Properties

Label 126.8.a.j.1.2
Level $126$
Weight $8$
Character 126.1
Self dual yes
Analytic conductor $39.361$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-16,0,128,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{499}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 499 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(22.3383\) of defining polynomial
Character \(\chi\) \(=\) 126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} +162.030 q^{5} -343.000 q^{7} -512.000 q^{8} -1296.24 q^{10} -1306.63 q^{11} +9652.63 q^{13} +2744.00 q^{14} +4096.00 q^{16} +29490.0 q^{17} -40827.4 q^{19} +10369.9 q^{20} +10453.0 q^{22} -27081.9 q^{23} -51871.3 q^{25} -77221.0 q^{26} -21952.0 q^{28} +201460. q^{29} -195315. q^{31} -32768.0 q^{32} -235920. q^{34} -55576.2 q^{35} +291580. q^{37} +326619. q^{38} -82959.3 q^{40} -183410. q^{41} -255395. q^{43} -83624.1 q^{44} +216655. q^{46} +980650. q^{47} +117649. q^{49} +414971. q^{50} +617768. q^{52} +1.94956e6 q^{53} -211713. q^{55} +175616. q^{56} -1.61168e6 q^{58} +312867. q^{59} +1.44334e6 q^{61} +1.56252e6 q^{62} +262144. q^{64} +1.56401e6 q^{65} +2.24319e6 q^{67} +1.88736e6 q^{68} +444610. q^{70} +1.13349e6 q^{71} -1.82440e6 q^{73} -2.33264e6 q^{74} -2.61295e6 q^{76} +448173. q^{77} +6.31863e6 q^{79} +663674. q^{80} +1.46728e6 q^{82} +7.56653e6 q^{83} +4.77826e6 q^{85} +2.04316e6 q^{86} +668993. q^{88} +5.98398e6 q^{89} -3.31085e6 q^{91} -1.73324e6 q^{92} -7.84520e6 q^{94} -6.61526e6 q^{95} +3.97074e6 q^{97} -941192. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 128 q^{4} + 56 q^{5} - 686 q^{7} - 1024 q^{8} - 448 q^{10} + 3016 q^{11} - 4284 q^{13} + 5488 q^{14} + 8192 q^{16} + 22792 q^{17} - 15176 q^{19} + 3584 q^{20} - 24128 q^{22} + 52792 q^{23}+ \cdots - 1882384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 162.030 0.579696 0.289848 0.957073i \(-0.406395\pi\)
0.289848 + 0.957073i \(0.406395\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −1296.24 −0.409907
\(11\) −1306.63 −0.295990 −0.147995 0.988988i \(-0.547282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(12\) 0 0
\(13\) 9652.63 1.21855 0.609276 0.792959i \(-0.291460\pi\)
0.609276 + 0.792959i \(0.291460\pi\)
\(14\) 2744.00 0.267261
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 29490.0 1.45581 0.727904 0.685679i \(-0.240495\pi\)
0.727904 + 0.685679i \(0.240495\pi\)
\(18\) 0 0
\(19\) −40827.4 −1.36557 −0.682785 0.730619i \(-0.739232\pi\)
−0.682785 + 0.730619i \(0.739232\pi\)
\(20\) 10369.9 0.289848
\(21\) 0 0
\(22\) 10453.0 0.209297
\(23\) −27081.9 −0.464122 −0.232061 0.972701i \(-0.574547\pi\)
−0.232061 + 0.972701i \(0.574547\pi\)
\(24\) 0 0
\(25\) −51871.3 −0.663953
\(26\) −77221.0 −0.861646
\(27\) 0 0
\(28\) −21952.0 −0.188982
\(29\) 201460. 1.53390 0.766949 0.641708i \(-0.221774\pi\)
0.766949 + 0.641708i \(0.221774\pi\)
\(30\) 0 0
\(31\) −195315. −1.17752 −0.588762 0.808306i \(-0.700384\pi\)
−0.588762 + 0.808306i \(0.700384\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) −235920. −1.02941
\(35\) −55576.2 −0.219104
\(36\) 0 0
\(37\) 291580. 0.946349 0.473175 0.880969i \(-0.343108\pi\)
0.473175 + 0.880969i \(0.343108\pi\)
\(38\) 326619. 0.965604
\(39\) 0 0
\(40\) −82959.3 −0.204953
\(41\) −183410. −0.415604 −0.207802 0.978171i \(-0.566631\pi\)
−0.207802 + 0.978171i \(0.566631\pi\)
\(42\) 0 0
\(43\) −255395. −0.489861 −0.244930 0.969541i \(-0.578765\pi\)
−0.244930 + 0.969541i \(0.578765\pi\)
\(44\) −83624.1 −0.147995
\(45\) 0 0
\(46\) 216655. 0.328184
\(47\) 980650. 1.37775 0.688877 0.724879i \(-0.258104\pi\)
0.688877 + 0.724879i \(0.258104\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 414971. 0.469486
\(51\) 0 0
\(52\) 617768. 0.609276
\(53\) 1.94956e6 1.79875 0.899374 0.437180i \(-0.144023\pi\)
0.899374 + 0.437180i \(0.144023\pi\)
\(54\) 0 0
\(55\) −211713. −0.171584
\(56\) 175616. 0.133631
\(57\) 0 0
\(58\) −1.61168e6 −1.08463
\(59\) 312867. 0.198325 0.0991626 0.995071i \(-0.468384\pi\)
0.0991626 + 0.995071i \(0.468384\pi\)
\(60\) 0 0
\(61\) 1.44334e6 0.814168 0.407084 0.913391i \(-0.366546\pi\)
0.407084 + 0.913391i \(0.366546\pi\)
\(62\) 1.56252e6 0.832635
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 1.56401e6 0.706389
\(66\) 0 0
\(67\) 2.24319e6 0.911180 0.455590 0.890190i \(-0.349428\pi\)
0.455590 + 0.890190i \(0.349428\pi\)
\(68\) 1.88736e6 0.727904
\(69\) 0 0
\(70\) 444610. 0.154930
\(71\) 1.13349e6 0.375848 0.187924 0.982184i \(-0.439824\pi\)
0.187924 + 0.982184i \(0.439824\pi\)
\(72\) 0 0
\(73\) −1.82440e6 −0.548896 −0.274448 0.961602i \(-0.588495\pi\)
−0.274448 + 0.961602i \(0.588495\pi\)
\(74\) −2.33264e6 −0.669170
\(75\) 0 0
\(76\) −2.61295e6 −0.682785
\(77\) 448173. 0.111874
\(78\) 0 0
\(79\) 6.31863e6 1.44188 0.720938 0.693000i \(-0.243711\pi\)
0.720938 + 0.693000i \(0.243711\pi\)
\(80\) 663674. 0.144924
\(81\) 0 0
\(82\) 1.46728e6 0.293876
\(83\) 7.56653e6 1.45252 0.726262 0.687418i \(-0.241256\pi\)
0.726262 + 0.687418i \(0.241256\pi\)
\(84\) 0 0
\(85\) 4.77826e6 0.843925
\(86\) 2.04316e6 0.346384
\(87\) 0 0
\(88\) 668993. 0.104648
\(89\) 5.98398e6 0.899757 0.449879 0.893090i \(-0.351467\pi\)
0.449879 + 0.893090i \(0.351467\pi\)
\(90\) 0 0
\(91\) −3.31085e6 −0.460569
\(92\) −1.73324e6 −0.232061
\(93\) 0 0
\(94\) −7.84520e6 −0.974219
\(95\) −6.61526e6 −0.791615
\(96\) 0 0
\(97\) 3.97074e6 0.441744 0.220872 0.975303i \(-0.429110\pi\)
0.220872 + 0.975303i \(0.429110\pi\)
\(98\) −941192. −0.101015
\(99\) 0 0
\(100\) −3.31977e6 −0.331977
\(101\) −1.11442e6 −0.107627 −0.0538137 0.998551i \(-0.517138\pi\)
−0.0538137 + 0.998551i \(0.517138\pi\)
\(102\) 0 0
\(103\) −1.40649e6 −0.126826 −0.0634129 0.997987i \(-0.520199\pi\)
−0.0634129 + 0.997987i \(0.520199\pi\)
\(104\) −4.94214e6 −0.430823
\(105\) 0 0
\(106\) −1.55965e7 −1.27191
\(107\) −9.78235e6 −0.771969 −0.385985 0.922505i \(-0.626138\pi\)
−0.385985 + 0.922505i \(0.626138\pi\)
\(108\) 0 0
\(109\) 1.24723e7 0.922472 0.461236 0.887278i \(-0.347406\pi\)
0.461236 + 0.887278i \(0.347406\pi\)
\(110\) 1.69370e6 0.121328
\(111\) 0 0
\(112\) −1.40493e6 −0.0944911
\(113\) 1.75625e7 1.14502 0.572510 0.819898i \(-0.305970\pi\)
0.572510 + 0.819898i \(0.305970\pi\)
\(114\) 0 0
\(115\) −4.38808e6 −0.269049
\(116\) 1.28935e7 0.766949
\(117\) 0 0
\(118\) −2.50294e6 −0.140237
\(119\) −1.01151e7 −0.550244
\(120\) 0 0
\(121\) −1.77799e7 −0.912390
\(122\) −1.15467e7 −0.575704
\(123\) 0 0
\(124\) −1.25002e7 −0.588762
\(125\) −2.10633e7 −0.964586
\(126\) 0 0
\(127\) 1.09866e7 0.475940 0.237970 0.971273i \(-0.423518\pi\)
0.237970 + 0.971273i \(0.423518\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) −1.25121e7 −0.499492
\(131\) −2.50735e7 −0.974462 −0.487231 0.873273i \(-0.661993\pi\)
−0.487231 + 0.873273i \(0.661993\pi\)
\(132\) 0 0
\(133\) 1.40038e7 0.516137
\(134\) −1.79455e7 −0.644301
\(135\) 0 0
\(136\) −1.50989e7 −0.514706
\(137\) −2.29312e7 −0.761913 −0.380957 0.924593i \(-0.624405\pi\)
−0.380957 + 0.924593i \(0.624405\pi\)
\(138\) 0 0
\(139\) 2.68924e6 0.0849333 0.0424666 0.999098i \(-0.486478\pi\)
0.0424666 + 0.999098i \(0.486478\pi\)
\(140\) −3.55688e6 −0.109552
\(141\) 0 0
\(142\) −9.06790e6 −0.265765
\(143\) −1.26124e7 −0.360679
\(144\) 0 0
\(145\) 3.26426e7 0.889194
\(146\) 1.45952e7 0.388128
\(147\) 0 0
\(148\) 1.86611e7 0.473175
\(149\) −6.11013e7 −1.51321 −0.756603 0.653874i \(-0.773143\pi\)
−0.756603 + 0.653874i \(0.773143\pi\)
\(150\) 0 0
\(151\) 7.26479e7 1.71713 0.858567 0.512702i \(-0.171355\pi\)
0.858567 + 0.512702i \(0.171355\pi\)
\(152\) 2.09036e7 0.482802
\(153\) 0 0
\(154\) −3.58538e6 −0.0791067
\(155\) −3.16469e7 −0.682605
\(156\) 0 0
\(157\) 6.77448e6 0.139710 0.0698549 0.997557i \(-0.477746\pi\)
0.0698549 + 0.997557i \(0.477746\pi\)
\(158\) −5.05490e7 −1.01956
\(159\) 0 0
\(160\) −5.30939e6 −0.102477
\(161\) 9.28909e6 0.175422
\(162\) 0 0
\(163\) 3.54014e6 0.0640271 0.0320136 0.999487i \(-0.489808\pi\)
0.0320136 + 0.999487i \(0.489808\pi\)
\(164\) −1.17382e7 −0.207802
\(165\) 0 0
\(166\) −6.05322e7 −1.02709
\(167\) 1.72103e7 0.285944 0.142972 0.989727i \(-0.454334\pi\)
0.142972 + 0.989727i \(0.454334\pi\)
\(168\) 0 0
\(169\) 3.04247e7 0.484867
\(170\) −3.82261e7 −0.596745
\(171\) 0 0
\(172\) −1.63453e7 −0.244930
\(173\) 2.13356e7 0.313288 0.156644 0.987655i \(-0.449933\pi\)
0.156644 + 0.987655i \(0.449933\pi\)
\(174\) 0 0
\(175\) 1.77919e7 0.250951
\(176\) −5.35194e6 −0.0739975
\(177\) 0 0
\(178\) −4.78719e7 −0.636225
\(179\) 4.31704e7 0.562602 0.281301 0.959620i \(-0.409234\pi\)
0.281301 + 0.959620i \(0.409234\pi\)
\(180\) 0 0
\(181\) 1.39688e8 1.75099 0.875496 0.483226i \(-0.160535\pi\)
0.875496 + 0.483226i \(0.160535\pi\)
\(182\) 2.64868e7 0.325671
\(183\) 0 0
\(184\) 1.38659e7 0.164092
\(185\) 4.72446e7 0.548595
\(186\) 0 0
\(187\) −3.85325e7 −0.430905
\(188\) 6.27616e7 0.688877
\(189\) 0 0
\(190\) 5.29221e7 0.559757
\(191\) 9.77447e7 1.01502 0.507512 0.861645i \(-0.330565\pi\)
0.507512 + 0.861645i \(0.330565\pi\)
\(192\) 0 0
\(193\) −1.54728e8 −1.54924 −0.774619 0.632428i \(-0.782059\pi\)
−0.774619 + 0.632428i \(0.782059\pi\)
\(194\) −3.17659e7 −0.312360
\(195\) 0 0
\(196\) 7.52954e6 0.0714286
\(197\) −4.12582e7 −0.384484 −0.192242 0.981348i \(-0.561576\pi\)
−0.192242 + 0.981348i \(0.561576\pi\)
\(198\) 0 0
\(199\) −1.38189e8 −1.24305 −0.621524 0.783395i \(-0.713486\pi\)
−0.621524 + 0.783395i \(0.713486\pi\)
\(200\) 2.65581e7 0.234743
\(201\) 0 0
\(202\) 8.91534e6 0.0761041
\(203\) −6.91009e7 −0.579759
\(204\) 0 0
\(205\) −2.97179e7 −0.240924
\(206\) 1.12520e7 0.0896794
\(207\) 0 0
\(208\) 3.95372e7 0.304638
\(209\) 5.33462e7 0.404195
\(210\) 0 0
\(211\) 1.82690e8 1.33884 0.669418 0.742886i \(-0.266544\pi\)
0.669418 + 0.742886i \(0.266544\pi\)
\(212\) 1.24772e8 0.899374
\(213\) 0 0
\(214\) 7.82588e7 0.545865
\(215\) −4.13816e7 −0.283970
\(216\) 0 0
\(217\) 6.69931e7 0.445062
\(218\) −9.97783e7 −0.652286
\(219\) 0 0
\(220\) −1.35496e7 −0.0857921
\(221\) 2.84656e8 1.77398
\(222\) 0 0
\(223\) −1.72714e8 −1.04295 −0.521473 0.853268i \(-0.674617\pi\)
−0.521473 + 0.853268i \(0.674617\pi\)
\(224\) 1.12394e7 0.0668153
\(225\) 0 0
\(226\) −1.40500e8 −0.809651
\(227\) 8.47439e7 0.480859 0.240430 0.970667i \(-0.422712\pi\)
0.240430 + 0.970667i \(0.422712\pi\)
\(228\) 0 0
\(229\) −1.21817e8 −0.670324 −0.335162 0.942161i \(-0.608791\pi\)
−0.335162 + 0.942161i \(0.608791\pi\)
\(230\) 3.51046e7 0.190247
\(231\) 0 0
\(232\) −1.03148e8 −0.542315
\(233\) −1.48834e8 −0.770827 −0.385414 0.922744i \(-0.625941\pi\)
−0.385414 + 0.922744i \(0.625941\pi\)
\(234\) 0 0
\(235\) 1.58895e8 0.798677
\(236\) 2.00235e7 0.0991626
\(237\) 0 0
\(238\) 8.09206e7 0.389081
\(239\) 2.98943e8 1.41643 0.708216 0.705996i \(-0.249500\pi\)
0.708216 + 0.705996i \(0.249500\pi\)
\(240\) 0 0
\(241\) −2.69575e8 −1.24057 −0.620283 0.784378i \(-0.712982\pi\)
−0.620283 + 0.784378i \(0.712982\pi\)
\(242\) 1.42239e8 0.645157
\(243\) 0 0
\(244\) 9.23737e7 0.407084
\(245\) 1.90626e7 0.0828137
\(246\) 0 0
\(247\) −3.94092e8 −1.66402
\(248\) 1.00001e8 0.416318
\(249\) 0 0
\(250\) 1.68506e8 0.682065
\(251\) 3.22653e8 1.28789 0.643944 0.765072i \(-0.277297\pi\)
0.643944 + 0.765072i \(0.277297\pi\)
\(252\) 0 0
\(253\) 3.53859e7 0.137375
\(254\) −8.78931e7 −0.336540
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −4.00216e8 −1.47071 −0.735357 0.677679i \(-0.762986\pi\)
−0.735357 + 0.677679i \(0.762986\pi\)
\(258\) 0 0
\(259\) −1.00012e8 −0.357686
\(260\) 1.00097e8 0.353194
\(261\) 0 0
\(262\) 2.00588e8 0.689048
\(263\) −1.13867e8 −0.385969 −0.192985 0.981202i \(-0.561817\pi\)
−0.192985 + 0.981202i \(0.561817\pi\)
\(264\) 0 0
\(265\) 3.15886e8 1.04273
\(266\) −1.12030e8 −0.364964
\(267\) 0 0
\(268\) 1.43564e8 0.455590
\(269\) 4.53156e8 1.41943 0.709717 0.704487i \(-0.248823\pi\)
0.709717 + 0.704487i \(0.248823\pi\)
\(270\) 0 0
\(271\) −3.00573e8 −0.917397 −0.458699 0.888592i \(-0.651684\pi\)
−0.458699 + 0.888592i \(0.651684\pi\)
\(272\) 1.20791e8 0.363952
\(273\) 0 0
\(274\) 1.83450e8 0.538754
\(275\) 6.77765e7 0.196524
\(276\) 0 0
\(277\) 2.22674e8 0.629491 0.314746 0.949176i \(-0.398081\pi\)
0.314746 + 0.949176i \(0.398081\pi\)
\(278\) −2.15139e7 −0.0600569
\(279\) 0 0
\(280\) 2.84550e7 0.0774651
\(281\) −5.40173e8 −1.45232 −0.726158 0.687528i \(-0.758696\pi\)
−0.726158 + 0.687528i \(0.758696\pi\)
\(282\) 0 0
\(283\) −3.96552e8 −1.04003 −0.520017 0.854156i \(-0.674074\pi\)
−0.520017 + 0.854156i \(0.674074\pi\)
\(284\) 7.25432e7 0.187924
\(285\) 0 0
\(286\) 1.00899e8 0.255039
\(287\) 6.29096e7 0.157083
\(288\) 0 0
\(289\) 4.59323e8 1.11938
\(290\) −2.61141e8 −0.628755
\(291\) 0 0
\(292\) −1.16762e8 −0.274448
\(293\) 4.61303e8 1.07140 0.535698 0.844410i \(-0.320049\pi\)
0.535698 + 0.844410i \(0.320049\pi\)
\(294\) 0 0
\(295\) 5.06938e7 0.114968
\(296\) −1.49289e8 −0.334585
\(297\) 0 0
\(298\) 4.88810e8 1.07000
\(299\) −2.61412e8 −0.565556
\(300\) 0 0
\(301\) 8.76005e7 0.185150
\(302\) −5.81184e8 −1.21420
\(303\) 0 0
\(304\) −1.67229e8 −0.341393
\(305\) 2.33864e8 0.471970
\(306\) 0 0
\(307\) −1.59543e8 −0.314698 −0.157349 0.987543i \(-0.550295\pi\)
−0.157349 + 0.987543i \(0.550295\pi\)
\(308\) 2.86831e7 0.0559369
\(309\) 0 0
\(310\) 2.53175e8 0.482675
\(311\) −6.05166e8 −1.14081 −0.570405 0.821363i \(-0.693214\pi\)
−0.570405 + 0.821363i \(0.693214\pi\)
\(312\) 0 0
\(313\) 4.32355e8 0.796958 0.398479 0.917177i \(-0.369538\pi\)
0.398479 + 0.917177i \(0.369538\pi\)
\(314\) −5.41958e7 −0.0987898
\(315\) 0 0
\(316\) 4.04392e8 0.720938
\(317\) −9.05398e8 −1.59636 −0.798182 0.602416i \(-0.794205\pi\)
−0.798182 + 0.602416i \(0.794205\pi\)
\(318\) 0 0
\(319\) −2.63233e8 −0.454019
\(320\) 4.24752e7 0.0724620
\(321\) 0 0
\(322\) −7.43128e7 −0.124042
\(323\) −1.20400e9 −1.98801
\(324\) 0 0
\(325\) −5.00695e8 −0.809061
\(326\) −2.83211e7 −0.0452740
\(327\) 0 0
\(328\) 9.39059e7 0.146938
\(329\) −3.36363e8 −0.520742
\(330\) 0 0
\(331\) −7.73135e8 −1.17181 −0.585905 0.810379i \(-0.699261\pi\)
−0.585905 + 0.810379i \(0.699261\pi\)
\(332\) 4.84258e8 0.726262
\(333\) 0 0
\(334\) −1.37682e8 −0.202193
\(335\) 3.63464e8 0.528207
\(336\) 0 0
\(337\) −7.30546e8 −1.03978 −0.519892 0.854232i \(-0.674028\pi\)
−0.519892 + 0.854232i \(0.674028\pi\)
\(338\) −2.43397e8 −0.342853
\(339\) 0 0
\(340\) 3.05809e8 0.421963
\(341\) 2.55204e8 0.348535
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 1.30762e8 0.173192
\(345\) 0 0
\(346\) −1.70685e8 −0.221528
\(347\) 5.80259e8 0.745537 0.372768 0.927924i \(-0.378409\pi\)
0.372768 + 0.927924i \(0.378409\pi\)
\(348\) 0 0
\(349\) −3.69718e8 −0.465566 −0.232783 0.972529i \(-0.574783\pi\)
−0.232783 + 0.972529i \(0.574783\pi\)
\(350\) −1.42335e8 −0.177449
\(351\) 0 0
\(352\) 4.28155e7 0.0523241
\(353\) −2.92874e8 −0.354380 −0.177190 0.984177i \(-0.556701\pi\)
−0.177190 + 0.984177i \(0.556701\pi\)
\(354\) 0 0
\(355\) 1.83659e8 0.217878
\(356\) 3.82975e8 0.449879
\(357\) 0 0
\(358\) −3.45364e8 −0.397819
\(359\) −1.51190e9 −1.72462 −0.862309 0.506383i \(-0.830982\pi\)
−0.862309 + 0.506383i \(0.830982\pi\)
\(360\) 0 0
\(361\) 7.73005e8 0.864783
\(362\) −1.11750e9 −1.23814
\(363\) 0 0
\(364\) −2.11894e8 −0.230285
\(365\) −2.95607e8 −0.318193
\(366\) 0 0
\(367\) 6.30746e8 0.666075 0.333037 0.942914i \(-0.391926\pi\)
0.333037 + 0.942914i \(0.391926\pi\)
\(368\) −1.10927e8 −0.116030
\(369\) 0 0
\(370\) −3.77957e8 −0.387915
\(371\) −6.68698e8 −0.679863
\(372\) 0 0
\(373\) −7.84566e8 −0.782796 −0.391398 0.920222i \(-0.628008\pi\)
−0.391398 + 0.920222i \(0.628008\pi\)
\(374\) 3.08260e8 0.304696
\(375\) 0 0
\(376\) −5.02093e8 −0.487109
\(377\) 1.94462e9 1.86913
\(378\) 0 0
\(379\) 2.87718e8 0.271475 0.135737 0.990745i \(-0.456660\pi\)
0.135737 + 0.990745i \(0.456660\pi\)
\(380\) −4.23376e8 −0.395808
\(381\) 0 0
\(382\) −7.81958e8 −0.717731
\(383\) −8.22441e7 −0.0748013 −0.0374006 0.999300i \(-0.511908\pi\)
−0.0374006 + 0.999300i \(0.511908\pi\)
\(384\) 0 0
\(385\) 7.26174e7 0.0648527
\(386\) 1.23782e9 1.09548
\(387\) 0 0
\(388\) 2.54127e8 0.220872
\(389\) −4.81980e8 −0.415150 −0.207575 0.978219i \(-0.566557\pi\)
−0.207575 + 0.978219i \(0.566557\pi\)
\(390\) 0 0
\(391\) −7.98646e8 −0.675672
\(392\) −6.02363e7 −0.0505076
\(393\) 0 0
\(394\) 3.30065e8 0.271871
\(395\) 1.02381e9 0.835849
\(396\) 0 0
\(397\) 1.82447e9 1.46342 0.731712 0.681614i \(-0.238721\pi\)
0.731712 + 0.681614i \(0.238721\pi\)
\(398\) 1.10551e9 0.878967
\(399\) 0 0
\(400\) −2.12465e8 −0.165988
\(401\) 7.61935e8 0.590082 0.295041 0.955485i \(-0.404667\pi\)
0.295041 + 0.955485i \(0.404667\pi\)
\(402\) 0 0
\(403\) −1.88530e9 −1.43487
\(404\) −7.13227e7 −0.0538137
\(405\) 0 0
\(406\) 5.52807e8 0.409951
\(407\) −3.80986e8 −0.280110
\(408\) 0 0
\(409\) 1.20258e9 0.869127 0.434563 0.900641i \(-0.356903\pi\)
0.434563 + 0.900641i \(0.356903\pi\)
\(410\) 2.37743e8 0.170359
\(411\) 0 0
\(412\) −9.00156e7 −0.0634129
\(413\) −1.07313e8 −0.0749599
\(414\) 0 0
\(415\) 1.22600e9 0.842022
\(416\) −3.16297e8 −0.215411
\(417\) 0 0
\(418\) −4.26769e8 −0.285809
\(419\) 2.80914e9 1.86563 0.932814 0.360359i \(-0.117346\pi\)
0.932814 + 0.360359i \(0.117346\pi\)
\(420\) 0 0
\(421\) 1.68081e9 1.09782 0.548910 0.835881i \(-0.315043\pi\)
0.548910 + 0.835881i \(0.315043\pi\)
\(422\) −1.46152e9 −0.946699
\(423\) 0 0
\(424\) −9.98173e8 −0.635954
\(425\) −1.52969e9 −0.966588
\(426\) 0 0
\(427\) −4.95066e8 −0.307727
\(428\) −6.26071e8 −0.385985
\(429\) 0 0
\(430\) 3.31053e8 0.200797
\(431\) 3.06658e9 1.84495 0.922474 0.386060i \(-0.126164\pi\)
0.922474 + 0.386060i \(0.126164\pi\)
\(432\) 0 0
\(433\) 1.72660e9 1.02208 0.511039 0.859557i \(-0.329261\pi\)
0.511039 + 0.859557i \(0.329261\pi\)
\(434\) −5.35944e8 −0.314707
\(435\) 0 0
\(436\) 7.98226e8 0.461236
\(437\) 1.10568e9 0.633791
\(438\) 0 0
\(439\) −2.00732e9 −1.13238 −0.566189 0.824275i \(-0.691583\pi\)
−0.566189 + 0.824275i \(0.691583\pi\)
\(440\) 1.08397e8 0.0606642
\(441\) 0 0
\(442\) −2.27725e9 −1.25439
\(443\) −2.34022e9 −1.27892 −0.639461 0.768824i \(-0.720842\pi\)
−0.639461 + 0.768824i \(0.720842\pi\)
\(444\) 0 0
\(445\) 9.69584e8 0.521585
\(446\) 1.38172e9 0.737474
\(447\) 0 0
\(448\) −8.99154e7 −0.0472456
\(449\) −7.62271e8 −0.397418 −0.198709 0.980059i \(-0.563675\pi\)
−0.198709 + 0.980059i \(0.563675\pi\)
\(450\) 0 0
\(451\) 2.39648e8 0.123015
\(452\) 1.12400e9 0.572510
\(453\) 0 0
\(454\) −6.77951e8 −0.340019
\(455\) −5.36457e8 −0.266990
\(456\) 0 0
\(457\) 3.43888e9 1.68543 0.842715 0.538360i \(-0.180956\pi\)
0.842715 + 0.538360i \(0.180956\pi\)
\(458\) 9.74538e8 0.473990
\(459\) 0 0
\(460\) −2.80837e8 −0.134525
\(461\) 3.74754e9 1.78153 0.890766 0.454462i \(-0.150169\pi\)
0.890766 + 0.454462i \(0.150169\pi\)
\(462\) 0 0
\(463\) −7.54718e7 −0.0353388 −0.0176694 0.999844i \(-0.505625\pi\)
−0.0176694 + 0.999844i \(0.505625\pi\)
\(464\) 8.25181e8 0.383474
\(465\) 0 0
\(466\) 1.19067e9 0.545057
\(467\) 3.19925e9 1.45358 0.726791 0.686859i \(-0.241011\pi\)
0.726791 + 0.686859i \(0.241011\pi\)
\(468\) 0 0
\(469\) −7.69414e8 −0.344394
\(470\) −1.27116e9 −0.564750
\(471\) 0 0
\(472\) −1.60188e8 −0.0701185
\(473\) 3.33706e8 0.144994
\(474\) 0 0
\(475\) 2.11777e9 0.906675
\(476\) −6.47365e8 −0.275122
\(477\) 0 0
\(478\) −2.39154e9 −1.00157
\(479\) 1.32434e9 0.550586 0.275293 0.961360i \(-0.411225\pi\)
0.275293 + 0.961360i \(0.411225\pi\)
\(480\) 0 0
\(481\) 2.81451e9 1.15318
\(482\) 2.15660e9 0.877212
\(483\) 0 0
\(484\) −1.13791e9 −0.456195
\(485\) 6.43378e8 0.256077
\(486\) 0 0
\(487\) −4.26092e9 −1.67168 −0.835838 0.548976i \(-0.815018\pi\)
−0.835838 + 0.548976i \(0.815018\pi\)
\(488\) −7.38990e8 −0.287852
\(489\) 0 0
\(490\) −1.52501e8 −0.0585581
\(491\) −4.33474e9 −1.65264 −0.826319 0.563202i \(-0.809569\pi\)
−0.826319 + 0.563202i \(0.809569\pi\)
\(492\) 0 0
\(493\) 5.94107e9 2.23306
\(494\) 3.15273e9 1.17664
\(495\) 0 0
\(496\) −8.00010e8 −0.294381
\(497\) −3.88786e8 −0.142057
\(498\) 0 0
\(499\) −2.15621e9 −0.776852 −0.388426 0.921480i \(-0.626981\pi\)
−0.388426 + 0.921480i \(0.626981\pi\)
\(500\) −1.34805e9 −0.482293
\(501\) 0 0
\(502\) −2.58123e9 −0.910675
\(503\) 5.08504e9 1.78158 0.890792 0.454412i \(-0.150151\pi\)
0.890792 + 0.454412i \(0.150151\pi\)
\(504\) 0 0
\(505\) −1.80569e8 −0.0623912
\(506\) −2.83088e8 −0.0971391
\(507\) 0 0
\(508\) 7.03145e8 0.237970
\(509\) −2.54536e9 −0.855532 −0.427766 0.903889i \(-0.640699\pi\)
−0.427766 + 0.903889i \(0.640699\pi\)
\(510\) 0 0
\(511\) 6.25770e8 0.207463
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 3.20173e9 1.03995
\(515\) −2.27894e8 −0.0735204
\(516\) 0 0
\(517\) −1.28134e9 −0.407801
\(518\) 8.00095e8 0.252923
\(519\) 0 0
\(520\) −8.00775e8 −0.249746
\(521\) −2.93447e8 −0.0909070 −0.0454535 0.998966i \(-0.514473\pi\)
−0.0454535 + 0.998966i \(0.514473\pi\)
\(522\) 0 0
\(523\) 2.18899e9 0.669096 0.334548 0.942379i \(-0.391416\pi\)
0.334548 + 0.942379i \(0.391416\pi\)
\(524\) −1.60470e9 −0.487231
\(525\) 0 0
\(526\) 9.10936e8 0.272921
\(527\) −5.75985e9 −1.71425
\(528\) 0 0
\(529\) −2.67140e9 −0.784591
\(530\) −2.52709e9 −0.737319
\(531\) 0 0
\(532\) 8.96243e8 0.258069
\(533\) −1.77039e9 −0.506435
\(534\) 0 0
\(535\) −1.58503e9 −0.447507
\(536\) −1.14851e9 −0.322151
\(537\) 0 0
\(538\) −3.62525e9 −1.00369
\(539\) −1.53723e8 −0.0422843
\(540\) 0 0
\(541\) −2.76115e8 −0.0749720 −0.0374860 0.999297i \(-0.511935\pi\)
−0.0374860 + 0.999297i \(0.511935\pi\)
\(542\) 2.40458e9 0.648698
\(543\) 0 0
\(544\) −9.66329e8 −0.257353
\(545\) 2.02088e9 0.534753
\(546\) 0 0
\(547\) −7.24010e9 −1.89142 −0.945712 0.325005i \(-0.894634\pi\)
−0.945712 + 0.325005i \(0.894634\pi\)
\(548\) −1.46760e9 −0.380957
\(549\) 0 0
\(550\) −5.42212e8 −0.138963
\(551\) −8.22510e9 −2.09465
\(552\) 0 0
\(553\) −2.16729e9 −0.544978
\(554\) −1.78139e9 −0.445118
\(555\) 0 0
\(556\) 1.72111e8 0.0424666
\(557\) 2.64234e9 0.647881 0.323941 0.946077i \(-0.394992\pi\)
0.323941 + 0.946077i \(0.394992\pi\)
\(558\) 0 0
\(559\) −2.46523e9 −0.596920
\(560\) −2.27640e8 −0.0547761
\(561\) 0 0
\(562\) 4.32139e9 1.02694
\(563\) 3.12718e9 0.738539 0.369269 0.929322i \(-0.379608\pi\)
0.369269 + 0.929322i \(0.379608\pi\)
\(564\) 0 0
\(565\) 2.84566e9 0.663763
\(566\) 3.17241e9 0.735415
\(567\) 0 0
\(568\) −5.80346e8 −0.132882
\(569\) −7.94358e9 −1.80769 −0.903844 0.427863i \(-0.859267\pi\)
−0.903844 + 0.427863i \(0.859267\pi\)
\(570\) 0 0
\(571\) 1.29883e9 0.291961 0.145981 0.989287i \(-0.453366\pi\)
0.145981 + 0.989287i \(0.453366\pi\)
\(572\) −8.07192e8 −0.180340
\(573\) 0 0
\(574\) −5.03277e8 −0.111075
\(575\) 1.40477e9 0.308155
\(576\) 0 0
\(577\) −3.63635e9 −0.788044 −0.394022 0.919101i \(-0.628917\pi\)
−0.394022 + 0.919101i \(0.628917\pi\)
\(578\) −3.67459e9 −0.791518
\(579\) 0 0
\(580\) 2.08913e9 0.444597
\(581\) −2.59532e9 −0.549003
\(582\) 0 0
\(583\) −2.54734e9 −0.532412
\(584\) 9.34093e8 0.194064
\(585\) 0 0
\(586\) −3.69043e9 −0.757591
\(587\) −6.61703e9 −1.35030 −0.675149 0.737681i \(-0.735921\pi\)
−0.675149 + 0.737681i \(0.735921\pi\)
\(588\) 0 0
\(589\) 7.97421e9 1.60799
\(590\) −4.05551e8 −0.0812948
\(591\) 0 0
\(592\) 1.19431e9 0.236587
\(593\) −6.54428e9 −1.28876 −0.644378 0.764707i \(-0.722884\pi\)
−0.644378 + 0.764707i \(0.722884\pi\)
\(594\) 0 0
\(595\) −1.63894e9 −0.318974
\(596\) −3.91048e9 −0.756603
\(597\) 0 0
\(598\) 2.09129e9 0.399908
\(599\) 8.93561e9 1.69875 0.849376 0.527788i \(-0.176978\pi\)
0.849376 + 0.527788i \(0.176978\pi\)
\(600\) 0 0
\(601\) 4.09443e9 0.769365 0.384682 0.923049i \(-0.374311\pi\)
0.384682 + 0.923049i \(0.374311\pi\)
\(602\) −7.00804e8 −0.130921
\(603\) 0 0
\(604\) 4.64947e9 0.858567
\(605\) −2.88087e9 −0.528908
\(606\) 0 0
\(607\) 5.73788e9 1.04134 0.520668 0.853759i \(-0.325683\pi\)
0.520668 + 0.853759i \(0.325683\pi\)
\(608\) 1.33783e9 0.241401
\(609\) 0 0
\(610\) −1.87091e9 −0.333733
\(611\) 9.46585e9 1.67886
\(612\) 0 0
\(613\) 1.13990e9 0.199874 0.0999370 0.994994i \(-0.468136\pi\)
0.0999370 + 0.994994i \(0.468136\pi\)
\(614\) 1.27635e9 0.222525
\(615\) 0 0
\(616\) −2.29465e8 −0.0395533
\(617\) −3.12068e9 −0.534874 −0.267437 0.963575i \(-0.586177\pi\)
−0.267437 + 0.963575i \(0.586177\pi\)
\(618\) 0 0
\(619\) −3.90534e9 −0.661823 −0.330912 0.943662i \(-0.607356\pi\)
−0.330912 + 0.943662i \(0.607356\pi\)
\(620\) −2.02540e9 −0.341303
\(621\) 0 0
\(622\) 4.84133e9 0.806675
\(623\) −2.05251e9 −0.340076
\(624\) 0 0
\(625\) 6.39567e8 0.104787
\(626\) −3.45884e9 −0.563535
\(627\) 0 0
\(628\) 4.33567e8 0.0698549
\(629\) 8.59870e9 1.37770
\(630\) 0 0
\(631\) −5.31681e9 −0.842458 −0.421229 0.906954i \(-0.638401\pi\)
−0.421229 + 0.906954i \(0.638401\pi\)
\(632\) −3.23514e9 −0.509780
\(633\) 0 0
\(634\) 7.24318e9 1.12880
\(635\) 1.78016e9 0.275900
\(636\) 0 0
\(637\) 1.13562e9 0.174079
\(638\) 2.10587e9 0.321040
\(639\) 0 0
\(640\) −3.39801e8 −0.0512383
\(641\) −8.68550e8 −0.130254 −0.0651271 0.997877i \(-0.520745\pi\)
−0.0651271 + 0.997877i \(0.520745\pi\)
\(642\) 0 0
\(643\) −1.04976e10 −1.55723 −0.778614 0.627503i \(-0.784077\pi\)
−0.778614 + 0.627503i \(0.784077\pi\)
\(644\) 5.94502e8 0.0877108
\(645\) 0 0
\(646\) 9.63201e9 1.40573
\(647\) −5.79034e9 −0.840503 −0.420251 0.907408i \(-0.638058\pi\)
−0.420251 + 0.907408i \(0.638058\pi\)
\(648\) 0 0
\(649\) −4.08801e8 −0.0587023
\(650\) 4.00556e9 0.572092
\(651\) 0 0
\(652\) 2.26569e8 0.0320136
\(653\) −4.33544e9 −0.609308 −0.304654 0.952463i \(-0.598541\pi\)
−0.304654 + 0.952463i \(0.598541\pi\)
\(654\) 0 0
\(655\) −4.06265e9 −0.564891
\(656\) −7.51247e8 −0.103901
\(657\) 0 0
\(658\) 2.69090e9 0.368220
\(659\) −9.78432e9 −1.33178 −0.665889 0.746051i \(-0.731947\pi\)
−0.665889 + 0.746051i \(0.731947\pi\)
\(660\) 0 0
\(661\) 5.12312e9 0.689968 0.344984 0.938608i \(-0.387884\pi\)
0.344984 + 0.938608i \(0.387884\pi\)
\(662\) 6.18508e9 0.828595
\(663\) 0 0
\(664\) −3.87406e9 −0.513545
\(665\) 2.26903e9 0.299202
\(666\) 0 0
\(667\) −5.45593e9 −0.711915
\(668\) 1.10146e9 0.142972
\(669\) 0 0
\(670\) −2.90771e9 −0.373499
\(671\) −1.88591e9 −0.240986
\(672\) 0 0
\(673\) 1.33592e10 1.68938 0.844692 0.535253i \(-0.179784\pi\)
0.844692 + 0.535253i \(0.179784\pi\)
\(674\) 5.84437e9 0.735238
\(675\) 0 0
\(676\) 1.94718e9 0.242433
\(677\) 4.62265e9 0.572573 0.286286 0.958144i \(-0.407579\pi\)
0.286286 + 0.958144i \(0.407579\pi\)
\(678\) 0 0
\(679\) −1.36196e9 −0.166963
\(680\) −2.44647e9 −0.298373
\(681\) 0 0
\(682\) −2.04163e9 −0.246452
\(683\) −2.42230e9 −0.290908 −0.145454 0.989365i \(-0.546464\pi\)
−0.145454 + 0.989365i \(0.546464\pi\)
\(684\) 0 0
\(685\) −3.71554e9 −0.441678
\(686\) 3.22829e8 0.0381802
\(687\) 0 0
\(688\) −1.04610e9 −0.122465
\(689\) 1.88183e10 2.19187
\(690\) 0 0
\(691\) 4.95179e9 0.570938 0.285469 0.958388i \(-0.407851\pi\)
0.285469 + 0.958388i \(0.407851\pi\)
\(692\) 1.36548e9 0.156644
\(693\) 0 0
\(694\) −4.64207e9 −0.527174
\(695\) 4.35737e8 0.0492354
\(696\) 0 0
\(697\) −5.40877e9 −0.605039
\(698\) 2.95774e9 0.329205
\(699\) 0 0
\(700\) 1.13868e9 0.125475
\(701\) 1.15124e10 1.26227 0.631137 0.775672i \(-0.282589\pi\)
0.631137 + 0.775672i \(0.282589\pi\)
\(702\) 0 0
\(703\) −1.19044e10 −1.29231
\(704\) −3.42524e8 −0.0369988
\(705\) 0 0
\(706\) 2.34299e9 0.250584
\(707\) 3.82245e8 0.0406794
\(708\) 0 0
\(709\) −1.79274e10 −1.88910 −0.944549 0.328372i \(-0.893500\pi\)
−0.944549 + 0.328372i \(0.893500\pi\)
\(710\) −1.46927e9 −0.154063
\(711\) 0 0
\(712\) −3.06380e9 −0.318112
\(713\) 5.28950e9 0.546514
\(714\) 0 0
\(715\) −2.04358e9 −0.209084
\(716\) 2.76291e9 0.281301
\(717\) 0 0
\(718\) 1.20952e10 1.21949
\(719\) 3.93062e9 0.394376 0.197188 0.980366i \(-0.436819\pi\)
0.197188 + 0.980366i \(0.436819\pi\)
\(720\) 0 0
\(721\) 4.82428e8 0.0479357
\(722\) −6.18404e9 −0.611494
\(723\) 0 0
\(724\) 8.94003e9 0.875496
\(725\) −1.04500e10 −1.01844
\(726\) 0 0
\(727\) 1.05669e10 1.01994 0.509971 0.860191i \(-0.329656\pi\)
0.509971 + 0.860191i \(0.329656\pi\)
\(728\) 1.69516e9 0.162836
\(729\) 0 0
\(730\) 2.36486e9 0.224996
\(731\) −7.53160e9 −0.713143
\(732\) 0 0
\(733\) −1.71976e9 −0.161288 −0.0806442 0.996743i \(-0.525698\pi\)
−0.0806442 + 0.996743i \(0.525698\pi\)
\(734\) −5.04597e9 −0.470986
\(735\) 0 0
\(736\) 8.87420e8 0.0820459
\(737\) −2.93101e9 −0.269700
\(738\) 0 0
\(739\) 1.93328e9 0.176213 0.0881066 0.996111i \(-0.471918\pi\)
0.0881066 + 0.996111i \(0.471918\pi\)
\(740\) 3.02366e9 0.274297
\(741\) 0 0
\(742\) 5.34958e9 0.480736
\(743\) 2.07767e10 1.85830 0.929150 0.369702i \(-0.120540\pi\)
0.929150 + 0.369702i \(0.120540\pi\)
\(744\) 0 0
\(745\) −9.90023e9 −0.877199
\(746\) 6.27652e9 0.553520
\(747\) 0 0
\(748\) −2.46608e9 −0.215452
\(749\) 3.35535e9 0.291777
\(750\) 0 0
\(751\) −6.08859e9 −0.524538 −0.262269 0.964995i \(-0.584471\pi\)
−0.262269 + 0.964995i \(0.584471\pi\)
\(752\) 4.01674e9 0.344438
\(753\) 0 0
\(754\) −1.55570e10 −1.32168
\(755\) 1.17711e10 0.995415
\(756\) 0 0
\(757\) −8.77776e9 −0.735442 −0.367721 0.929936i \(-0.619862\pi\)
−0.367721 + 0.929936i \(0.619862\pi\)
\(758\) −2.30174e9 −0.191962
\(759\) 0 0
\(760\) 3.38701e9 0.279878
\(761\) 1.03563e10 0.851843 0.425922 0.904760i \(-0.359950\pi\)
0.425922 + 0.904760i \(0.359950\pi\)
\(762\) 0 0
\(763\) −4.27799e9 −0.348662
\(764\) 6.25566e9 0.507512
\(765\) 0 0
\(766\) 6.57953e8 0.0528925
\(767\) 3.01999e9 0.241669
\(768\) 0 0
\(769\) 1.65740e10 1.31427 0.657137 0.753771i \(-0.271767\pi\)
0.657137 + 0.753771i \(0.271767\pi\)
\(770\) −5.80939e8 −0.0458578
\(771\) 0 0
\(772\) −9.90259e9 −0.774619
\(773\) 5.15312e9 0.401275 0.200637 0.979666i \(-0.435699\pi\)
0.200637 + 0.979666i \(0.435699\pi\)
\(774\) 0 0
\(775\) 1.01313e10 0.781821
\(776\) −2.03302e9 −0.156180
\(777\) 0 0
\(778\) 3.85584e9 0.293555
\(779\) 7.48815e9 0.567536
\(780\) 0 0
\(781\) −1.48105e9 −0.111247
\(782\) 6.38917e9 0.477772
\(783\) 0 0
\(784\) 4.81890e8 0.0357143
\(785\) 1.09767e9 0.0809892
\(786\) 0 0
\(787\) −2.59807e10 −1.89994 −0.949969 0.312344i \(-0.898886\pi\)
−0.949969 + 0.312344i \(0.898886\pi\)
\(788\) −2.64052e9 −0.192242
\(789\) 0 0
\(790\) −8.19045e9 −0.591035
\(791\) −6.02395e9 −0.432777
\(792\) 0 0
\(793\) 1.39320e10 0.992106
\(794\) −1.45958e10 −1.03480
\(795\) 0 0
\(796\) −8.84410e9 −0.621524
\(797\) −2.32372e10 −1.62585 −0.812924 0.582369i \(-0.802126\pi\)
−0.812924 + 0.582369i \(0.802126\pi\)
\(798\) 0 0
\(799\) 2.89194e10 2.00574
\(800\) 1.69972e9 0.117371
\(801\) 0 0
\(802\) −6.09548e9 −0.417251
\(803\) 2.38381e9 0.162468
\(804\) 0 0
\(805\) 1.50511e9 0.101691
\(806\) 1.50824e10 1.01461
\(807\) 0 0
\(808\) 5.70582e8 0.0380521
\(809\) 3.64347e9 0.241933 0.120967 0.992657i \(-0.461401\pi\)
0.120967 + 0.992657i \(0.461401\pi\)
\(810\) 0 0
\(811\) 1.79425e10 1.18117 0.590583 0.806977i \(-0.298898\pi\)
0.590583 + 0.806977i \(0.298898\pi\)
\(812\) −4.42246e9 −0.289879
\(813\) 0 0
\(814\) 3.04789e9 0.198068
\(815\) 5.73609e8 0.0371162
\(816\) 0 0
\(817\) 1.04271e10 0.668939
\(818\) −9.62066e9 −0.614565
\(819\) 0 0
\(820\) −1.90195e9 −0.120462
\(821\) 3.74203e9 0.235997 0.117998 0.993014i \(-0.462352\pi\)
0.117998 + 0.993014i \(0.462352\pi\)
\(822\) 0 0
\(823\) −2.72013e10 −1.70095 −0.850473 0.526019i \(-0.823684\pi\)
−0.850473 + 0.526019i \(0.823684\pi\)
\(824\) 7.20125e8 0.0448397
\(825\) 0 0
\(826\) 8.58507e8 0.0530046
\(827\) −4.47569e9 −0.275163 −0.137582 0.990490i \(-0.543933\pi\)
−0.137582 + 0.990490i \(0.543933\pi\)
\(828\) 0 0
\(829\) −6.87198e9 −0.418930 −0.209465 0.977816i \(-0.567172\pi\)
−0.209465 + 0.977816i \(0.567172\pi\)
\(830\) −9.80803e9 −0.595399
\(831\) 0 0
\(832\) 2.53038e9 0.152319
\(833\) 3.46947e9 0.207973
\(834\) 0 0
\(835\) 2.78858e9 0.165760
\(836\) 3.41416e9 0.202098
\(837\) 0 0
\(838\) −2.24731e10 −1.31920
\(839\) −3.28739e10 −1.92170 −0.960848 0.277077i \(-0.910634\pi\)
−0.960848 + 0.277077i \(0.910634\pi\)
\(840\) 0 0
\(841\) 2.33364e10 1.35284
\(842\) −1.34465e10 −0.776276
\(843\) 0 0
\(844\) 1.16922e10 0.669418
\(845\) 4.92971e9 0.281075
\(846\) 0 0
\(847\) 6.09850e9 0.344851
\(848\) 7.98539e9 0.449687
\(849\) 0 0
\(850\) 1.22375e10 0.683481
\(851\) −7.89654e9 −0.439221
\(852\) 0 0
\(853\) 9.30525e9 0.513342 0.256671 0.966499i \(-0.417374\pi\)
0.256671 + 0.966499i \(0.417374\pi\)
\(854\) 3.96052e9 0.217596
\(855\) 0 0
\(856\) 5.00856e9 0.272932
\(857\) −2.05780e10 −1.11679 −0.558394 0.829576i \(-0.688582\pi\)
−0.558394 + 0.829576i \(0.688582\pi\)
\(858\) 0 0
\(859\) −4.50298e9 −0.242395 −0.121197 0.992628i \(-0.538673\pi\)
−0.121197 + 0.992628i \(0.538673\pi\)
\(860\) −2.64842e9 −0.141985
\(861\) 0 0
\(862\) −2.45326e10 −1.30457
\(863\) 7.07888e9 0.374910 0.187455 0.982273i \(-0.439976\pi\)
0.187455 + 0.982273i \(0.439976\pi\)
\(864\) 0 0
\(865\) 3.45700e9 0.181611
\(866\) −1.38128e10 −0.722719
\(867\) 0 0
\(868\) 4.28756e9 0.222531
\(869\) −8.25609e9 −0.426781
\(870\) 0 0
\(871\) 2.16527e10 1.11032
\(872\) −6.38581e9 −0.326143
\(873\) 0 0
\(874\) −8.84547e9 −0.448158
\(875\) 7.22471e9 0.364579
\(876\) 0 0
\(877\) −3.13680e10 −1.57032 −0.785160 0.619292i \(-0.787420\pi\)
−0.785160 + 0.619292i \(0.787420\pi\)
\(878\) 1.60586e10 0.800712
\(879\) 0 0
\(880\) −8.67175e8 −0.0428960
\(881\) −2.70407e10 −1.33230 −0.666150 0.745818i \(-0.732059\pi\)
−0.666150 + 0.745818i \(0.732059\pi\)
\(882\) 0 0
\(883\) 2.13360e10 1.04292 0.521460 0.853275i \(-0.325387\pi\)
0.521460 + 0.853275i \(0.325387\pi\)
\(884\) 1.82180e10 0.886988
\(885\) 0 0
\(886\) 1.87218e10 0.904334
\(887\) −4.80221e9 −0.231051 −0.115526 0.993304i \(-0.536855\pi\)
−0.115526 + 0.993304i \(0.536855\pi\)
\(888\) 0 0
\(889\) −3.76842e9 −0.179888
\(890\) −7.75667e9 −0.368817
\(891\) 0 0
\(892\) −1.10537e10 −0.521473
\(893\) −4.00374e10 −1.88142
\(894\) 0 0
\(895\) 6.99490e9 0.326138
\(896\) 7.19323e8 0.0334077
\(897\) 0 0
\(898\) 6.09817e9 0.281017
\(899\) −3.93482e10 −1.80620
\(900\) 0 0
\(901\) 5.74925e10 2.61863
\(902\) −1.91719e9 −0.0869845
\(903\) 0 0
\(904\) −8.99202e9 −0.404825
\(905\) 2.26336e10 1.01504
\(906\) 0 0
\(907\) 3.43972e10 1.53072 0.765362 0.643600i \(-0.222560\pi\)
0.765362 + 0.643600i \(0.222560\pi\)
\(908\) 5.42361e9 0.240430
\(909\) 0 0
\(910\) 4.29165e9 0.188790
\(911\) −1.64680e9 −0.0721652 −0.0360826 0.999349i \(-0.511488\pi\)
−0.0360826 + 0.999349i \(0.511488\pi\)
\(912\) 0 0
\(913\) −9.88663e9 −0.429933
\(914\) −2.75111e10 −1.19178
\(915\) 0 0
\(916\) −7.79630e9 −0.335162
\(917\) 8.60020e9 0.368312
\(918\) 0 0
\(919\) −2.93595e10 −1.24780 −0.623899 0.781505i \(-0.714453\pi\)
−0.623899 + 0.781505i \(0.714453\pi\)
\(920\) 2.24670e9 0.0951233
\(921\) 0 0
\(922\) −2.99804e10 −1.25973
\(923\) 1.09411e10 0.457990
\(924\) 0 0
\(925\) −1.51246e10 −0.628332
\(926\) 6.03774e8 0.0249883
\(927\) 0 0
\(928\) −6.60145e9 −0.271157
\(929\) 1.83459e10 0.750731 0.375365 0.926877i \(-0.377517\pi\)
0.375365 + 0.926877i \(0.377517\pi\)
\(930\) 0 0
\(931\) −4.80330e9 −0.195082
\(932\) −9.52539e9 −0.385414
\(933\) 0 0
\(934\) −2.55940e10 −1.02784
\(935\) −6.24341e9 −0.249794
\(936\) 0 0
\(937\) −2.16246e10 −0.858736 −0.429368 0.903130i \(-0.641264\pi\)
−0.429368 + 0.903130i \(0.641264\pi\)
\(938\) 6.15531e9 0.243523
\(939\) 0 0
\(940\) 1.01693e10 0.399339
\(941\) −2.48532e10 −0.972341 −0.486170 0.873864i \(-0.661607\pi\)
−0.486170 + 0.873864i \(0.661607\pi\)
\(942\) 0 0
\(943\) 4.96709e9 0.192891
\(944\) 1.28150e9 0.0495813
\(945\) 0 0
\(946\) −2.66965e9 −0.102526
\(947\) 1.75432e10 0.671248 0.335624 0.941996i \(-0.391053\pi\)
0.335624 + 0.941996i \(0.391053\pi\)
\(948\) 0 0
\(949\) −1.76103e10 −0.668858
\(950\) −1.69422e10 −0.641116
\(951\) 0 0
\(952\) 5.17892e9 0.194540
\(953\) 3.02964e10 1.13388 0.566938 0.823760i \(-0.308128\pi\)
0.566938 + 0.823760i \(0.308128\pi\)
\(954\) 0 0
\(955\) 1.58376e10 0.588405
\(956\) 1.91323e10 0.708216
\(957\) 0 0
\(958\) −1.05947e10 −0.389323
\(959\) 7.86541e9 0.287976
\(960\) 0 0
\(961\) 1.06354e10 0.386563
\(962\) −2.25161e10 −0.815418
\(963\) 0 0
\(964\) −1.72528e10 −0.620283
\(965\) −2.50706e10 −0.898087
\(966\) 0 0
\(967\) 2.38289e10 0.847443 0.423722 0.905792i \(-0.360724\pi\)
0.423722 + 0.905792i \(0.360724\pi\)
\(968\) 9.10331e9 0.322579
\(969\) 0 0
\(970\) −5.14702e9 −0.181074
\(971\) 2.38158e10 0.834831 0.417416 0.908716i \(-0.362936\pi\)
0.417416 + 0.908716i \(0.362936\pi\)
\(972\) 0 0
\(973\) −9.22410e8 −0.0321018
\(974\) 3.40874e10 1.18205
\(975\) 0 0
\(976\) 5.91192e9 0.203542
\(977\) −2.20743e10 −0.757279 −0.378640 0.925544i \(-0.623608\pi\)
−0.378640 + 0.925544i \(0.623608\pi\)
\(978\) 0 0
\(979\) −7.81883e9 −0.266319
\(980\) 1.22001e9 0.0414068
\(981\) 0 0
\(982\) 3.46779e10 1.16859
\(983\) 4.47350e10 1.50214 0.751070 0.660223i \(-0.229538\pi\)
0.751070 + 0.660223i \(0.229538\pi\)
\(984\) 0 0
\(985\) −6.68505e9 −0.222884
\(986\) −4.75286e10 −1.57901
\(987\) 0 0
\(988\) −2.52219e10 −0.832009
\(989\) 6.91658e9 0.227355
\(990\) 0 0
\(991\) −2.13803e10 −0.697842 −0.348921 0.937152i \(-0.613452\pi\)
−0.348921 + 0.937152i \(0.613452\pi\)
\(992\) 6.40008e9 0.208159
\(993\) 0 0
\(994\) 3.11029e9 0.100450
\(995\) −2.23907e10 −0.720589
\(996\) 0 0
\(997\) −4.58361e10 −1.46479 −0.732394 0.680881i \(-0.761597\pi\)
−0.732394 + 0.680881i \(0.761597\pi\)
\(998\) 1.72497e10 0.549318
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.a.j.1.2 2
3.2 odd 2 126.8.a.m.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.8.a.j.1.2 2 1.1 even 1 trivial
126.8.a.m.1.1 yes 2 3.2 odd 2