Properties

Label 126.8.g
Level $126$
Weight $8$
Character orbit 126.g
Rep. character $\chi_{126}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $48$
Newform subspaces $11$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 11 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(126, [\chi])\).

Total New Old
Modular forms 352 48 304
Cusp forms 320 48 272
Eisenstein series 32 0 32

Trace form

\( 48 q - 1536 q^{4} - 248 q^{5} + 228 q^{7} + 2208 q^{10} + 3560 q^{11} - 26880 q^{13} + 11584 q^{14} - 98304 q^{16} - 11008 q^{17} + 51960 q^{19} + 31744 q^{20} - 38976 q^{22} + 14948 q^{23} - 402528 q^{25}+ \cdots + 4018368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
126.8.g.a 126.g 7.c $2$ $39.361$ \(\Q(\sqrt{-3}) \) None 42.8.e.b \(-8\) \(0\) \(-290\) \(1477\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\zeta_{6})q^{2}-2^{6}\zeta_{6}q^{4}+(-290+\cdots)q^{5}+\cdots\)
126.8.g.b 126.g 7.c $2$ $39.361$ \(\Q(\sqrt{-3}) \) None 42.8.e.a \(-8\) \(0\) \(165\) \(-343\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\zeta_{6})q^{2}-2^{6}\zeta_{6}q^{4}+(165+\cdots)q^{5}+\cdots\)
126.8.g.c 126.g 7.c $4$ $39.361$ \(\Q(\sqrt{-3}, \sqrt{5497})\) None 126.8.g.c \(-16\) \(0\) \(-455\) \(1554\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{2})q^{2}-2^{6}\beta _{2}q^{4}+(-230+\cdots)q^{5}+\cdots\)
126.8.g.d 126.g 7.c $4$ $39.361$ \(\Q(\sqrt{-3}, \sqrt{949})\) None 14.8.c.b \(-16\) \(0\) \(-14\) \(-1848\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-7\beta _{1}+\cdots)q^{5}+\cdots\)
126.8.g.e 126.g 7.c $4$ $39.361$ \(\Q(\sqrt{-3}, \sqrt{2389})\) None 14.8.c.a \(16\) \(0\) \(-238\) \(168\) $\mathrm{SU}(2)[C_{3}]$ \(q+(8-8\beta _{1})q^{2}-2^{6}\beta _{1}q^{4}+(-119+\cdots)q^{5}+\cdots\)
126.8.g.f 126.g 7.c $4$ $39.361$ \(\Q(\sqrt{-3}, \sqrt{2881})\) None 42.8.e.c \(16\) \(0\) \(309\) \(868\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(156\beta _{1}+\cdots)q^{5}+\cdots\)
126.8.g.g 126.g 7.c $4$ $39.361$ \(\Q(\sqrt{-3}, \sqrt{5497})\) None 126.8.g.c \(16\) \(0\) \(455\) \(1554\) $\mathrm{SU}(2)[C_{3}]$ \(q+(8-8\beta _{2})q^{2}-2^{6}\beta _{2}q^{4}+(230-5\beta _{1}+\cdots)q^{5}+\cdots\)
126.8.g.h 126.g 7.c $6$ $39.361$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 42.8.e.e \(-24\) \(0\) \(-110\) \(635\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}-2^{6}\beta _{1}q^{4}+(-37+\cdots)q^{5}+\cdots\)
126.8.g.i 126.g 7.c $6$ $39.361$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 126.8.g.i \(-24\) \(0\) \(718\) \(-1471\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8-8\beta _{3})q^{2}+2^{6}\beta _{3}q^{4}+(239+\cdots)q^{5}+\cdots\)
126.8.g.j 126.g 7.c $6$ $39.361$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 126.8.g.i \(24\) \(0\) \(-718\) \(-1471\) $\mathrm{SU}(2)[C_{3}]$ \(q+(8+8\beta _{3})q^{2}+2^{6}\beta _{3}q^{4}+(-239+\cdots)q^{5}+\cdots\)
126.8.g.k 126.g 7.c $6$ $39.361$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 42.8.e.d \(24\) \(0\) \(-70\) \(-895\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\beta _{1}q^{2}+(-2^{6}+2^{6}\beta _{1})q^{4}+(-23\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)