Properties

Label 126.8.a.k.1.2
Level $126$
Weight $8$
Character 126.1
Self dual yes
Analytic conductor $39.361$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-16,0,128,168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3605132110\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3691}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3691 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(60.7536\) of defining polynomial
Character \(\chi\) \(=\) 126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} +448.522 q^{5} +343.000 q^{7} -512.000 q^{8} -3588.17 q^{10} -5299.65 q^{11} -11506.5 q^{13} -2744.00 q^{14} +4096.00 q^{16} -6946.61 q^{17} -5416.52 q^{19} +28705.4 q^{20} +42397.2 q^{22} -50952.2 q^{23} +123047. q^{25} +92052.1 q^{26} +21952.0 q^{28} -237212. q^{29} +171756. q^{31} -32768.0 q^{32} +55572.9 q^{34} +153843. q^{35} +260898. q^{37} +43332.1 q^{38} -229643. q^{40} -406515. q^{41} -566697. q^{43} -339178. q^{44} +407617. q^{46} +109487. q^{47} +117649. q^{49} -984373. q^{50} -736417. q^{52} -592466. q^{53} -2.37701e6 q^{55} -175616. q^{56} +1.89770e6 q^{58} -1.62378e6 q^{59} +1.18797e6 q^{61} -1.37405e6 q^{62} +262144. q^{64} -5.16092e6 q^{65} +4.22954e6 q^{67} -444583. q^{68} -1.23074e6 q^{70} +3.02794e6 q^{71} -5.86494e6 q^{73} -2.08718e6 q^{74} -346657. q^{76} -1.81778e6 q^{77} -6.06964e6 q^{79} +1.83714e6 q^{80} +3.25212e6 q^{82} -1.11643e6 q^{83} -3.11570e6 q^{85} +4.53358e6 q^{86} +2.71342e6 q^{88} -8.36015e6 q^{89} -3.94674e6 q^{91} -3.26094e6 q^{92} -875894. q^{94} -2.42943e6 q^{95} -1.28495e7 q^{97} -941192. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 128 q^{4} + 168 q^{5} + 686 q^{7} - 1024 q^{8} - 1344 q^{10} - 5496 q^{11} - 5516 q^{13} - 5488 q^{14} + 8192 q^{16} - 10248 q^{17} + 6664 q^{19} + 10752 q^{20} + 43968 q^{22} - 45768 q^{23}+ \cdots - 1882384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 448.522 1.60468 0.802340 0.596867i \(-0.203588\pi\)
0.802340 + 0.596867i \(0.203588\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −3588.17 −1.13468
\(11\) −5299.65 −1.20053 −0.600265 0.799801i \(-0.704938\pi\)
−0.600265 + 0.799801i \(0.704938\pi\)
\(12\) 0 0
\(13\) −11506.5 −1.45259 −0.726294 0.687385i \(-0.758759\pi\)
−0.726294 + 0.687385i \(0.758759\pi\)
\(14\) −2744.00 −0.267261
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −6946.61 −0.342927 −0.171463 0.985190i \(-0.554850\pi\)
−0.171463 + 0.985190i \(0.554850\pi\)
\(18\) 0 0
\(19\) −5416.52 −0.181168 −0.0905842 0.995889i \(-0.528873\pi\)
−0.0905842 + 0.995889i \(0.528873\pi\)
\(20\) 28705.4 0.802340
\(21\) 0 0
\(22\) 42397.2 0.848903
\(23\) −50952.2 −0.873203 −0.436601 0.899655i \(-0.643818\pi\)
−0.436601 + 0.899655i \(0.643818\pi\)
\(24\) 0 0
\(25\) 123047. 1.57500
\(26\) 92052.1 1.02713
\(27\) 0 0
\(28\) 21952.0 0.188982
\(29\) −237212. −1.80611 −0.903056 0.429524i \(-0.858682\pi\)
−0.903056 + 0.429524i \(0.858682\pi\)
\(30\) 0 0
\(31\) 171756. 1.03549 0.517744 0.855536i \(-0.326772\pi\)
0.517744 + 0.855536i \(0.326772\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) 55572.9 0.242486
\(35\) 153843. 0.606512
\(36\) 0 0
\(37\) 260898. 0.846767 0.423384 0.905950i \(-0.360842\pi\)
0.423384 + 0.905950i \(0.360842\pi\)
\(38\) 43332.1 0.128105
\(39\) 0 0
\(40\) −229643. −0.567340
\(41\) −406515. −0.921156 −0.460578 0.887619i \(-0.652358\pi\)
−0.460578 + 0.887619i \(0.652358\pi\)
\(42\) 0 0
\(43\) −566697. −1.08695 −0.543477 0.839424i \(-0.682893\pi\)
−0.543477 + 0.839424i \(0.682893\pi\)
\(44\) −339178. −0.600265
\(45\) 0 0
\(46\) 407617. 0.617448
\(47\) 109487. 0.153822 0.0769111 0.997038i \(-0.475494\pi\)
0.0769111 + 0.997038i \(0.475494\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −984373. −1.11369
\(51\) 0 0
\(52\) −736417. −0.726294
\(53\) −592466. −0.546635 −0.273318 0.961924i \(-0.588121\pi\)
−0.273318 + 0.961924i \(0.588121\pi\)
\(54\) 0 0
\(55\) −2.37701e6 −1.92647
\(56\) −175616. −0.133631
\(57\) 0 0
\(58\) 1.89770e6 1.27711
\(59\) −1.62378e6 −1.02931 −0.514655 0.857398i \(-0.672080\pi\)
−0.514655 + 0.857398i \(0.672080\pi\)
\(60\) 0 0
\(61\) 1.18797e6 0.670120 0.335060 0.942197i \(-0.391243\pi\)
0.335060 + 0.942197i \(0.391243\pi\)
\(62\) −1.37405e6 −0.732201
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −5.16092e6 −2.33094
\(66\) 0 0
\(67\) 4.22954e6 1.71803 0.859017 0.511947i \(-0.171076\pi\)
0.859017 + 0.511947i \(0.171076\pi\)
\(68\) −444583. −0.171463
\(69\) 0 0
\(70\) −1.23074e6 −0.428869
\(71\) 3.02794e6 1.00402 0.502011 0.864861i \(-0.332594\pi\)
0.502011 + 0.864861i \(0.332594\pi\)
\(72\) 0 0
\(73\) −5.86494e6 −1.76455 −0.882274 0.470737i \(-0.843988\pi\)
−0.882274 + 0.470737i \(0.843988\pi\)
\(74\) −2.08718e6 −0.598755
\(75\) 0 0
\(76\) −346657. −0.0905842
\(77\) −1.81778e6 −0.453758
\(78\) 0 0
\(79\) −6.06964e6 −1.38506 −0.692530 0.721389i \(-0.743504\pi\)
−0.692530 + 0.721389i \(0.743504\pi\)
\(80\) 1.83714e6 0.401170
\(81\) 0 0
\(82\) 3.25212e6 0.651355
\(83\) −1.11643e6 −0.214318 −0.107159 0.994242i \(-0.534175\pi\)
−0.107159 + 0.994242i \(0.534175\pi\)
\(84\) 0 0
\(85\) −3.11570e6 −0.550288
\(86\) 4.53358e6 0.768593
\(87\) 0 0
\(88\) 2.71342e6 0.424451
\(89\) −8.36015e6 −1.25704 −0.628520 0.777793i \(-0.716339\pi\)
−0.628520 + 0.777793i \(0.716339\pi\)
\(90\) 0 0
\(91\) −3.94674e6 −0.549026
\(92\) −3.26094e6 −0.436601
\(93\) 0 0
\(94\) −875894. −0.108769
\(95\) −2.42943e6 −0.290717
\(96\) 0 0
\(97\) −1.28495e7 −1.42950 −0.714749 0.699381i \(-0.753459\pi\)
−0.714749 + 0.699381i \(0.753459\pi\)
\(98\) −941192. −0.101015
\(99\) 0 0
\(100\) 7.87498e6 0.787498
\(101\) −1.14659e7 −1.10734 −0.553671 0.832735i \(-0.686774\pi\)
−0.553671 + 0.832735i \(0.686774\pi\)
\(102\) 0 0
\(103\) 1.66835e7 1.50438 0.752190 0.658946i \(-0.228997\pi\)
0.752190 + 0.658946i \(0.228997\pi\)
\(104\) 5.89134e6 0.513567
\(105\) 0 0
\(106\) 4.73973e6 0.386530
\(107\) 7.97687e6 0.629491 0.314745 0.949176i \(-0.398081\pi\)
0.314745 + 0.949176i \(0.398081\pi\)
\(108\) 0 0
\(109\) 2.28499e7 1.69002 0.845011 0.534749i \(-0.179594\pi\)
0.845011 + 0.534749i \(0.179594\pi\)
\(110\) 1.90161e7 1.36222
\(111\) 0 0
\(112\) 1.40493e6 0.0944911
\(113\) 1.37201e7 0.894505 0.447252 0.894408i \(-0.352403\pi\)
0.447252 + 0.894408i \(0.352403\pi\)
\(114\) 0 0
\(115\) −2.28531e7 −1.40121
\(116\) −1.51816e7 −0.903056
\(117\) 0 0
\(118\) 1.29903e7 0.727832
\(119\) −2.38269e6 −0.129614
\(120\) 0 0
\(121\) 8.59913e6 0.441271
\(122\) −9.50379e6 −0.473846
\(123\) 0 0
\(124\) 1.09924e7 0.517744
\(125\) 2.01483e7 0.922686
\(126\) 0 0
\(127\) −1.82759e7 −0.791710 −0.395855 0.918313i \(-0.629552\pi\)
−0.395855 + 0.918313i \(0.629552\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) 4.12874e7 1.64822
\(131\) 4.51203e7 1.75357 0.876784 0.480885i \(-0.159685\pi\)
0.876784 + 0.480885i \(0.159685\pi\)
\(132\) 0 0
\(133\) −1.85787e6 −0.0684752
\(134\) −3.38364e7 −1.21483
\(135\) 0 0
\(136\) 3.55666e6 0.121243
\(137\) 2.78865e7 0.926557 0.463279 0.886213i \(-0.346673\pi\)
0.463279 + 0.886213i \(0.346673\pi\)
\(138\) 0 0
\(139\) 1.17880e7 0.372295 0.186148 0.982522i \(-0.440400\pi\)
0.186148 + 0.982522i \(0.440400\pi\)
\(140\) 9.84595e6 0.303256
\(141\) 0 0
\(142\) −2.42235e7 −0.709950
\(143\) 6.09805e7 1.74387
\(144\) 0 0
\(145\) −1.06395e8 −2.89823
\(146\) 4.69195e7 1.24772
\(147\) 0 0
\(148\) 1.66974e7 0.423384
\(149\) −3.84472e7 −0.952166 −0.476083 0.879400i \(-0.657944\pi\)
−0.476083 + 0.879400i \(0.657944\pi\)
\(150\) 0 0
\(151\) −3.91861e7 −0.926217 −0.463108 0.886302i \(-0.653266\pi\)
−0.463108 + 0.886302i \(0.653266\pi\)
\(152\) 2.77326e6 0.0640527
\(153\) 0 0
\(154\) 1.45422e7 0.320855
\(155\) 7.70361e7 1.66163
\(156\) 0 0
\(157\) −3.56409e7 −0.735021 −0.367510 0.930019i \(-0.619790\pi\)
−0.367510 + 0.930019i \(0.619790\pi\)
\(158\) 4.85571e7 0.979385
\(159\) 0 0
\(160\) −1.46972e7 −0.283670
\(161\) −1.74766e7 −0.330040
\(162\) 0 0
\(163\) −3.32960e7 −0.602192 −0.301096 0.953594i \(-0.597353\pi\)
−0.301096 + 0.953594i \(0.597353\pi\)
\(164\) −2.60170e7 −0.460578
\(165\) 0 0
\(166\) 8.93146e6 0.151546
\(167\) −7.23060e7 −1.20134 −0.600671 0.799497i \(-0.705100\pi\)
−0.600671 + 0.799497i \(0.705100\pi\)
\(168\) 0 0
\(169\) 6.96515e7 1.11001
\(170\) 2.49256e7 0.389112
\(171\) 0 0
\(172\) −3.62686e7 −0.543477
\(173\) −8.34486e7 −1.22534 −0.612672 0.790337i \(-0.709905\pi\)
−0.612672 + 0.790337i \(0.709905\pi\)
\(174\) 0 0
\(175\) 4.22050e7 0.595293
\(176\) −2.17074e7 −0.300132
\(177\) 0 0
\(178\) 6.68812e7 0.888862
\(179\) −1.15464e7 −0.150474 −0.0752371 0.997166i \(-0.523971\pi\)
−0.0752371 + 0.997166i \(0.523971\pi\)
\(180\) 0 0
\(181\) 6.08217e7 0.762401 0.381200 0.924492i \(-0.375511\pi\)
0.381200 + 0.924492i \(0.375511\pi\)
\(182\) 3.15739e7 0.388220
\(183\) 0 0
\(184\) 2.60875e7 0.308724
\(185\) 1.17018e8 1.35879
\(186\) 0 0
\(187\) 3.68146e7 0.411694
\(188\) 7.00715e6 0.0769111
\(189\) 0 0
\(190\) 1.94354e7 0.205568
\(191\) −1.06179e8 −1.10261 −0.551307 0.834302i \(-0.685871\pi\)
−0.551307 + 0.834302i \(0.685871\pi\)
\(192\) 0 0
\(193\) −1.16101e8 −1.16248 −0.581241 0.813731i \(-0.697433\pi\)
−0.581241 + 0.813731i \(0.697433\pi\)
\(194\) 1.02796e8 1.01081
\(195\) 0 0
\(196\) 7.52954e6 0.0714286
\(197\) 6.91557e6 0.0644460 0.0322230 0.999481i \(-0.489741\pi\)
0.0322230 + 0.999481i \(0.489741\pi\)
\(198\) 0 0
\(199\) −1.35406e8 −1.21801 −0.609006 0.793166i \(-0.708431\pi\)
−0.609006 + 0.793166i \(0.708431\pi\)
\(200\) −6.29999e7 −0.556845
\(201\) 0 0
\(202\) 9.17269e7 0.783009
\(203\) −8.13639e7 −0.682646
\(204\) 0 0
\(205\) −1.82331e8 −1.47816
\(206\) −1.33468e8 −1.06376
\(207\) 0 0
\(208\) −4.71307e7 −0.363147
\(209\) 2.87057e7 0.217498
\(210\) 0 0
\(211\) 1.90693e8 1.39748 0.698742 0.715373i \(-0.253743\pi\)
0.698742 + 0.715373i \(0.253743\pi\)
\(212\) −3.79178e7 −0.273318
\(213\) 0 0
\(214\) −6.38150e7 −0.445117
\(215\) −2.54176e8 −1.74421
\(216\) 0 0
\(217\) 5.89122e7 0.391378
\(218\) −1.82800e8 −1.19503
\(219\) 0 0
\(220\) −1.52129e8 −0.963233
\(221\) 7.99313e7 0.498131
\(222\) 0 0
\(223\) 2.56628e8 1.54966 0.774830 0.632170i \(-0.217836\pi\)
0.774830 + 0.632170i \(0.217836\pi\)
\(224\) −1.12394e7 −0.0668153
\(225\) 0 0
\(226\) −1.09761e8 −0.632510
\(227\) −1.03716e8 −0.588514 −0.294257 0.955726i \(-0.595072\pi\)
−0.294257 + 0.955726i \(0.595072\pi\)
\(228\) 0 0
\(229\) −2.19819e6 −0.0120960 −0.00604798 0.999982i \(-0.501925\pi\)
−0.00604798 + 0.999982i \(0.501925\pi\)
\(230\) 1.82825e8 0.990806
\(231\) 0 0
\(232\) 1.21453e8 0.638557
\(233\) 1.81985e8 0.942517 0.471259 0.881995i \(-0.343800\pi\)
0.471259 + 0.881995i \(0.343800\pi\)
\(234\) 0 0
\(235\) 4.91072e7 0.246835
\(236\) −1.03922e8 −0.514655
\(237\) 0 0
\(238\) 1.90615e7 0.0916511
\(239\) −2.69191e8 −1.27546 −0.637732 0.770258i \(-0.720127\pi\)
−0.637732 + 0.770258i \(0.720127\pi\)
\(240\) 0 0
\(241\) 1.97228e8 0.907629 0.453815 0.891096i \(-0.350063\pi\)
0.453815 + 0.891096i \(0.350063\pi\)
\(242\) −6.87931e7 −0.312026
\(243\) 0 0
\(244\) 7.60303e7 0.335060
\(245\) 5.27681e7 0.229240
\(246\) 0 0
\(247\) 6.23253e7 0.263163
\(248\) −8.79389e7 −0.366100
\(249\) 0 0
\(250\) −1.61187e8 −0.652437
\(251\) 2.40008e8 0.958004 0.479002 0.877814i \(-0.340999\pi\)
0.479002 + 0.877814i \(0.340999\pi\)
\(252\) 0 0
\(253\) 2.70029e8 1.04831
\(254\) 1.46207e8 0.559823
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −3.67989e8 −1.35229 −0.676144 0.736769i \(-0.736350\pi\)
−0.676144 + 0.736769i \(0.736350\pi\)
\(258\) 0 0
\(259\) 8.94879e7 0.320048
\(260\) −3.30299e8 −1.16547
\(261\) 0 0
\(262\) −3.60962e8 −1.23996
\(263\) 1.34513e8 0.455953 0.227977 0.973667i \(-0.426789\pi\)
0.227977 + 0.973667i \(0.426789\pi\)
\(264\) 0 0
\(265\) −2.65734e8 −0.877175
\(266\) 1.48629e7 0.0484193
\(267\) 0 0
\(268\) 2.70691e8 0.859017
\(269\) −6.15309e7 −0.192735 −0.0963675 0.995346i \(-0.530722\pi\)
−0.0963675 + 0.995346i \(0.530722\pi\)
\(270\) 0 0
\(271\) 4.17868e7 0.127540 0.0637700 0.997965i \(-0.479688\pi\)
0.0637700 + 0.997965i \(0.479688\pi\)
\(272\) −2.84533e7 −0.0857317
\(273\) 0 0
\(274\) −2.23092e8 −0.655175
\(275\) −6.52104e8 −1.89083
\(276\) 0 0
\(277\) 6.59838e8 1.86534 0.932671 0.360729i \(-0.117472\pi\)
0.932671 + 0.360729i \(0.117472\pi\)
\(278\) −9.43038e7 −0.263253
\(279\) 0 0
\(280\) −7.87676e7 −0.214434
\(281\) 1.45549e8 0.391325 0.195662 0.980671i \(-0.437314\pi\)
0.195662 + 0.980671i \(0.437314\pi\)
\(282\) 0 0
\(283\) −3.13808e8 −0.823021 −0.411511 0.911405i \(-0.634999\pi\)
−0.411511 + 0.911405i \(0.634999\pi\)
\(284\) 1.93788e8 0.502011
\(285\) 0 0
\(286\) −4.87844e8 −1.23311
\(287\) −1.39435e8 −0.348164
\(288\) 0 0
\(289\) −3.62083e8 −0.882401
\(290\) 8.51159e8 2.04936
\(291\) 0 0
\(292\) −3.75356e8 −0.882274
\(293\) 9.29302e7 0.215834 0.107917 0.994160i \(-0.465582\pi\)
0.107917 + 0.994160i \(0.465582\pi\)
\(294\) 0 0
\(295\) −7.28302e8 −1.65171
\(296\) −1.33580e8 −0.299377
\(297\) 0 0
\(298\) 3.07578e8 0.673283
\(299\) 5.86282e8 1.26840
\(300\) 0 0
\(301\) −1.94377e8 −0.410830
\(302\) 3.13489e8 0.654934
\(303\) 0 0
\(304\) −2.21861e7 −0.0452921
\(305\) 5.32832e8 1.07533
\(306\) 0 0
\(307\) 3.50287e8 0.690939 0.345469 0.938430i \(-0.387720\pi\)
0.345469 + 0.938430i \(0.387720\pi\)
\(308\) −1.16338e8 −0.226879
\(309\) 0 0
\(310\) −6.16289e8 −1.17495
\(311\) 3.03239e8 0.571641 0.285820 0.958283i \(-0.407734\pi\)
0.285820 + 0.958283i \(0.407734\pi\)
\(312\) 0 0
\(313\) 1.08029e8 0.199130 0.0995649 0.995031i \(-0.468255\pi\)
0.0995649 + 0.995031i \(0.468255\pi\)
\(314\) 2.85127e8 0.519738
\(315\) 0 0
\(316\) −3.88457e8 −0.692530
\(317\) −3.21944e8 −0.567640 −0.283820 0.958878i \(-0.591602\pi\)
−0.283820 + 0.958878i \(0.591602\pi\)
\(318\) 0 0
\(319\) 1.25714e9 2.16829
\(320\) 1.17577e8 0.200585
\(321\) 0 0
\(322\) 1.39813e8 0.233373
\(323\) 3.76264e7 0.0621275
\(324\) 0 0
\(325\) −1.41584e9 −2.28782
\(326\) 2.66368e8 0.425814
\(327\) 0 0
\(328\) 2.08136e8 0.325678
\(329\) 3.75540e7 0.0581394
\(330\) 0 0
\(331\) 1.12397e9 1.70355 0.851776 0.523907i \(-0.175526\pi\)
0.851776 + 0.523907i \(0.175526\pi\)
\(332\) −7.14517e7 −0.107159
\(333\) 0 0
\(334\) 5.78448e8 0.849477
\(335\) 1.89704e9 2.75689
\(336\) 0 0
\(337\) 1.17136e9 1.66720 0.833598 0.552372i \(-0.186277\pi\)
0.833598 + 0.552372i \(0.186277\pi\)
\(338\) −5.57212e8 −0.784895
\(339\) 0 0
\(340\) −1.99405e8 −0.275144
\(341\) −9.10245e8 −1.24313
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 2.90149e8 0.384296
\(345\) 0 0
\(346\) 6.67589e8 0.866449
\(347\) 1.38737e9 1.78254 0.891271 0.453470i \(-0.149814\pi\)
0.891271 + 0.453470i \(0.149814\pi\)
\(348\) 0 0
\(349\) −5.90839e8 −0.744013 −0.372006 0.928230i \(-0.621330\pi\)
−0.372006 + 0.928230i \(0.621330\pi\)
\(350\) −3.37640e8 −0.420936
\(351\) 0 0
\(352\) 1.73659e8 0.212226
\(353\) 1.37642e9 1.66548 0.832742 0.553661i \(-0.186770\pi\)
0.832742 + 0.553661i \(0.186770\pi\)
\(354\) 0 0
\(355\) 1.35810e9 1.61113
\(356\) −5.35050e8 −0.628520
\(357\) 0 0
\(358\) 9.23714e7 0.106401
\(359\) −3.97273e7 −0.0453167 −0.0226583 0.999743i \(-0.507213\pi\)
−0.0226583 + 0.999743i \(0.507213\pi\)
\(360\) 0 0
\(361\) −8.64533e8 −0.967178
\(362\) −4.86573e8 −0.539099
\(363\) 0 0
\(364\) −2.52591e8 −0.274513
\(365\) −2.63055e9 −2.83153
\(366\) 0 0
\(367\) 6.15437e8 0.649908 0.324954 0.945730i \(-0.394651\pi\)
0.324954 + 0.945730i \(0.394651\pi\)
\(368\) −2.08700e8 −0.218301
\(369\) 0 0
\(370\) −9.36146e8 −0.960810
\(371\) −2.03216e8 −0.206609
\(372\) 0 0
\(373\) −2.96660e8 −0.295991 −0.147995 0.988988i \(-0.547282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(374\) −2.94517e8 −0.291112
\(375\) 0 0
\(376\) −5.60572e7 −0.0543844
\(377\) 2.72949e9 2.62353
\(378\) 0 0
\(379\) 1.12605e8 0.106248 0.0531239 0.998588i \(-0.483082\pi\)
0.0531239 + 0.998588i \(0.483082\pi\)
\(380\) −1.55483e8 −0.145359
\(381\) 0 0
\(382\) 8.49436e8 0.779666
\(383\) 1.93832e9 1.76291 0.881455 0.472269i \(-0.156565\pi\)
0.881455 + 0.472269i \(0.156565\pi\)
\(384\) 0 0
\(385\) −8.15314e8 −0.728136
\(386\) 9.28810e8 0.821999
\(387\) 0 0
\(388\) −8.22366e8 −0.714749
\(389\) −1.63944e9 −1.41212 −0.706062 0.708150i \(-0.749530\pi\)
−0.706062 + 0.708150i \(0.749530\pi\)
\(390\) 0 0
\(391\) 3.53945e8 0.299445
\(392\) −6.02363e7 −0.0505076
\(393\) 0 0
\(394\) −5.53245e7 −0.0455702
\(395\) −2.72237e9 −2.22258
\(396\) 0 0
\(397\) −5.62631e8 −0.451291 −0.225645 0.974209i \(-0.572449\pi\)
−0.225645 + 0.974209i \(0.572449\pi\)
\(398\) 1.08325e9 0.861264
\(399\) 0 0
\(400\) 5.03999e8 0.393749
\(401\) −5.91452e8 −0.458051 −0.229026 0.973420i \(-0.573554\pi\)
−0.229026 + 0.973420i \(0.573554\pi\)
\(402\) 0 0
\(403\) −1.97631e9 −1.50414
\(404\) −7.33815e8 −0.553671
\(405\) 0 0
\(406\) 6.50911e8 0.482704
\(407\) −1.38267e9 −1.01657
\(408\) 0 0
\(409\) 1.02432e9 0.740290 0.370145 0.928974i \(-0.379308\pi\)
0.370145 + 0.928974i \(0.379308\pi\)
\(410\) 1.45865e9 1.04522
\(411\) 0 0
\(412\) 1.06775e9 0.752190
\(413\) −5.56957e8 −0.389042
\(414\) 0 0
\(415\) −5.00744e8 −0.343912
\(416\) 3.77046e8 0.256784
\(417\) 0 0
\(418\) −2.29645e8 −0.153794
\(419\) 8.89500e8 0.590741 0.295370 0.955383i \(-0.404557\pi\)
0.295370 + 0.955383i \(0.404557\pi\)
\(420\) 0 0
\(421\) −2.43115e9 −1.58791 −0.793954 0.607978i \(-0.791981\pi\)
−0.793954 + 0.607978i \(0.791981\pi\)
\(422\) −1.52555e9 −0.988171
\(423\) 0 0
\(424\) 3.03343e8 0.193265
\(425\) −8.54757e8 −0.540109
\(426\) 0 0
\(427\) 4.07475e8 0.253281
\(428\) 5.10520e8 0.314745
\(429\) 0 0
\(430\) 2.03341e9 1.23335
\(431\) −1.65199e9 −0.993886 −0.496943 0.867783i \(-0.665544\pi\)
−0.496943 + 0.867783i \(0.665544\pi\)
\(432\) 0 0
\(433\) −1.07947e8 −0.0639001 −0.0319500 0.999489i \(-0.510172\pi\)
−0.0319500 + 0.999489i \(0.510172\pi\)
\(434\) −4.71297e8 −0.276746
\(435\) 0 0
\(436\) 1.46240e9 0.845011
\(437\) 2.75983e8 0.158197
\(438\) 0 0
\(439\) −5.49941e8 −0.310234 −0.155117 0.987896i \(-0.549576\pi\)
−0.155117 + 0.987896i \(0.549576\pi\)
\(440\) 1.21703e9 0.681108
\(441\) 0 0
\(442\) −6.39450e8 −0.352232
\(443\) −1.16826e9 −0.638452 −0.319226 0.947679i \(-0.603423\pi\)
−0.319226 + 0.947679i \(0.603423\pi\)
\(444\) 0 0
\(445\) −3.74971e9 −2.01715
\(446\) −2.05302e9 −1.09577
\(447\) 0 0
\(448\) 8.99154e7 0.0472456
\(449\) −2.80689e9 −1.46340 −0.731701 0.681626i \(-0.761273\pi\)
−0.731701 + 0.681626i \(0.761273\pi\)
\(450\) 0 0
\(451\) 2.15439e9 1.10587
\(452\) 8.78086e8 0.447252
\(453\) 0 0
\(454\) 8.29731e8 0.416142
\(455\) −1.77020e9 −0.881011
\(456\) 0 0
\(457\) −1.30612e9 −0.640143 −0.320071 0.947393i \(-0.603707\pi\)
−0.320071 + 0.947393i \(0.603707\pi\)
\(458\) 1.75855e7 0.00855314
\(459\) 0 0
\(460\) −1.46260e9 −0.700606
\(461\) 3.55976e9 1.69226 0.846130 0.532977i \(-0.178927\pi\)
0.846130 + 0.532977i \(0.178927\pi\)
\(462\) 0 0
\(463\) 2.25381e9 1.05532 0.527659 0.849456i \(-0.323070\pi\)
0.527659 + 0.849456i \(0.323070\pi\)
\(464\) −9.71622e8 −0.451528
\(465\) 0 0
\(466\) −1.45588e9 −0.666460
\(467\) −2.27560e9 −1.03392 −0.516960 0.856009i \(-0.672937\pi\)
−0.516960 + 0.856009i \(0.672937\pi\)
\(468\) 0 0
\(469\) 1.45073e9 0.649356
\(470\) −3.92858e8 −0.174539
\(471\) 0 0
\(472\) 8.31377e8 0.363916
\(473\) 3.00330e9 1.30492
\(474\) 0 0
\(475\) −6.66484e8 −0.285340
\(476\) −1.52492e8 −0.0648071
\(477\) 0 0
\(478\) 2.15353e9 0.901890
\(479\) 2.87757e9 1.19633 0.598166 0.801372i \(-0.295896\pi\)
0.598166 + 0.801372i \(0.295896\pi\)
\(480\) 0 0
\(481\) −3.00202e9 −1.23000
\(482\) −1.57782e9 −0.641791
\(483\) 0 0
\(484\) 5.50344e8 0.220636
\(485\) −5.76326e9 −2.29389
\(486\) 0 0
\(487\) −1.54199e9 −0.604966 −0.302483 0.953155i \(-0.597816\pi\)
−0.302483 + 0.953155i \(0.597816\pi\)
\(488\) −6.08243e8 −0.236923
\(489\) 0 0
\(490\) −4.22145e8 −0.162097
\(491\) −3.22726e9 −1.23041 −0.615204 0.788368i \(-0.710926\pi\)
−0.615204 + 0.788368i \(0.710926\pi\)
\(492\) 0 0
\(493\) 1.64782e9 0.619364
\(494\) −4.98602e8 −0.186084
\(495\) 0 0
\(496\) 7.03511e8 0.258872
\(497\) 1.03858e9 0.379484
\(498\) 0 0
\(499\) −2.30284e9 −0.829682 −0.414841 0.909894i \(-0.636163\pi\)
−0.414841 + 0.909894i \(0.636163\pi\)
\(500\) 1.28949e9 0.461343
\(501\) 0 0
\(502\) −1.92006e9 −0.677411
\(503\) −1.57135e9 −0.550536 −0.275268 0.961368i \(-0.588767\pi\)
−0.275268 + 0.961368i \(0.588767\pi\)
\(504\) 0 0
\(505\) −5.14269e9 −1.77693
\(506\) −2.16023e9 −0.741264
\(507\) 0 0
\(508\) −1.16966e9 −0.395855
\(509\) −2.38208e9 −0.800654 −0.400327 0.916372i \(-0.631103\pi\)
−0.400327 + 0.916372i \(0.631103\pi\)
\(510\) 0 0
\(511\) −2.01167e9 −0.666936
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 2.94391e9 0.956212
\(515\) 7.48293e9 2.41405
\(516\) 0 0
\(517\) −5.80242e8 −0.184668
\(518\) −7.15903e8 −0.226308
\(519\) 0 0
\(520\) 2.64239e9 0.824111
\(521\) 3.03375e9 0.939825 0.469913 0.882713i \(-0.344285\pi\)
0.469913 + 0.882713i \(0.344285\pi\)
\(522\) 0 0
\(523\) 6.04017e9 1.84626 0.923130 0.384488i \(-0.125622\pi\)
0.923130 + 0.384488i \(0.125622\pi\)
\(524\) 2.88770e9 0.876784
\(525\) 0 0
\(526\) −1.07611e9 −0.322407
\(527\) −1.19312e9 −0.355097
\(528\) 0 0
\(529\) −8.08702e8 −0.237517
\(530\) 2.12587e9 0.620256
\(531\) 0 0
\(532\) −1.18903e8 −0.0342376
\(533\) 4.67757e9 1.33806
\(534\) 0 0
\(535\) 3.57780e9 1.01013
\(536\) −2.16553e9 −0.607417
\(537\) 0 0
\(538\) 4.92247e8 0.136284
\(539\) −6.23499e8 −0.171504
\(540\) 0 0
\(541\) 7.70631e8 0.209245 0.104623 0.994512i \(-0.466637\pi\)
0.104623 + 0.994512i \(0.466637\pi\)
\(542\) −3.34294e8 −0.0901845
\(543\) 0 0
\(544\) 2.27626e8 0.0606215
\(545\) 1.02487e10 2.71194
\(546\) 0 0
\(547\) 5.56573e9 1.45401 0.727004 0.686634i \(-0.240912\pi\)
0.727004 + 0.686634i \(0.240912\pi\)
\(548\) 1.78474e9 0.463279
\(549\) 0 0
\(550\) 5.21683e9 1.33702
\(551\) 1.28487e9 0.327210
\(552\) 0 0
\(553\) −2.08189e9 −0.523503
\(554\) −5.27871e9 −1.31900
\(555\) 0 0
\(556\) 7.54431e8 0.186148
\(557\) −1.80145e9 −0.441702 −0.220851 0.975308i \(-0.570884\pi\)
−0.220851 + 0.975308i \(0.570884\pi\)
\(558\) 0 0
\(559\) 6.52071e9 1.57890
\(560\) 6.30141e8 0.151628
\(561\) 0 0
\(562\) −1.16439e9 −0.276708
\(563\) −2.58295e9 −0.610011 −0.305005 0.952351i \(-0.598658\pi\)
−0.305005 + 0.952351i \(0.598658\pi\)
\(564\) 0 0
\(565\) 6.15376e9 1.43539
\(566\) 2.51046e9 0.581964
\(567\) 0 0
\(568\) −1.55031e9 −0.354975
\(569\) 1.40190e9 0.319025 0.159512 0.987196i \(-0.449008\pi\)
0.159512 + 0.987196i \(0.449008\pi\)
\(570\) 0 0
\(571\) −7.25650e8 −0.163118 −0.0815588 0.996669i \(-0.525990\pi\)
−0.0815588 + 0.996669i \(0.525990\pi\)
\(572\) 3.90275e9 0.871937
\(573\) 0 0
\(574\) 1.11548e9 0.246189
\(575\) −6.26949e9 −1.37529
\(576\) 0 0
\(577\) −6.05247e9 −1.31165 −0.655824 0.754914i \(-0.727679\pi\)
−0.655824 + 0.754914i \(0.727679\pi\)
\(578\) 2.89667e9 0.623952
\(579\) 0 0
\(580\) −6.80927e9 −1.44912
\(581\) −3.82936e8 −0.0810047
\(582\) 0 0
\(583\) 3.13986e9 0.656252
\(584\) 3.00285e9 0.623862
\(585\) 0 0
\(586\) −7.43441e8 −0.152618
\(587\) 6.10151e9 1.24510 0.622550 0.782580i \(-0.286097\pi\)
0.622550 + 0.782580i \(0.286097\pi\)
\(588\) 0 0
\(589\) −9.30318e8 −0.187598
\(590\) 5.82641e9 1.16794
\(591\) 0 0
\(592\) 1.06864e9 0.211692
\(593\) −6.57021e9 −1.29386 −0.646931 0.762548i \(-0.723948\pi\)
−0.646931 + 0.762548i \(0.723948\pi\)
\(594\) 0 0
\(595\) −1.06869e9 −0.207989
\(596\) −2.46062e9 −0.476083
\(597\) 0 0
\(598\) −4.69026e9 −0.896897
\(599\) 9.50755e9 1.80749 0.903743 0.428076i \(-0.140809\pi\)
0.903743 + 0.428076i \(0.140809\pi\)
\(600\) 0 0
\(601\) −8.37769e9 −1.57421 −0.787106 0.616817i \(-0.788422\pi\)
−0.787106 + 0.616817i \(0.788422\pi\)
\(602\) 1.55502e9 0.290501
\(603\) 0 0
\(604\) −2.50791e9 −0.463108
\(605\) 3.85690e9 0.708099
\(606\) 0 0
\(607\) 4.19736e9 0.761756 0.380878 0.924625i \(-0.375622\pi\)
0.380878 + 0.924625i \(0.375622\pi\)
\(608\) 1.77488e8 0.0320264
\(609\) 0 0
\(610\) −4.26266e9 −0.760371
\(611\) −1.25981e9 −0.223440
\(612\) 0 0
\(613\) −4.10106e9 −0.719093 −0.359546 0.933127i \(-0.617069\pi\)
−0.359546 + 0.933127i \(0.617069\pi\)
\(614\) −2.80229e9 −0.488567
\(615\) 0 0
\(616\) 9.30704e8 0.160428
\(617\) 7.10665e9 1.21806 0.609028 0.793149i \(-0.291560\pi\)
0.609028 + 0.793149i \(0.291560\pi\)
\(618\) 0 0
\(619\) −2.58428e9 −0.437948 −0.218974 0.975731i \(-0.570271\pi\)
−0.218974 + 0.975731i \(0.570271\pi\)
\(620\) 4.93031e9 0.830813
\(621\) 0 0
\(622\) −2.42591e9 −0.404211
\(623\) −2.86753e9 −0.475117
\(624\) 0 0
\(625\) −5.76061e8 −0.0943818
\(626\) −8.64234e8 −0.140806
\(627\) 0 0
\(628\) −2.28102e9 −0.367510
\(629\) −1.81235e9 −0.290379
\(630\) 0 0
\(631\) −3.29857e9 −0.522665 −0.261332 0.965249i \(-0.584162\pi\)
−0.261332 + 0.965249i \(0.584162\pi\)
\(632\) 3.10766e9 0.489692
\(633\) 0 0
\(634\) 2.57555e9 0.401382
\(635\) −8.19714e9 −1.27044
\(636\) 0 0
\(637\) −1.35373e9 −0.207512
\(638\) −1.00571e10 −1.53321
\(639\) 0 0
\(640\) −9.40618e8 −0.141835
\(641\) −7.23119e9 −1.08444 −0.542221 0.840236i \(-0.682416\pi\)
−0.542221 + 0.840236i \(0.682416\pi\)
\(642\) 0 0
\(643\) −7.61434e9 −1.12952 −0.564760 0.825255i \(-0.691031\pi\)
−0.564760 + 0.825255i \(0.691031\pi\)
\(644\) −1.11850e9 −0.165020
\(645\) 0 0
\(646\) −3.01011e8 −0.0439308
\(647\) 4.63934e8 0.0673428 0.0336714 0.999433i \(-0.489280\pi\)
0.0336714 + 0.999433i \(0.489280\pi\)
\(648\) 0 0
\(649\) 8.60548e9 1.23572
\(650\) 1.13267e10 1.61773
\(651\) 0 0
\(652\) −2.13094e9 −0.301096
\(653\) −3.44460e9 −0.484108 −0.242054 0.970263i \(-0.577821\pi\)
−0.242054 + 0.970263i \(0.577821\pi\)
\(654\) 0 0
\(655\) 2.02374e10 2.81391
\(656\) −1.66509e9 −0.230289
\(657\) 0 0
\(658\) −3.00432e8 −0.0411107
\(659\) 6.21207e9 0.845546 0.422773 0.906236i \(-0.361057\pi\)
0.422773 + 0.906236i \(0.361057\pi\)
\(660\) 0 0
\(661\) −5.15390e9 −0.694114 −0.347057 0.937844i \(-0.612819\pi\)
−0.347057 + 0.937844i \(0.612819\pi\)
\(662\) −8.99173e9 −1.20459
\(663\) 0 0
\(664\) 5.71614e8 0.0757730
\(665\) −8.33293e8 −0.109881
\(666\) 0 0
\(667\) 1.20865e10 1.57710
\(668\) −4.62758e9 −0.600671
\(669\) 0 0
\(670\) −1.51763e10 −1.94942
\(671\) −6.29585e9 −0.804499
\(672\) 0 0
\(673\) 1.51567e9 0.191669 0.0958346 0.995397i \(-0.469448\pi\)
0.0958346 + 0.995397i \(0.469448\pi\)
\(674\) −9.37090e9 −1.17889
\(675\) 0 0
\(676\) 4.45769e9 0.555005
\(677\) 2.55494e9 0.316461 0.158231 0.987402i \(-0.449421\pi\)
0.158231 + 0.987402i \(0.449421\pi\)
\(678\) 0 0
\(679\) −4.40737e9 −0.540300
\(680\) 1.59524e9 0.194556
\(681\) 0 0
\(682\) 7.28196e9 0.879028
\(683\) 1.40038e10 1.68179 0.840896 0.541197i \(-0.182029\pi\)
0.840896 + 0.541197i \(0.182029\pi\)
\(684\) 0 0
\(685\) 1.25077e10 1.48683
\(686\) −3.22829e8 −0.0381802
\(687\) 0 0
\(688\) −2.32119e9 −0.271739
\(689\) 6.81722e9 0.794036
\(690\) 0 0
\(691\) −5.80692e9 −0.669534 −0.334767 0.942301i \(-0.608658\pi\)
−0.334767 + 0.942301i \(0.608658\pi\)
\(692\) −5.34071e9 −0.612672
\(693\) 0 0
\(694\) −1.10990e10 −1.26045
\(695\) 5.28716e9 0.597415
\(696\) 0 0
\(697\) 2.82390e9 0.315889
\(698\) 4.72672e9 0.526097
\(699\) 0 0
\(700\) 2.70112e9 0.297646
\(701\) 9.32076e9 1.02197 0.510985 0.859589i \(-0.329281\pi\)
0.510985 + 0.859589i \(0.329281\pi\)
\(702\) 0 0
\(703\) −1.41316e9 −0.153408
\(704\) −1.38927e9 −0.150066
\(705\) 0 0
\(706\) −1.10114e10 −1.17768
\(707\) −3.93279e9 −0.418536
\(708\) 0 0
\(709\) −1.15982e10 −1.22216 −0.611080 0.791569i \(-0.709265\pi\)
−0.611080 + 0.791569i \(0.709265\pi\)
\(710\) −1.08648e10 −1.13924
\(711\) 0 0
\(712\) 4.28040e9 0.444431
\(713\) −8.75132e9 −0.904191
\(714\) 0 0
\(715\) 2.73511e10 2.79836
\(716\) −7.38971e8 −0.0752371
\(717\) 0 0
\(718\) 3.17818e8 0.0320437
\(719\) −1.50137e9 −0.150638 −0.0753191 0.997159i \(-0.523998\pi\)
−0.0753191 + 0.997159i \(0.523998\pi\)
\(720\) 0 0
\(721\) 5.72245e9 0.568602
\(722\) 6.91626e9 0.683898
\(723\) 0 0
\(724\) 3.89259e9 0.381200
\(725\) −2.91882e10 −2.84462
\(726\) 0 0
\(727\) 5.04679e9 0.487130 0.243565 0.969885i \(-0.421683\pi\)
0.243565 + 0.969885i \(0.421683\pi\)
\(728\) 2.02073e9 0.194110
\(729\) 0 0
\(730\) 2.10444e10 2.00220
\(731\) 3.93662e9 0.372746
\(732\) 0 0
\(733\) 5.83993e9 0.547701 0.273850 0.961772i \(-0.411703\pi\)
0.273850 + 0.961772i \(0.411703\pi\)
\(734\) −4.92349e9 −0.459555
\(735\) 0 0
\(736\) 1.66960e9 0.154362
\(737\) −2.24151e10 −2.06255
\(738\) 0 0
\(739\) −1.77537e10 −1.61820 −0.809101 0.587669i \(-0.800046\pi\)
−0.809101 + 0.587669i \(0.800046\pi\)
\(740\) 7.48917e9 0.679395
\(741\) 0 0
\(742\) 1.62573e9 0.146094
\(743\) −1.81295e10 −1.62153 −0.810765 0.585371i \(-0.800949\pi\)
−0.810765 + 0.585371i \(0.800949\pi\)
\(744\) 0 0
\(745\) −1.72444e10 −1.52792
\(746\) 2.37328e9 0.209297
\(747\) 0 0
\(748\) 2.35613e9 0.205847
\(749\) 2.73607e9 0.237925
\(750\) 0 0
\(751\) −2.20680e10 −1.90118 −0.950590 0.310450i \(-0.899520\pi\)
−0.950590 + 0.310450i \(0.899520\pi\)
\(752\) 4.48458e8 0.0384556
\(753\) 0 0
\(754\) −2.18359e10 −1.85512
\(755\) −1.75758e10 −1.48628
\(756\) 0 0
\(757\) −3.25204e9 −0.272471 −0.136236 0.990676i \(-0.543500\pi\)
−0.136236 + 0.990676i \(0.543500\pi\)
\(758\) −9.00838e8 −0.0751285
\(759\) 0 0
\(760\) 1.24387e9 0.102784
\(761\) −5.79031e9 −0.476272 −0.238136 0.971232i \(-0.576536\pi\)
−0.238136 + 0.971232i \(0.576536\pi\)
\(762\) 0 0
\(763\) 7.83753e9 0.638768
\(764\) −6.79549e9 −0.551307
\(765\) 0 0
\(766\) −1.55066e10 −1.24656
\(767\) 1.86841e10 1.49516
\(768\) 0 0
\(769\) 1.86517e10 1.47903 0.739515 0.673140i \(-0.235055\pi\)
0.739515 + 0.673140i \(0.235055\pi\)
\(770\) 6.52251e9 0.514870
\(771\) 0 0
\(772\) −7.43048e9 −0.581241
\(773\) −1.15337e10 −0.898133 −0.449066 0.893498i \(-0.648243\pi\)
−0.449066 + 0.893498i \(0.648243\pi\)
\(774\) 0 0
\(775\) 2.11340e10 1.63089
\(776\) 6.57892e9 0.505404
\(777\) 0 0
\(778\) 1.31155e10 0.998522
\(779\) 2.20190e9 0.166884
\(780\) 0 0
\(781\) −1.60470e10 −1.20536
\(782\) −2.83156e9 −0.211739
\(783\) 0 0
\(784\) 4.81890e8 0.0357143
\(785\) −1.59857e10 −1.17947
\(786\) 0 0
\(787\) 1.70616e10 1.24769 0.623847 0.781547i \(-0.285569\pi\)
0.623847 + 0.781547i \(0.285569\pi\)
\(788\) 4.42596e8 0.0322230
\(789\) 0 0
\(790\) 2.17789e10 1.57160
\(791\) 4.70599e9 0.338091
\(792\) 0 0
\(793\) −1.36694e10 −0.973407
\(794\) 4.50104e9 0.319111
\(795\) 0 0
\(796\) −8.66597e9 −0.609006
\(797\) 2.24165e10 1.56843 0.784213 0.620491i \(-0.213067\pi\)
0.784213 + 0.620491i \(0.213067\pi\)
\(798\) 0 0
\(799\) −7.60562e8 −0.0527498
\(800\) −4.03199e9 −0.278423
\(801\) 0 0
\(802\) 4.73161e9 0.323891
\(803\) 3.10821e10 2.11839
\(804\) 0 0
\(805\) −7.83863e9 −0.529608
\(806\) 1.58105e10 1.06359
\(807\) 0 0
\(808\) 5.87052e9 0.391505
\(809\) −2.53527e10 −1.68347 −0.841733 0.539894i \(-0.818464\pi\)
−0.841733 + 0.539894i \(0.818464\pi\)
\(810\) 0 0
\(811\) 1.47598e10 0.971647 0.485823 0.874057i \(-0.338520\pi\)
0.485823 + 0.874057i \(0.338520\pi\)
\(812\) −5.20729e9 −0.341323
\(813\) 0 0
\(814\) 1.10613e10 0.718823
\(815\) −1.49340e10 −0.966326
\(816\) 0 0
\(817\) 3.06952e9 0.196922
\(818\) −8.19452e9 −0.523464
\(819\) 0 0
\(820\) −1.16692e10 −0.739080
\(821\) 1.90667e10 1.20247 0.601236 0.799072i \(-0.294675\pi\)
0.601236 + 0.799072i \(0.294675\pi\)
\(822\) 0 0
\(823\) −7.79947e9 −0.487714 −0.243857 0.969811i \(-0.578413\pi\)
−0.243857 + 0.969811i \(0.578413\pi\)
\(824\) −8.54197e9 −0.531879
\(825\) 0 0
\(826\) 4.45566e9 0.275094
\(827\) 1.51860e10 0.933628 0.466814 0.884356i \(-0.345402\pi\)
0.466814 + 0.884356i \(0.345402\pi\)
\(828\) 0 0
\(829\) 2.96321e8 0.0180643 0.00903217 0.999959i \(-0.497125\pi\)
0.00903217 + 0.999959i \(0.497125\pi\)
\(830\) 4.00595e9 0.243183
\(831\) 0 0
\(832\) −3.01636e9 −0.181573
\(833\) −8.17261e8 −0.0489896
\(834\) 0 0
\(835\) −3.24308e10 −1.92777
\(836\) 1.83716e9 0.108749
\(837\) 0 0
\(838\) −7.11600e9 −0.417717
\(839\) −2.96140e10 −1.73113 −0.865566 0.500795i \(-0.833041\pi\)
−0.865566 + 0.500795i \(0.833041\pi\)
\(840\) 0 0
\(841\) 3.90199e10 2.26204
\(842\) 1.94492e10 1.12282
\(843\) 0 0
\(844\) 1.22044e10 0.698742
\(845\) 3.12402e10 1.78121
\(846\) 0 0
\(847\) 2.94950e9 0.166785
\(848\) −2.42674e9 −0.136659
\(849\) 0 0
\(850\) 6.83805e9 0.381915
\(851\) −1.32933e10 −0.739400
\(852\) 0 0
\(853\) −1.19384e10 −0.658606 −0.329303 0.944224i \(-0.606814\pi\)
−0.329303 + 0.944224i \(0.606814\pi\)
\(854\) −3.25980e9 −0.179097
\(855\) 0 0
\(856\) −4.08416e9 −0.222559
\(857\) 1.12597e10 0.611072 0.305536 0.952181i \(-0.401164\pi\)
0.305536 + 0.952181i \(0.401164\pi\)
\(858\) 0 0
\(859\) −1.27863e10 −0.688284 −0.344142 0.938918i \(-0.611830\pi\)
−0.344142 + 0.938918i \(0.611830\pi\)
\(860\) −1.62673e10 −0.872107
\(861\) 0 0
\(862\) 1.32159e10 0.702783
\(863\) 3.27370e10 1.73381 0.866904 0.498474i \(-0.166106\pi\)
0.866904 + 0.498474i \(0.166106\pi\)
\(864\) 0 0
\(865\) −3.74285e10 −1.96628
\(866\) 8.63573e8 0.0451842
\(867\) 0 0
\(868\) 3.77038e9 0.195689
\(869\) 3.21670e10 1.66280
\(870\) 0 0
\(871\) −4.86673e10 −2.49559
\(872\) −1.16992e10 −0.597513
\(873\) 0 0
\(874\) −2.20787e9 −0.111862
\(875\) 6.91087e9 0.348742
\(876\) 0 0
\(877\) −7.47496e8 −0.0374205 −0.0187103 0.999825i \(-0.505956\pi\)
−0.0187103 + 0.999825i \(0.505956\pi\)
\(878\) 4.39952e9 0.219369
\(879\) 0 0
\(880\) −9.73623e9 −0.481616
\(881\) 2.71804e10 1.33918 0.669591 0.742730i \(-0.266469\pi\)
0.669591 + 0.742730i \(0.266469\pi\)
\(882\) 0 0
\(883\) −3.01672e10 −1.47460 −0.737298 0.675567i \(-0.763899\pi\)
−0.737298 + 0.675567i \(0.763899\pi\)
\(884\) 5.11560e9 0.249066
\(885\) 0 0
\(886\) 9.34612e9 0.451454
\(887\) 4.76420e9 0.229223 0.114611 0.993410i \(-0.463438\pi\)
0.114611 + 0.993410i \(0.463438\pi\)
\(888\) 0 0
\(889\) −6.26864e9 −0.299238
\(890\) 2.99977e10 1.42634
\(891\) 0 0
\(892\) 1.64242e10 0.774830
\(893\) −5.93037e8 −0.0278677
\(894\) 0 0
\(895\) −5.17882e9 −0.241463
\(896\) −7.19323e8 −0.0334077
\(897\) 0 0
\(898\) 2.24551e10 1.03478
\(899\) −4.07426e10 −1.87021
\(900\) 0 0
\(901\) 4.11563e9 0.187456
\(902\) −1.72351e10 −0.781971
\(903\) 0 0
\(904\) −7.02469e9 −0.316255
\(905\) 2.72798e10 1.22341
\(906\) 0 0
\(907\) −1.97305e10 −0.878036 −0.439018 0.898478i \(-0.644674\pi\)
−0.439018 + 0.898478i \(0.644674\pi\)
\(908\) −6.63785e9 −0.294257
\(909\) 0 0
\(910\) 1.41616e10 0.622969
\(911\) 2.00829e10 0.880059 0.440029 0.897983i \(-0.354968\pi\)
0.440029 + 0.897983i \(0.354968\pi\)
\(912\) 0 0
\(913\) 5.91670e9 0.257295
\(914\) 1.04490e10 0.452649
\(915\) 0 0
\(916\) −1.40684e8 −0.00604798
\(917\) 1.54763e10 0.662786
\(918\) 0 0
\(919\) 1.19622e10 0.508402 0.254201 0.967151i \(-0.418188\pi\)
0.254201 + 0.967151i \(0.418188\pi\)
\(920\) 1.17008e10 0.495403
\(921\) 0 0
\(922\) −2.84781e10 −1.19661
\(923\) −3.48410e10 −1.45843
\(924\) 0 0
\(925\) 3.21026e10 1.33366
\(926\) −1.80305e10 −0.746222
\(927\) 0 0
\(928\) 7.77298e9 0.319278
\(929\) −2.41229e10 −0.987130 −0.493565 0.869709i \(-0.664307\pi\)
−0.493565 + 0.869709i \(0.664307\pi\)
\(930\) 0 0
\(931\) −6.37248e8 −0.0258812
\(932\) 1.16470e10 0.471259
\(933\) 0 0
\(934\) 1.82048e10 0.731092
\(935\) 1.65121e10 0.660637
\(936\) 0 0
\(937\) −1.06927e10 −0.424617 −0.212308 0.977203i \(-0.568098\pi\)
−0.212308 + 0.977203i \(0.568098\pi\)
\(938\) −1.16059e10 −0.459164
\(939\) 0 0
\(940\) 3.14286e9 0.123418
\(941\) 3.74453e10 1.46499 0.732493 0.680775i \(-0.238357\pi\)
0.732493 + 0.680775i \(0.238357\pi\)
\(942\) 0 0
\(943\) 2.07128e10 0.804356
\(944\) −6.65101e9 −0.257327
\(945\) 0 0
\(946\) −2.40264e10 −0.922719
\(947\) 2.02422e10 0.774522 0.387261 0.921970i \(-0.373421\pi\)
0.387261 + 0.921970i \(0.373421\pi\)
\(948\) 0 0
\(949\) 6.74850e10 2.56316
\(950\) 5.33187e9 0.201766
\(951\) 0 0
\(952\) 1.21994e9 0.0458255
\(953\) 1.03125e10 0.385955 0.192978 0.981203i \(-0.438186\pi\)
0.192978 + 0.981203i \(0.438186\pi\)
\(954\) 0 0
\(955\) −4.76238e10 −1.76934
\(956\) −1.72283e10 −0.637732
\(957\) 0 0
\(958\) −2.30206e10 −0.845935
\(959\) 9.56507e9 0.350206
\(960\) 0 0
\(961\) 1.98738e9 0.0722353
\(962\) 2.40162e10 0.869744
\(963\) 0 0
\(964\) 1.26226e10 0.453815
\(965\) −5.20739e10 −1.86541
\(966\) 0 0
\(967\) 5.65967e9 0.201279 0.100640 0.994923i \(-0.467911\pi\)
0.100640 + 0.994923i \(0.467911\pi\)
\(968\) −4.40276e9 −0.156013
\(969\) 0 0
\(970\) 4.61061e10 1.62202
\(971\) −5.37776e9 −0.188510 −0.0942549 0.995548i \(-0.530047\pi\)
−0.0942549 + 0.995548i \(0.530047\pi\)
\(972\) 0 0
\(973\) 4.04328e9 0.140714
\(974\) 1.23359e10 0.427776
\(975\) 0 0
\(976\) 4.86594e9 0.167530
\(977\) −5.70574e9 −0.195741 −0.0978703 0.995199i \(-0.531203\pi\)
−0.0978703 + 0.995199i \(0.531203\pi\)
\(978\) 0 0
\(979\) 4.43059e10 1.50911
\(980\) 3.37716e9 0.114620
\(981\) 0 0
\(982\) 2.58181e10 0.870030
\(983\) −4.81415e10 −1.61653 −0.808263 0.588822i \(-0.799592\pi\)
−0.808263 + 0.588822i \(0.799592\pi\)
\(984\) 0 0
\(985\) 3.10178e9 0.103415
\(986\) −1.31826e10 −0.437957
\(987\) 0 0
\(988\) 3.98882e9 0.131582
\(989\) 2.88744e10 0.949132
\(990\) 0 0
\(991\) −7.12168e7 −0.00232447 −0.00116224 0.999999i \(-0.500370\pi\)
−0.00116224 + 0.999999i \(0.500370\pi\)
\(992\) −5.62809e9 −0.183050
\(993\) 0 0
\(994\) −8.30867e9 −0.268336
\(995\) −6.07324e10 −1.95452
\(996\) 0 0
\(997\) 1.21125e10 0.387080 0.193540 0.981092i \(-0.438003\pi\)
0.193540 + 0.981092i \(0.438003\pi\)
\(998\) 1.84227e10 0.586674
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.a.k.1.2 2
3.2 odd 2 126.8.a.l.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.8.a.k.1.2 2 1.1 even 1 trivial
126.8.a.l.1.1 yes 2 3.2 odd 2