722e7 3.16484e7i 0.140789 0.243854i
\(209\) 2.23248e7 0.169151
\(210\) 0 0
\(211\) −1.24539e8 −0.912677 −0.456338 0.889806i \(-0.650839\pi\)
−0.456338 + 0.889806i \(0.650839\pi\)
\(212\) −4.07349e7 + 7.05549e7i −0.293624 + 0.508571i
\(213\) 0 0
\(214\) 1.99758e7 + 3.45990e7i 0.139333 + 0.241332i
\(215\) −4.58349e7 + 7.93884e7i −0.314530 + 0.544781i
\(216\) 0 0
\(217\) 1.70288e8 + 7.28467e7i 1.13129 + 0.483950i
\(218\) −1.49496e8 −0.977310
\(219\) 0 0
\(220\) 1.79082e7 + 3.10179e7i 0.113389 + 0.196396i
\(221\) 4.95744e7 + 8.58653e7i 0.308947 + 0.535112i
\(222\) 0 0
\(223\) 2.85464e8 1.72379 0.861895 0.507087i \(-0.169278\pi\)
0.861895 + 0.507087i \(0.169278\pi\)
\(224\) 2.73401e7 + 1.16957e7i 0.162530 + 0.0695279i
\(225\) 0 0
\(226\) −9.98135e7 + 1.72882e8i −0.575188 + 0.996254i
\(227\) 3.37141e7 + 5.83946e7i 0.191303 + 0.331346i 0.945682 0.325092i \(-0.105395\pi\)
−0.754379 + 0.656439i \(0.772062\pi\)
\(228\) 0 0
\(229\) −3.58459e7 + 6.20869e7i −0.197249 + 0.341646i −0.947636 0.319354i \(-0.896534\pi\)
0.750386 + 0.660999i \(0.229867\pi\)
\(230\) −1.14546e8 −0.620771
\(231\) 0 0
\(232\) 6.59638e7 0.346815
\(233\) 1.08990e6 1.88777e6i 0.00564472 0.00977693i −0.863189 0.504881i \(-0.831537\pi\)
0.868834 + 0.495104i \(0.164870\pi\)
\(234\) 0 0
\(235\) −1.30641e8 2.26277e8i −0.656663 1.13737i
\(236\) 5.37875e7 9.31627e7i 0.266373 0.461371i
\(237\) 0 0
\(238\) −6.45688e7 + 4.83730e7i −0.310458 + 0.232586i
\(239\) 1.87131e8 0.886654 0.443327 0.896360i \(-0.353798\pi\)
0.443327 + 0.896360i \(0.353798\pi\)
\(240\) 0 0
\(241\) 6.26650e7 + 1.08539e8i 0.288380 + 0.499489i 0.973423 0.229014i \(-0.0735500\pi\)
−0.685043 + 0.728502i \(0.740217\pi\)
\(242\) −5.12847e7 8.88277e7i −0.232613 0.402898i
\(243\) 0 0
\(244\) 1.35843e8 0.598651
\(245\) 1.23280e8 + 1.29100e8i 0.535562 + 0.560848i
\(246\) 0 0
\(247\) −3.85732e7 + 6.68108e7i −0.162872 + 0.282103i
\(248\) −5.22484e7 9.04968e7i −0.217516 0.376749i
\(249\) 0 0
\(250\) −9.47369e7 + 1.64089e8i −0.383468 + 0.664186i
\(251\) −3.48978e7 −0.139296 −0.0696482 0.997572i \(-0.522188\pi\)
−0.0696482 + 0.997572i \(0.522188\pi\)
\(252\) 0 0
\(253\) −1.70550e8 −0.662110
\(254\) −6.88321e7 + 1.19221e8i −0.263556 + 0.456492i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −2.96784e7 + 5.14046e7i −0.109062 + 0.188902i −0.915391 0.402567i \(-0.868118\pi\)
0.806328 + 0.591468i \(0.201452\pi\)
\(258\) 0 0
\(259\) 5.31396e7 + 4.43049e8i 0.190051 + 1.58454i
\(260\) −1.23768e8 −0.436720
\(261\) 0 0
\(262\) −1.07706e8 1.86553e8i −0.369988 0.640838i
\(263\) −1.06373e7 1.84243e7i −0.0360567 0.0624521i 0.847434 0.530901i \(-0.178146\pi\)
−0.883491 + 0.468449i \(0.844813\pi\)
\(264\) 0 0
\(265\) 2.75921e8 0.910804
\(266\) −5.77159e7 2.46901e7i −0.188023 0.0804334i
\(267\) 0 0
\(268\) 1.07178e8 1.85639e8i 0.340123 0.589110i
\(269\) 5.85529e7 + 1.01417e8i 0.183407 + 0.317670i 0.943038 0.332684i \(-0.107954\pi\)
−0.759632 + 0.650353i \(0.774621\pi\)
\(270\) 0 0
\(271\) 1.01385e8 1.75603e8i 0.309442 0.535970i −0.668798 0.743444i \(-0.733191\pi\)
0.978240 + 0.207474i \(0.0665243\pi\)
\(272\) 4.55183e7 0.137150
\(273\) 0 0
\(274\) −2.18081e8 −0.640459
\(275\) −4.02026e7 + 6.96329e7i −0.116571 + 0.201906i
\(276\) 0 0
\(277\) −5.05757e7 8.75996e7i −0.142976 0.247641i 0.785640 0.618684i \(-0.212334\pi\)
−0.928616 + 0.371042i \(0.879000\pi\)
\(278\) −5.47253e7 + 9.47869e7i −0.152768 + 0.264601i
\(279\) 0 0
\(280\) −1.19935e7 9.99954e7i −0.0326508 0.272224i
\(281\) −3.69631e8 −0.993793 −0.496897 0.867810i \(-0.665527\pi\)
−0.496897 + 0.867810i \(0.665527\pi\)
\(282\) 0 0
\(283\) 1.09831e8 + 1.90232e8i 0.288052 + 0.498921i 0.973345 0.229347i \(-0.0736590\pi\)
−0.685293 + 0.728268i \(0.740326\pi\)
\(284\) 7.97624e7 + 1.38153e8i 0.206626 + 0.357886i
\(285\) 0 0
\(286\) −1.84282e8 −0.465803
\(287\) 4.52687e8 3.39140e8i 1.13035 0.846821i
\(288\) 0 0
\(289\) 1.43421e8 2.48413e8i 0.349519 0.605385i
\(290\) −1.11703e8 1.93475e8i −0.268950 0.465835i
\(291\) 0 0
\(292\) 1.04753e8 1.81437e8i 0.246222 0.426468i
\(293\) 7.22230e8 1.67741 0.838704 0.544587i \(-0.183314\pi\)
0.838704 + 0.544587i \(0.183314\pi\)
\(294\) 0 0
\(295\) −3.64334e8 −0.826272
\(296\) 1.25878e8 2.18027e8i 0.282117 0.488641i
\(297\) 0 0
\(298\) −9.75555e7 1.68971e8i −0.213548 0.369875i
\(299\) 2.94680e8 5.10401e8i 0.637531 1.10424i
\(300\) 0 0
\(301\) 3.07159e8 2.30114e8i 0.649204 0.486364i
\(302\) −2.70421e8 −0.564959
\(303\) 0 0
\(304\) 1.77086e7 + 3.06722e7i 0.0361516 + 0.0626164i
\(305\) −2.30036e8 3.98435e8i −0.464245 0.804096i
\(306\) 0 0
\(307\) −6.39545e7 −0.126150 −0.0630750 0.998009i \(-0.520091\pi\)
−0.0630750 + 0.998009i \(0.520091\pi\)
\(308\) −1.78575e7 1.48886e8i −0.0348252 0.290353i
\(309\) 0 0
\(310\) −1.76954e8 + 3.06494e8i −0.337361 + 0.584327i
\(311\) 7.73216e7 + 1.33925e8i 0.145760 + 0.252464i 0.929656 0.368428i \(-0.120104\pi\)
−0.783896 + 0.620892i \(0.786771\pi\)
\(312\) 0 0
\(313\) 2.46992e8 4.27803e8i 0.455279 0.788567i −0.543425 0.839458i \(-0.682873\pi\)
0.998704 + 0.0508911i \(0.0162062\pi\)
\(314\) −6.36533e7 −0.116029
\(315\) 0 0
\(316\) −2.68697e8 −0.479025
\(317\) 2.14969e8 3.72338e8i 0.379026 0.656492i −0.611895 0.790939i \(-0.709592\pi\)
0.990921 + 0.134447i \(0.0429258\pi\)
\(318\) 0 0
\(319\) −1.66318e8 2.88071e8i −0.286861 0.496857i
\(320\) −2.84105e7 + 4.92084e7i −0.0484678 + 0.0839488i
\(321\) 0 0
\(322\) 4.40921e8 + 1.88620e8i 0.735978 + 0.314841i
\(323\) −9.60907e7 −0.158662
\(324\) 0 0
\(325\) −1.38926e8 2.40626e8i −0.224487 0.388822i
\(326\) −2.14571e8 3.71648e8i −0.343012 0.594115i
\(327\) 0 0
\(328\) −3.19126e8 −0.499348
\(329\) 1.30272e8 + 1.08613e9i 0.201681 + 1.68150i
\(330\) 0 0
\(331\) 1.64085e8 2.84203e8i 0.248697 0.430755i −0.714468 0.699668i \(-0.753331\pi\)
0.963164 + 0.268913i \(0.0866645\pi\)
\(332\) 1.07369e8 + 1.85968e8i 0.161025 + 0.278904i
\(333\) 0 0
\(334\) 3.28101e8 5.68288e8i 0.481832 0.834557i
\(335\) −7.25983e8 −1.05504
\(336\) 0 0
\(337\) −1.14409e8 −0.162838 −0.0814189 0.996680i \(-0.525945\pi\)
−0.0814189 + 0.996680i \(0.525945\pi\)
\(338\) 6.74121e7 1.16761e8i 0.0949576 0.164471i
\(339\) 0 0
\(340\) −7.70806e7 1.33508e8i −0.106358 0.184217i
\(341\) −2.63472e8 + 4.56348e8i −0.359828 + 0.623240i
\(342\) 0 0
\(343\) −2.61954e8 6.99947e8i −0.350507 0.936560i
\(344\) −2.16535e8 −0.286796
\(345\) 0 0
\(346\) 2.71673e8 + 4.70552e8i 0.352599 + 0.610719i
\(347\) −3.28339e8 5.68699e8i −0.421860 0.730684i 0.574261 0.818672i \(-0.305289\pi\)
−0.996121 + 0.0879887i \(0.971956\pi\)
\(348\) 0 0
\(349\) −8.85994e8 −1.11569 −0.557843 0.829947i \(-0.688371\pi\)
−0.557843 + 0.829947i \(0.688371\pi\)
\(350\) 1.80945e8 1.35559e8i 0.225585 0.169001i
\(351\) 0 0
\(352\) −4.23012e7 + 7.32678e7i −0.0516955 + 0.0895393i
\(353\) 3.43700e8 + 5.95305e8i 0.415880 + 0.720324i 0.995520 0.0945476i \(-0.0301405\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(354\) 0 0
\(355\) 2.70139e8 4.67894e8i 0.320470 0.555071i
\(356\) −1.53574e8 −0.180402
\(357\) 0 0
\(358\) −4.87836e8 −0.561932
\(359\) 1.61222e7 2.79244e7i 0.0183905 0.0318533i −0.856684 0.515842i \(-0.827479\pi\)
0.875074 + 0.483989i \(0.160812\pi\)
\(360\) 0 0
\(361\) 4.09552e8 + 7.09365e8i 0.458178 + 0.793588i
\(362\) −6.15577e8 + 1.06621e9i −0.682028 + 1.18131i
\(363\) 0 0
\(364\) 4.76421e8 + 2.03806e8i 0.517770 + 0.221495i
\(365\) −7.09553e8 −0.763765
\(366\) 0 0
\(367\) 3.58275e8 + 6.20551e8i 0.378343 + 0.655309i 0.990821 0.135178i \(-0.0431607\pi\)
−0.612479 + 0.790487i \(0.709827\pi\)
\(368\) −1.35285e8 2.34321e8i −0.141508 0.245100i
\(369\) 0 0
\(370\) −8.52646e8 −0.875110
\(371\) −1.06210e9 4.54353e8i −1.07984 0.461940i
\(372\) 0 0
\(373\) −6.11134e8 + 1.05852e9i −0.609755 + 1.05613i 0.381525 + 0.924358i \(0.375399\pi\)
−0.991281 + 0.131769i \(0.957934\pi\)
\(374\) −1.14767e8 1.98783e8i −0.113441 0.196485i
\(375\) 0 0
\(376\) 3.08590e8 5.34493e8i 0.299381 0.518543i
\(377\) 1.14947e9 1.10485
\(378\) 0 0
\(379\) −6.83298e8 −0.644723 −0.322361 0.946617i \(-0.604477\pi\)
−0.322361 + 0.946617i \(0.604477\pi\)
\(380\) 5.99755e7 1.03881e8i 0.0560701 0.0971162i
\(381\) 0 0
\(382\) −9.00823e7 1.56027e8i −0.0826833 0.143212i
\(383\) 1.01294e9 1.75447e9i 0.921273 1.59569i 0.123826 0.992304i \(-0.460484\pi\)
0.797447 0.603388i \(-0.206183\pi\)
\(384\) 0 0
\(385\) −4.06450e8 + 3.04500e8i −0.362990 + 0.271941i
\(386\) 1.08221e9 0.957758
\(387\) 0 0
\(388\) −1.44482e8 2.50250e8i −0.125575 0.217502i
\(389\) −3.64506e8 6.31342e8i −0.313965 0.543803i 0.665252 0.746619i \(-0.268324\pi\)
−0.979217 + 0.202816i \(0.934991\pi\)
\(390\) 0 0
\(391\) 7.34085e8 0.621052
\(392\) −1.18494e8 + 4.04662e8i −0.0993558 + 0.339306i
\(393\) 0 0
\(394\) 3.58493e8 6.20928e8i 0.295287 0.511452i
\(395\) 4.55011e8 + 7.88102e8i 0.371477 + 0.643417i
\(396\) 0 0
\(397\) 6.63836e8 1.14980e9i 0.532469 0.922263i −0.466812 0.884356i \(-0.654598\pi\)
0.999281 0.0379069i \(-0.0120690\pi\)
\(398\) 4.39531e8 0.349461
\(399\) 0 0
\(400\) −1.27559e8 −0.0996555
\(401\) −4.28975e8 + 7.43007e8i −0.332221 + 0.575423i −0.982947 0.183889i \(-0.941131\pi\)
0.650726 + 0.759312i \(0.274465\pi\)
\(402\) 0 0
\(403\) −9.10465e8 1.57697e9i −0.692940 1.20021i
\(404\) 2.36798e8 4.10146e8i 0.178667 0.309460i
\(405\) 0 0
\(406\) 1.11387e8 + 9.28683e8i 0.0826025 + 0.688694i
\(407\) −1.26953e9 −0.933387
\(408\) 0 0
\(409\) 1.05133e9 + 1.82096e9i 0.759814 + 1.31604i 0.942945 + 0.332948i \(0.108044\pi\)
−0.183131 + 0.983089i \(0.558623\pi\)
\(410\) 5.40407e8 + 9.36012e8i 0.387237 + 0.670715i
\(411\) 0 0
\(412\) 1.18125e9 0.832153
\(413\) 1.40243e9 + 5.99941e8i 0.979618 + 0.419067i
\(414\) 0 0
\(415\) 3.63636e8 6.29835e8i 0.249746 0.432572i
\(416\) −1.46178e8 2.53187e8i −0.0995529 0.172431i
\(417\) 0 0
\(418\) 8.92992e7 1.54671e8i 0.0598040 0.103584i
\(419\) −2.47991e9 −1.64697 −0.823486 0.567336i \(-0.807974\pi\)
−0.823486 + 0.567336i \(0.807974\pi\)
\(420\) 0 0
\(421\) −5.51855e7 −0.0360444 −0.0180222 0.999838i \(-0.505737\pi\)
−0.0180222 + 0.999838i \(0.505737\pi\)
\(422\) −4.98156e8 + 8.62832e8i −0.322680 + 0.558898i
\(423\) 0 0
\(424\) 3.25879e8 + 5.64439e8i 0.207623 + 0.359614i
\(425\) 1.73041e8 2.99715e8i 0.109342 0.189386i
\(426\) 0 0
\(427\) 2.29386e8 + 1.91249e9i 0.142583 + 1.18878i
\(428\) 3.19612e8 0.197047
\(429\) 0 0
\(430\) 3.66679e8 + 6.35107e8i 0.222406 + 0.385219i
\(431\) 8.42361e8 + 1.45901e9i 0.506790 + 0.877786i 0.999969 + 0.00785824i \(0.00250138\pi\)
−0.493179 + 0.869928i \(0.664165\pi\)
\(432\) 0 0
\(433\) −1.29692e9 −0.767724 −0.383862 0.923390i \(-0.625406\pi\)
−0.383862 + 0.923390i \(0.625406\pi\)
\(434\) 1.18585e9 8.88401e8i 0.696330 0.521669i
\(435\) 0 0
\(436\) −5.97984e8 + 1.03574e9i −0.345531 + 0.598477i
\(437\) 2.85591e8 + 4.94659e8i 0.163704 + 0.283544i
\(438\) 0 0
\(439\) 7.03191e7 1.21796e8i 0.0396686 0.0687081i −0.845509 0.533960i \(-0.820703\pi\)
0.885178 + 0.465252i \(0.154036\pi\)
\(440\) 2.86531e8 0.160357
\(441\) 0 0
\(442\) 7.93190e8 0.436917
\(443\) −9.24666e8 + 1.60157e9i −0.505326 + 0.875251i 0.494655 + 0.869090i \(0.335295\pi\)
−0.999981 + 0.00616141i \(0.998039\pi\)
\(444\) 0 0
\(445\) 2.60061e8 + 4.50439e8i 0.139899 + 0.242313i
\(446\) 1.14186e9 1.97775e9i 0.609452 1.05560i
\(447\) 0 0
\(448\) 1.90391e8 1.42635e8i 0.100040 0.0749468i
\(449\) 2.91794e9 1.52130 0.760648 0.649165i \(-0.224882\pi\)
0.760648 + 0.649165i \(0.224882\pi\)
\(450\) 0 0
\(451\) 8.04627e8 + 1.39365e9i 0.413025 + 0.715381i
\(452\) 7.98508e8 + 1.38306e9i 0.406719 + 0.704458i
\(453\) 0 0
\(454\) 5.39426e8 0.270543
\(455\) −2.08996e8 1.74249e9i −0.104016 0.867224i
\(456\) 0 0
\(457\) −1.42040e9 + 2.46021e9i −0.696153 + 1.20577i 0.273638 + 0.961833i \(0.411773\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(458\) 2.86767e8 + 4.96695e8i 0.139476 + 0.241580i
\(459\) 0 0
\(460\) −4.58183e8 + 7.93595e8i −0.219476 + 0.380143i
\(461\) −3.96057e9 −1.88280 −0.941400 0.337291i \(-0.890489\pi\)
−0.941400 + 0.337291i \(0.890489\pi\)
\(462\) 0 0
\(463\) −2.19815e9 −1.02926 −0.514629 0.857413i \(-0.672070\pi\)
−0.514629 + 0.857413i \(0.672070\pi\)
\(464\) 2.63855e8 4.57011e8i 0.122618 0.212380i
\(465\) 0 0
\(466\) −8.71922e6 1.51021e7i −0.00399142 0.00691334i
\(467\) 1.56120e9 2.70408e9i 0.709332 1.22860i −0.255773 0.966737i \(-0.582330\pi\)
0.965105 0.261862i \(-0.0843366\pi\)
\(468\) 0 0
\(469\) 2.79453e9 + 1.19546e9i 1.25084 + 0.535094i
\(470\) −2.09026e9 −0.928662
\(471\) 0 0
\(472\) −4.30300e8 7.45302e8i −0.188354 0.326238i
\(473\) 5.45959e8 + 9.45629e8i 0.237217 + 0.410872i
\(474\) 0 0
\(475\) 2.69282e8 0.115287
\(476\) 7.68626e7 + 6.40838e8i 0.0326656 + 0.272348i
\(477\) 0 0
\(478\) 7.48526e8 1.29648e9i 0.313479 0.542962i
\(479\) −6.79522e8 1.17697e9i −0.282507 0.489317i 0.689494 0.724291i \(-0.257833\pi\)
−0.972002 + 0.234974i \(0.924499\pi\)
\(480\) 0 0
\(481\) 2.19352e9 3.79928e9i 0.898738 1.55666i
\(482\) 1.00264e9 0.407831
\(483\) 0 0
\(484\) −8.20555e8 −0.328965
\(485\) −4.89330e8 + 8.47545e8i −0.194763 + 0.337339i
\(486\) 0 0
\(487\) −1.19733e9 2.07383e9i −0.469745 0.813622i 0.529657 0.848212i \(-0.322321\pi\)
−0.999402 + 0.0345902i \(0.988987\pi\)
\(488\) 5.43373e8 9.41149e8i 0.211655 0.366597i
\(489\) 0 0
\(490\) 1.38755e9 3.37706e8i 0.532798 0.129674i
\(491\) 1.95738e9 0.746261 0.373130 0.927779i \(-0.378284\pi\)
0.373130 + 0.927779i \(0.378284\pi\)
\(492\) 0 0
\(493\) 7.15867e8 + 1.23992e9i 0.269072 + 0.466046i
\(494\) 3.08586e8 + 5.34486e8i 0.115168 + 0.199477i
\(495\) 0 0
\(496\) −8.35974e8 −0.307614
\(497\) −1.81032e9 + 1.35623e9i −0.661465 + 0.495550i
\(498\) 0 0
\(499\) −1.47577e8 + 2.55611e8i −0.0531699 + 0.0920931i −0.891385 0.453246i \(-0.850266\pi\)
0.838215 + 0.545339i \(0.183599\pi\)
\(500\) 7.57895e8 + 1.31271e9i 0.271153 + 0.469650i
\(501\) 0 0
\(502\) −1.39591e8 + 2.41779e8i −0.0492487 + 0.0853013i
\(503\) −2.51431e9 −0.880909 −0.440454 0.897775i \(-0.645183\pi\)
−0.440454 + 0.897775i \(0.645183\pi\)
\(504\) 0 0
\(505\) −1.60397e9 −0.554213
\(506\) −6.82201e8 + 1.18161e9i −0.234091 + 0.405458i
\(507\) 0 0
\(508\) 5.50657e8 + 9.53765e8i 0.186362 + 0.322789i
\(509\) −1.11783e9 + 1.93615e9i −0.375721 + 0.650767i −0.990435 0.137983i \(-0.955938\pi\)
0.614714 + 0.788750i \(0.289271\pi\)
\(510\) 0 0
\(511\) 2.73128e9 + 1.16840e9i 0.905511 + 0.387365i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 2.37427e8 + 4.11236e8i 0.0771188 + 0.133574i
\(515\) −2.00033e9 3.46468e9i −0.645323 1.11773i
\(516\) 0 0
\(517\) −3.11225e9 −0.990506
\(518\) 3.28209e9 + 1.40403e9i 1.03752 + 0.443837i
\(519\) 0 0
\(520\) −4.95073e8 + 8.57492e8i −0.154404 + 0.267435i
\(521\) 1.59740e9 + 2.76677e9i 0.494858 + 0.857120i 0.999982 0.00592705i \(-0.00188665\pi\)
−0.505124 + 0.863047i \(0.668553\pi\)
\(522\) 0 0
\(523\) 4.70741e8 8.15348e8i 0.143889 0.249222i −0.785069 0.619408i \(-0.787373\pi\)
0.928958 + 0.370186i \(0.120706\pi\)
\(524\) −1.72330e9 −0.523242
\(525\) 0 0
\(526\) −1.70197e8 −0.0509919
\(527\) 1.13404e9 1.96422e9i 0.337514 0.584592i
\(528\) 0 0
\(529\) −4.79361e8 8.30278e8i −0.140789 0.243853i
\(530\) 1.10369e9 1.91164e9i 0.322018 0.557751i
\(531\) 0 0
\(532\) −4.01921e8 + 3.01107e8i −0.115731 + 0.0867023i
\(533\) −5.56100e9 −1.59077
\(534\) 0 0
\(535\) −5.41230e8 9.37438e8i −0.152807 0.264670i
\(536\) −8.57428e8 1.48511e9i −0.240503 0.416564i
\(537\) 0 0
\(538\) 9.36846e8 0.259376
\(539\) 2.06596e9 5.02820e8i 0.568279 0.138309i
\(540\) 0 0
\(541\) −1.93667e9 + 3.35441e9i −0.525854 + 0.910806i 0.473692 + 0.880691i \(0.342921\pi\)
−0.999546 + 0.0301159i \(0.990412\pi\)
\(542\) −8.11077e8 1.40483e9i −0.218809 0.378988i
\(543\) 0 0
\(544\) 1.82073e8 3.15360e8i 0.0484898 0.0839868i
\(545\) 4.05050e9 1.07182
\(546\) 0 0
\(547\) −1.92865e9 −0.503845 −0.251922 0.967747i \(-0.581063\pi\)
−0.251922 + 0.967747i \(0.581063\pi\)
\(548\) −8.72326e8 + 1.51091e9i −0.226437 + 0.392200i
\(549\) 0 0
\(550\) 3.21621e8 + 5.57063e8i 0.0824279 + 0.142769i
\(551\) −5.57007e8 + 9.64765e8i −0.141850 + 0.245692i
\(552\) 0 0
\(553\) −4.53724e8 3.78290e9i −0.114092 0.951232i
\(554\) −8.09210e8 −0.202198
\(555\) 0 0
\(556\) 4.37802e8 + 7.58295e8i 0.108023 + 0.187101i
\(557\) 1.65798e9 + 2.87170e9i 0.406524 + 0.704120i 0.994498 0.104760i \(-0.0334075\pi\)
−0.587974 + 0.808880i \(0.700074\pi\)
\(558\) 0 0
\(559\) −3.77327e9 −0.913644
\(560\) −7.40763e8 3.16888e8i −0.178247 0.0762514i
\(561\) 0 0
\(562\) −1.47852e9 + 2.56088e9i −0.351359 + 0.608572i
\(563\) −9.36100e8 1.62137e9i −0.221077 0.382916i 0.734059 0.679086i \(-0.237624\pi\)
−0.955135 + 0.296170i \(0.904290\pi\)
\(564\) 0 0
\(565\) 2.70438e9 4.68413e9i 0.630810 1.09259i
\(566\) 1.75729e9 0.407367
\(567\) 0 0
\(568\) 1.27620e9 0.292213
\(569\) −3.17886e8 + 5.50595e8i −0.0723400 + 0.125297i −0.899926 0.436042i \(-0.856380\pi\)
0.827586 + 0.561338i \(0.189713\pi\)
\(570\) 0 0
\(571\) −2.85689e9 4.94828e9i −0.642196 1.11232i −0.984942 0.172887i \(-0.944690\pi\)
0.342746 0.939428i \(-0.388643\pi\)
\(572\) −7.37128e8 + 1.27674e9i −0.164686 + 0.285245i
\(573\) 0 0
\(574\) −5.38878e8 4.49287e9i −0.118932 0.991590i
\(575\) −2.05718e9 −0.451267
\(576\) 0 0
\(577\) 3.17926e9 + 5.50664e9i 0.688986 + 1.19336i 0.972166 + 0.234292i \(0.0752773\pi\)
−0.283180 + 0.959067i \(0.591389\pi\)
\(578\) −1.14737e9 1.98730e9i −0.247148 0.428072i
\(579\) 0 0
\(580\) −1.78725e9 −0.380353
\(581\) −2.43688e9 + 1.82564e9i −0.515487 + 0.386187i
\(582\) 0 0
\(583\) 1.64331e9 2.84629e9i 0.343462 0.594894i
\(584\) −8.38023e8 1.45150e9i −0.174105 0.301559i
\(585\) 0 0
\(586\) 2.88892e9 5.00376e9i 0.593054 1.02720i
\(587\) −7.71077e8 −0.157349 −0.0786745 0.996900i \(-0.525069\pi\)
−0.0786745 + 0.996900i \(0.525069\pi\)
\(588\) 0 0
\(589\) 1.76477e9 0.355864
\(590\) −1.45734e9 + 2.52418e9i −0.292131 + 0.505986i
\(591\) 0 0
\(592\) −1.00702e9 1.74422e9i −0.199487 0.345521i
\(593\) 3.20093e9 5.54417e9i 0.630354 1.09181i −0.357125 0.934057i \(-0.616243\pi\)
0.987479 0.157749i \(-0.0504238\pi\)
\(594\) 0 0
\(595\) 1.74945e9 1.31063e9i 0.340480 0.255078i
\(596\) −1.56089e9 −0.302002
\(597\) 0 0
\(598\) −2.35744e9 4.08321e9i −0.450803 0.780813i
\(599\) −6.60575e8 1.14415e9i −0.125582 0.217515i 0.796378 0.604799i \(-0.206747\pi\)
−0.921960 + 0.387284i \(0.873413\pi\)
\(600\) 0 0
\(601\) −2.93204e9 −0.550947 −0.275474 0.961309i \(-0.588835\pi\)
−0.275474 + 0.961309i \(0.588835\pi\)
\(602\) −3.65642e8 3.04852e9i −0.0683075 0.569510i
\(603\) 0 0
\(604\) −1.08169e9 + 1.87353e9i −0.199743 + 0.345965i
\(605\) 1.38953e9 + 2.40673e9i 0.255107 + 0.441859i
\(606\) 0 0
\(607\) 2.76216e9 4.78420e9i 0.501289 0.868258i −0.498710 0.866769i \(-0.666193\pi\)
0.999999 0.00148902i \(-0.000473971\pi\)
\(608\) 2.83338e8 0.0511261
\(609\) 0 0
\(610\) −3.68058e9 −0.656542
\(611\) 5.37740e9 9.31393e9i 0.953736 1.65192i
\(612\) 0 0
\(613\) 3.14956e9 + 5.45520e9i 0.552253 + 0.956530i 0.998112 + 0.0614270i \(0.0195651\pi\)
−0.445858 + 0.895103i \(0.647102\pi\)
\(614\) −2.55818e8 + 4.43090e8i −0.0446007 + 0.0772507i
\(615\) 0 0
\(616\) −1.10294e9 4.71824e8i −0.190117 0.0813293i
\(617\) 4.76835e9 0.817278 0.408639 0.912696i \(-0.366004\pi\)
0.408639 + 0.912696i \(0.366004\pi\)
\(618\) 0 0
\(619\) −3.93891e8 6.82239e8i −0.0667511 0.115616i 0.830718 0.556693i \(-0.187930\pi\)
−0.897469 + 0.441077i \(0.854597\pi\)
\(620\) 1.41564e9 + 2.45195e9i 0.238551 + 0.413182i
\(621\) 0 0
\(622\) 1.23715e9 0.206136
\(623\) −2.59326e8 2.16211e9i −0.0429672 0.358237i
\(624\) 0 0
\(625\) 1.35034e9 2.33885e9i 0.221239 0.383197i
\(626\) −1.97594e9 3.42242e9i −0.321931 0.557601i
\(627\) 0 0
\(628\) −2.54613e8 + 4.41003e8i −0.0410225 + 0.0710531i
\(629\) 5.46432e9 0.875506
\(630\) 0 0
\(631\) −9.52407e9 −1.50911 −0.754553 0.656239i \(-0.772146\pi\)
−0.754553 + 0.656239i \(0.772146\pi\)
\(632\) −1.07479e9 + 1.86159e9i −0.169361 + 0.293342i
\(633\) 0 0
\(634\) −1.71975e9 2.97870e9i −0.268012 0.464210i
\(635\) 1.86496e9 3.23021e9i 0.289042 0.500636i
\(636\) 0 0
\(637\) −2.06484e9 + 7.05153e9i −0.316517 + 1.08092i
\(638\) −2.66108e9 −0.405682
\(639\) 0 0
\(640\) 2.27284e8 + 3.93667e8i 0.0342719 + 0.0593607i
\(641\) −1.32160e9 2.28909e9i −0.198198 0.343288i 0.749746 0.661725i \(-0.230175\pi\)
−0.947944 + 0.318437i \(0.896842\pi\)
\(642\) 0 0
\(643\) 7.78643e9 1.15505 0.577524 0.816374i \(-0.304019\pi\)
0.577524 + 0.816374i \(0.304019\pi\)
\(644\) 3.07048e9 2.30031e9i 0.453008 0.339380i
\(645\) 0 0
\(646\) −3.84363e8 + 6.65736e8i −0.0560955 + 0.0971602i
\(647\) 4.77250e9 + 8.26622e9i 0.692757 + 1.19989i 0.970931 + 0.239360i \(0.0769377\pi\)
−0.278173 + 0.960531i \(0.589729\pi\)
\(648\) 0 0
\(649\) −2.16987e9 + 3.75833e9i −0.311586 + 0.539682i
\(650\) −2.22281e9 −0.317472
\(651\) 0 0
\(652\) −3.43314e9 −0.485093
\(653\) −5.15813e8 + 8.93414e8i −0.0724930 + 0.125562i −0.899993 0.435904i \(-0.856429\pi\)
0.827500 + 0.561465i \(0.189762\pi\)
\(654\) 0 0
\(655\) 2.91824e9 + 5.05453e9i 0.405766 + 0.702808i
\(656\) −1.27650e9 + 2.21097e9i −0.176546 + 0.305787i
\(657\) 0 0
\(658\) 8.04604e9 + 3.44198e9i 1.10101 + 0.470997i
\(659\) −9.97213e9 −1.35734 −0.678671 0.734443i \(-0.737444\pi\)
−0.678671 + 0.734443i \(0.737444\pi\)
\(660\) 0 0
\(661\) −4.39852e9 7.61845e9i −0.592381 1.02603i −0.993911 0.110188i \(-0.964855\pi\)
0.401530 0.915846i \(-0.368479\pi\)
\(662\) −1.31268e9 2.27362e9i −0.175855 0.304590i
\(663\) 0 0
\(664\) 1.71790e9 0.227724
\(665\) 1.56378e9 + 6.68961e8i 0.206205 + 0.0882115i
\(666\) 0 0
\(667\) 4.25526e9 7.37032e9i 0.555246 0.961714i
\(668\) −2.62481e9 4.54630e9i −0.340706 0.590121i
\(669\) 0 0
\(670\) −2.90393e9 + 5.02975e9i −0.373013 + 0.646078i
\(671\) −5.48012e9 −0.700264
\(672\) 0 0
\(673\) 7.42386e9 0.938808 0.469404 0.882983i \(-0.344469\pi\)
0.469404 + 0.882983i \(0.344469\pi\)
\(674\) −4.57636e8 + 7.92648e8i −0.0575719 + 0.0997174i
\(675\) 0 0
\(676\) −5.39297e8 9.34090e8i −0.0671451 0.116299i
\(677\) −5.72981e8 + 9.92432e8i −0.0709708 + 0.122925i −0.899327 0.437277i \(-0.855943\pi\)
0.828356 + 0.560202i \(0.189276\pi\)
\(678\) 0 0
\(679\) 3.27921e9 2.45669e9i 0.402000 0.301166i
\(680\) −1.23329e9 −0.150413
\(681\) 0 0
\(682\) 2.10778e9 + 3.65078e9i 0.254437 + 0.440697i
\(683\) 5.29365e9 + 9.16887e9i 0.635745 + 1.10114i 0.986357 + 0.164621i \(0.0526402\pi\)
−0.350612 + 0.936521i \(0.614026\pi\)
\(684\) 0 0
\(685\) 5.90877e9 0.702393
\(686\) −5.89719e9 9.84915e8i −0.697446 0.116484i
\(687\) 0 0
\(688\) −8.66139e8 + 1.50020e9i −0.101398 + 0.175626i
\(689\) 5.67868e9 + 9.83576e9i 0.661424 + 1.14562i
\(690\) 0 0
\(691\) −3.78065e9 + 6.54827e9i −0.435906 + 0.755011i −0.997369 0.0724904i \(-0.976905\pi\)
0.561463 + 0.827502i \(0.310239\pi\)
\(692\) 4.34678e9 0.498650
\(693\) 0 0
\(694\) −5.25342e9 −0.596601
\(695\) 1.48275e9 2.56819e9i 0.167540 0.290189i
\(696\) 0 0
\(697\) −3.46329e9 5.99859e9i −0.387413 0.671018i
\(698\) −3.54398e9 + 6.13835e9i −0.394454 + 0.683215i
\(699\) 0 0
\(700\) −2.15397e8 1.79586e9i −0.0237354 0.197893i
\(701\) 1.31100e10 1.43744 0.718719 0.695301i \(-0.244729\pi\)
0.718719 + 0.695301i \(0.244729\pi\)
\(702\) 0 0
\(703\) 2.12586e9 + 3.68210e9i 0.230776 + 0.399716i
\(704\) 3.38409e8 + 5.86142e8i 0.0365543 + 0.0633138i
\(705\) 0 0
\(706\) 5.49919e9 0.588142
\(707\) 6.17417e9 + 2.64122e9i 0.657069 + 0.281085i
\(708\) 0 0
\(709\) −1.55398e8 + 2.69157e8i −0.0163750 + 0.0283624i −0.874097 0.485752i \(-0.838546\pi\)
0.857722 + 0.514114i \(0.171879\pi\)
\(710\) −2.16111e9 3.74315e9i −0.226607 0.392494i
\(711\) 0 0
\(712\) −6.14295e8 + 1.06399e9i −0.0637818 + 0.110473i
\(713\) −1.34819e10 −1.39296
\(714\) 0 0
\(715\) 4.99300e9 0.510847
\(716\) −1.95135e9 + 3.37983e9i −0.198673 + 0.344112i
\(717\) 0 0
\(718\) −1.28977e8 2.23395e8i −0.0130040 0.0225237i
\(719\) 2.09243e9 3.62420e9i 0.209943 0.363631i −0.741754 0.670673i \(-0.766006\pi\)
0.951696 + 0.307041i \(0.0993389\pi\)
\(720\) 0 0
\(721\) 1.99468e9 + 1.66305e10i 0.198198 + 1.65246i
\(722\) 6.55284e9 0.647962
\(723\) 0 0
\(724\) 4.92461e9 + 8.52968e9i 0.482266 + 0.835310i
\(725\) −2.00612e9 3.47471e9i −0.195512 0.338637i
\(726\) 0 0
\(727\) −9.54370e9 −0.921184 −0.460592 0.887612i \(-0.652363\pi\)
−0.460592 + 0.887612i \(0.652363\pi\)
\(728\) 3.31770e9 2.48552e9i 0.318696 0.238758i
\(729\) 0 0
\(730\) −2.83821e9 + 4.91593e9i −0.270032 + 0.467709i
\(731\) −2.34993e9 4.07019e9i −0.222507 0.385393i
\(732\) 0 0
\(733\) −5.03140e9 + 8.71464e9i −0.471873 + 0.817307i −0.999482 0.0321796i \(-0.989755\pi\)
0.527609 + 0.849487i \(0.323088\pi\)
\(734\) 5.73240e9 0.535057
\(735\) 0 0
\(736\) −2.16456e9 −0.200123
\(737\) −4.32374e9 + 7.48894e9i −0.397854 + 0.689103i
\(738\) 0 0
\(739\) 3.54880e9 + 6.14670e9i 0.323464 + 0.560256i 0.981200 0.192992i \(-0.0618193\pi\)
−0.657736 + 0.753248i \(0.728486\pi\)
\(740\) −3.41058e9 + 5.90730e9i −0.309398 + 0.535893i
\(741\) 0 0
\(742\) −7.39627e9 + 5.54106e9i −0.664659 + 0.497943i
\(743\) −3.16400e8 −0.0282993 −0.0141497 0.999900i \(-0.504504\pi\)
−0.0141497 + 0.999900i \(0.504504\pi\)
\(744\) 0 0
\(745\) 2.64320e9 + 4.57816e9i 0.234198 + 0.405643i
\(746\) 4.88907e9 + 8.46812e9i 0.431162 + 0.746794i
\(747\) 0 0
\(748\) −1.83628e9 −0.160429
\(749\) 5.39699e8 + 4.49971e9i 0.0469316 + 0.391290i
\(750\) 0 0
\(751\) −3.22967e9 + 5.59396e9i −0.278240 + 0.481925i −0.970947 0.239293i \(-0.923084\pi\)
0.692708 + 0.721218i \(0.256418\pi\)
\(752\) −2.46872e9 4.27594e9i −0.211694 0.366665i
\(753\) 0 0
\(754\) 4.59787e9 7.96374e9i 0.390622 0.676577i
\(755\) 7.32689e9 0.619591
\(756\) 0 0
\(757\) 1.07167e10 0.897892 0.448946 0.893559i \(-0.351800\pi\)
0.448946 + 0.893559i \(0.351800\pi\)
\(758\) −2.73319e9 + 4.73403e9i −0.227944 + 0.394810i
\(759\) 0 0
\(760\) −4.79804e8 8.31045e8i −0.0396475 0.0686715i
\(761\) −4.51415e9 + 7.81874e9i −0.371304 + 0.643117i −0.989766 0.142697i \(-0.954423\pi\)
0.618462 + 0.785814i \(0.287756\pi\)
\(762\) 0 0
\(763\) −1.55916e10 6.66987e9i −1.27073 0.543602i
\(764\) −1.44132e9 −0.116932
\(765\) 0 0
\(766\) −8.10353e9 1.40357e10i −0.651439 1.12832i
\(767\) −7.49829e9 1.29874e10i −0.600038 1.03930i
\(768\) 0 0
\(769\) 8.30919e9 0.658895 0.329448 0.944174i \(-0.393137\pi\)
0.329448 + 0.944174i \(0.393137\pi\)
\(770\) 4.83838e8 + 4.03397e9i 0.0381929 + 0.318431i
\(771\) 0 0
\(772\) 4.32884e9 7.49777e9i 0.338619 0.586505i
\(773\) 5.63091e9 + 9.75302e9i 0.438480 + 0.759470i 0.997573 0.0696352i \(-0.0221835\pi\)
−0.559092 + 0.829106i \(0.688850\pi\)
\(774\) 0 0
\(775\) −3.17800e9 + 5.50446e9i −0.245244 + 0.424775i
\(776\) −2.31171e9 −0.177590
\(777\) 0 0
\(778\) −5.83209e9 −0.444013
\(779\) 2.69474e9 4.66743e9i 0.204238 0.353750i
\(780\) 0 0
\(781\) −3.21774e9 5.57328e9i −0.241697 0.418632i
\(782\) 2.93634e9 5.08589e9i 0.219575 0.380315i
\(783\) 0 0
\(784\) 2.32961e9 + 2.43960e9i 0.172654 + 0.180805i
\(785\) 1.72465e9 0.127249
\(786\) 0 0
\(787\) 1.11102e10 + 1.92434e10i 0.812475 + 1.40725i 0.911127 + 0.412127i \(0.135214\pi\)
−0.0986511 + 0.995122i \(0.531453\pi\)
\(788\) −2.86794e9 4.96743e9i −0.208799 0.361651i
\(789\) 0 0
\(790\) 7.28017e9 0.525348
\(791\) −1.81232e10 + 1.35774e10i −1.30202 + 0.975434i
\(792\) 0 0
\(793\) 9.46866e9 1.64002e10i 0.674268 1.16787i
\(794\) −5.31069e9 9.19839e9i −0.376512 0.652139i
\(795\) 0 0
\(796\) 1.75812e9 3.04516e9i 0.123553 0.214000i
\(797\) 6.49195e9 0.454225 0.227113 0.973868i \(-0.427071\pi\)
0.227113 + 0.973868i \(0.427071\pi\)
\(798\) 0 0
\(799\) 1.33958e10 0.929082
\(800\) −5.10236e8 + 8.83755e8i −0.0352336 + 0.0610263i
\(801\) 0 0
\(802\) 3.43180e9 + 5.94405e9i 0.234916 + 0.406886i
\(803\) −4.22589e9 + 7.31946e9i −0.288014 + 0.498855i
\(804\) 0 0
\(805\) −1.19465e10 5.11053e9i −0.807149 0.345287i
\(806\) −1.45674e10 −0.979966
\(807\) 0 0
\(808\) −1.89438e9 3.28117e9i −0.126336 0.218821i
\(809\) −5.80562e9 1.00556e10i −0.385504 0.667712i 0.606335 0.795209i \(-0.292639\pi\)
−0.991839 + 0.127497i \(0.959306\pi\)
\(810\) 0 0
\(811\) −1.72427e10 −1.13510 −0.567548 0.823340i \(-0.692108\pi\)
−0.567548 + 0.823340i \(0.692108\pi\)
\(812\) 6.87965e9 + 2.94302e9i 0.450942 + 0.192907i
\(813\) 0 0
\(814\) −5.07811e9 + 8.79555e9i −0.330002 + 0.571581i
\(815\) 5.81366e9 + 1.00696e10i 0.376182 + 0.651567i
\(816\) 0 0
\(817\) 1.82845e9 3.16696e9i 0.117302 0.203173i
\(818\) 1.68213e10 1.07454
\(819\) 0 0
\(820\) 8.64651e9 0.547636
\(821\) 7.15770e9 1.23975e10i 0.451412 0.781868i −0.547062 0.837092i \(-0.684254\pi\)
0.998474 + 0.0552240i \(0.0175873\pi\)
\(822\) 0 0
\(823\) 2.33905e9 + 4.05135e9i 0.146265 + 0.253338i 0.929844 0.367954i \(-0.119941\pi\)
−0.783579 + 0.621292i \(0.786608\pi\)
\(824\) 4.72502e9 8.18397e9i 0.294211 0.509588i
\(825\) 0 0
\(826\) 9.76625e9 7.31657e9i 0.602972 0.451729i
\(827\) 1.01540e10 0.624264 0.312132 0.950039i \(-0.398957\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(828\) 0 0
\(829\) −5.51455e9 9.55148e9i −0.336178 0.582278i 0.647532 0.762038i \(-0.275801\pi\)
−0.983710 + 0.179760i \(0.942468\pi\)
\(830\) −2.90909e9 5.03868e9i −0.176597 0.305875i
\(831\) 0 0
\(832\) −2.33884e9 −0.140789
\(833\) −8.89235e9 + 2.16425e9i −0.533039 + 0.129733i
\(834\) 0 0
\(835\) −8.88969e9 + 1.53974e10i −0.528426 + 0.915260i
\(836\) −7.14393e8 1.23737e9i −0.0422878 0.0732447i
\(837\) 0 0
\(838\) −9.91963e9 + 1.71813e10i −0.582293 + 1.00856i
\(839\) 1.71068e10 1.00001 0.500003 0.866023i \(-0.333332\pi\)
0.500003 + 0.866023i \(0.333332\pi\)
\(840\) 0 0
\(841\) −6.51269e8 −0.0377550
\(842\) −2.20742e8 + 3.82337e8i −0.0127436 + 0.0220726i
\(843\) 0 0
\(844\) 3.98525e9 + 6.90266e9i 0.228169 + 0.395201i
\(845\) −1.82649e9 + 3.16357e9i −0.104140 + 0.180376i
\(846\) 0 0
\(847\) −1.38560e9 1.15523e10i −0.0783510 0.653247i
\(848\) 5.21407e9 0.293624
\(849\) 0 0
\(850\) −1.38432e9 2.39772e9i −0.0773164 0.133916i
\(851\) −1.62405e10 2.81294e10i −0.903330 1.56461i
\(852\) 0 0
\(853\) −2.88309e9 −0.159051 −0.0795256 0.996833i \(-0.525341\pi\)
−0.0795256 + 0.996833i \(0.525341\pi\)
\(854\) 1.41677e10 + 6.06073e9i 0.778388 + 0.332983i
\(855\) 0 0
\(856\) 1.27845e9 2.21434e9i 0.0696667 0.120666i
\(857\) −1.20159e10 2.08122e10i −0.652116 1.12950i −0.982608 0.185690i \(-0.940548\pi\)
0.330492 0.943809i \(-0.392785\pi\)
\(858\) 0 0
\(859\) 1.70872e10 2.95958e10i 0.919801 1.59314i 0.120084 0.992764i \(-0.461683\pi\)
0.799716 0.600378i \(-0.204983\pi\)
\(860\) 5.86687e9 0.314530
\(861\) 0 0
\(862\) 1.34778e10 0.716709
\(863\) 1.48357e10 2.56962e10i 0.785724 1.36091i −0.142841 0.989746i \(-0.545624\pi\)
0.928566 0.371168i \(-0.121043\pi\)
\(864\) 0 0
\(865\) −7.36082e9 1.27493e10i −0.386696 0.669777i
\(866\) −5.18768e9 + 8.98532e9i −0.271432 + 0.470133i
\(867\) 0 0
\(868\) −1.41163e9 1.17694e10i −0.0732660 0.610851i
\(869\) 1.08397e10 0.560333
\(870\) 0 0
\(871\) −1.49413e10 2.58791e10i −0.766169 1.32704i
\(872\) 4.78388e9 + 8.28592e9i 0.244327 + 0.423187i
\(873\) 0 0
\(874\) 4.56946e9 0.231513
\(875\) −1.72015e10 + 1.28868e10i −0.868035 + 0.650305i
\(876\) 0 0
\(877\) 3.70786e9 6.42220e9i 0.185620 0.321503i −0.758165 0.652062i \(-0.773904\pi\)
0.943785 + 0.330559i \(0.107237\pi\)
\(878\) −5.62552e8 9.74369e8i −0.0280500 0.0485840i
\(879\) 0 0
\(880\) 1.14612e9 1.98514e9i 0.0566946 0.0981979i
\(881\) −3.89699e10 −1.92005 −0.960027 0.279907i \(-0.909696\pi\)
−0.960027 + 0.279907i \(0.909696\pi\)
\(882\) 0 0
\(883\) −6.37811e9 −0.311767 −0.155883 0.987775i \(-0.549822\pi\)
−0.155883 + 0.987775i \(0.549822\pi\)
\(884\) 3.17276e9 5.49538e9i 0.154474 0.267556i
\(885\) 0 0
\(886\) 7.39733e9 + 1.28126e10i 0.357320 + 0.618896i
\(887\) −1.84996e10 + 3.20422e10i −0.890079 + 1.54166i −0.0503004 + 0.998734i \(0.516018\pi\)
−0.839779 + 0.542928i \(0.817315\pi\)
\(888\) 0 0
\(889\) −1.24979e10 + 9.36305e9i −0.596597 + 0.446952i
\(890\) 4.16098e9 0.197847
\(891\) 0 0
\(892\) −9.13484e9 1.58220e10i −0.430947 0.746423i
\(893\) 5.21155e9 + 9.02666e9i 0.244899 + 0.424177i
\(894\) 0 0
\(895\) 1.32176e10 0.616272
\(896\) −2.26641e8 1.88961e9i −0.0105259 0.0877594i
\(897\) 0 0
\(898\) 1.16717e10 2.02161e10i 0.537859 0.931599i
\(899\) −1.31474e10 2.27719e10i −0.603503 1.04530i
\(900\) 0 0
\(901\) −7.07315e9 + 1.22511e10i −0.322163 + 0.558003i
\(902\) 1.28740e10 0.584106
\(903\) 0 0
\(904\) 1.27761e10 0.575188
\(905\) 1.66786e10 2.88883e10i 0.747981 1.29554i
\(906\) 0 0
\(907\) 3.20212e9 + 5.54623e9i 0.142499 + 0.246816i 0.928437 0.371490i \(-0.121153\pi\)
−0.785938 + 0.618305i \(0.787820\pi\)
\(908\) 2.15770e9 3.73725e9i 0.0956514 0.165673i
\(909\) 0 0
\(910\) −1.29083e10 5.52200e9i −0.567839 0.242914i
\(911\) 2.59678e9 0.113794 0.0568971 0.998380i \(-0.481879\pi\)
0.0568971 + 0.998380i \(0.481879\pi\)
\(912\) 0 0
\(913\) −4.33142e9 7.50224e9i −0.188357 0.326244i
\(914\) 1.13632e10 + 1.96817e10i 0.492254 + 0.852609i
\(915\) 0 0
\(916\) 4.58827e9 0.197249
\(917\) −2.90998e9 2.42618e10i −0.124623 1.03904i
\(918\) 0 0
\(919\) 1.87721e10 3.25142e10i 0.797825 1.38187i −0.123205 0.992381i \(-0.539317\pi\)
0.921030 0.389492i \(-0.127349\pi\)
\(920\) 3.66546e9 + 6.34876e9i 0.155193 + 0.268802i
\(921\) 0 0
\(922\) −1.58423e10 + 2.74396e10i −0.665671 + 1.15298i
\(923\) 2.22387e10 0.930900
\(924\) 0 0
\(925\) −1.53130e10 −0.636159
\(926\) −8.79260e9 + 1.52292e10i −0.363897 + 0.630289i
\(927\) 0 0
\(928\) −2.11084e9 3.65609e9i −0.0867037 0.150175i
\(929\) 1.26185e10 2.18559e10i 0.516361 0.894363i −0.483459 0.875367i \(-0.660620\pi\)
0.999820 0.0189960i \(-0.00604698\pi\)
\(930\) 0 0
\(931\) −4.91788e9 5.15007e9i −0.199735 0.209165i
\(932\) −1.39508e8 −0.00564472
\(933\) 0 0
\(934\) −1.24896e10 2.16326e10i −0.501573 0.868751i
\(935\) 3.10955e9 + 5.38590e9i 0.124410 + 0.215485i
\(936\) 0 0
\(937\) −6.75432e9 −0.268221 −0.134111 0.990966i \(-0.542818\pi\)
−0.134111 + 0.990966i \(0.542818\pi\)
\(938\) 1.94605e10 1.45792e10i 0.769917 0.576798i
\(939\) 0 0
\(940\) −8.36104e9 + 1.44817e10i −0.328332 + 0.568687i
\(941\) −4.73345e9 8.19857e9i −0.185188 0.320756i 0.758452 0.651729i \(-0.225956\pi\)
−0.943640 + 0.330974i \(0.892623\pi\)
\(942\) 0 0
\(943\) −2.05865e10 + 3.56568e10i −0.799449 + 1.38469i
\(944\) −6.88480e9 −0.266373
\(945\) 0 0
\(946\) 8.73534e9 0.335476
\(947\) −2.51579e10 + 4.35748e10i −0.962608 + 1.66729i −0.246701 + 0.969092i \(0.579346\pi\)
−0.715908 + 0.698195i \(0.753987\pi\)
\(948\) 0 0
\(949\) −1.46032e10 2.52934e10i −0.554645 0.960673i
\(950\) 1.07713e9 1.86564e9i 0.0407600 0.0705983i
\(951\) 0 0
\(952\) 4.74730e9 + 2.03083e9i 0.178327 + 0.0762859i
\(953\) 2.56329e9 0.0959342 0.0479671 0.998849i \(-0.484726\pi\)
0.0479671 + 0.998849i \(0.484726\pi\)
\(954\) 0 0
\(955\) 2.44072e9 + 4.22745e9i 0.0906790 + 0.157061i
\(956\) −5.98820e9 1.03719e10i −0.221663 0.383932i
\(957\) 0 0
\(958\) −1.08724e10 −0.399525
\(959\) −2.27446e10 9.72984e9i −0.832749 0.356238i
\(960\) 0 0
\(961\) −7.07111e9 + 1.22475e10i −0.257013 + 0.445160i
\(962\) −1.75481e10 3.03942e10i −0.635504 1.10072i
\(963\) 0 0
\(964\) 4.01056e9 6.94649e9i 0.144190 0.249744i
\(965\) −2.93218e10 −1.05038
\(966\) 0 0
\(967\) 1.17322e10 0.417241 0.208621 0.977997i \(-0.433103\pi\)
0.208621 + 0.977997i \(0.433103\pi\)
\(968\) −3.28222e9 + 5.68498e9i −0.116307 + 0.201449i
\(969\) 0 0
\(970\) 3.91464e9 + 6.78036e9i 0.137718 + 0.238535i
\(971\) −8.01185e9 + 1.38769e10i −0.280844 + 0.486437i −0.971593 0.236658i \(-0.923948\pi\)
0.690749 + 0.723095i \(0.257281\pi\)
\(972\) 0 0
\(973\) −9.93651e9 + 7.44413e9i −0.345811 + 0.259071i
\(974\) −1.91573e10 −0.664319
\(975\) 0 0
\(976\) −4.34698e9 7.52919e9i −0.149663 0.259223i
\(977\) 2.08302e10 + 3.60790e10i 0.714601 + 1.23772i 0.963113 + 0.269096i \(0.0867249\pi\)
−0.248513 + 0.968629i \(0.579942\pi\)
\(978\) 0 0
\(979\) 6.19540e9 0.211023
\(980\) 3.21050e9 1.09641e10i 0.108964 0.372117i
\(981\) 0 0
\(982\) 7.82953e9 1.35611e10i 0.263843 0.456989i
\(983\) 2.36038e10 + 4.08830e10i 0.792584 + 1.37280i 0.924362 + 0.381516i \(0.124598\pi\)
−0.131778 + 0.991279i \(0.542069\pi\)
\(984\) 0 0
\(985\) −9.71314e9 + 1.68236e10i −0.323842 + 0.560910i
\(986\) 1.14539e10 0.380525
\(987\) 0 0
\(988\) 4.93737e9 0.162872
\(989\) −1.39684e10 + 2.41940e10i −0.459156 + 0.795282i
\(990\) 0 0
\(991\) 3.20329e9 + 5.54826e9i 0.104553 + 0.181092i 0.913556 0.406714i \(-0.133325\pi\)
−0.809002 + 0.587806i \(0.799992\pi\)
\(992\) −3.34390e9 + 5.79180e9i −0.108758 + 0.188375i
\(993\) 0 0
\(994\) 2.15500e9 + 1.79672e10i 0.0695977 + 0.580266i
\(995\) −1.19088e10 −0.383254
\(996\) 0 0
\(997\) 6.01597e9 + 1.04200e10i 0.192253 + 0.332991i 0.945996 0.324177i \(-0.105087\pi\)
−0.753744 + 0.657168i \(0.771754\pi\)
\(998\) 1.18061e9 + 2.04488e9i 0.0375968 + 0.0651196i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.e.37.1 4
3.2 odd 2 14.8.c.a.9.1 4
7.4 even 3 inner 126.8.g.e.109.1 4
12.11 even 2 112.8.i.a.65.2 4
21.2 odd 6 98.8.a.h.1.2 2
21.5 even 6 98.8.a.k.1.1 2
21.11 odd 6 14.8.c.a.11.1 yes 4
21.17 even 6 98.8.c.h.67.2 4
21.20 even 2 98.8.c.h.79.2 4
84.11 even 6 112.8.i.a.81.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.c.a.9.1 4 3.2 odd 2
14.8.c.a.11.1 yes 4 21.11 odd 6
98.8.a.h.1.2 2 21.2 odd 6
98.8.a.k.1.1 2 21.5 even 6
98.8.c.h.67.2 4 21.17 even 6
98.8.c.h.79.2 4 21.20 even 2
112.8.i.a.65.2 4 12.11 even 2
112.8.i.a.81.2 4 84.11 even 6
126.8.g.e.37.1 4 1.1 even 1 trivial
126.8.g.e.109.1 4 7.4 even 3 inner