Properties

Label 126.6.g.j.109.1
Level $126$
Weight $6$
Character 126.109
Analytic conductor $20.208$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,6,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,-32,70] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{79})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 79x^{2} + 6241 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-4.44410 - 7.69740i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.6.g.j.37.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-18.0528 - 31.2683i) q^{5} +(-124.435 + 36.3731i) q^{7} -64.0000 q^{8} +(72.2111 - 125.073i) q^{10} +(77.7174 - 134.610i) q^{11} +1158.87 q^{13} +(-374.869 - 358.308i) q^{14} +(-128.000 - 221.703i) q^{16} +(619.040 - 1072.21i) q^{17} +(140.140 + 242.729i) q^{19} +577.689 q^{20} +621.739 q^{22} +(-1741.20 - 3015.84i) q^{23} +(910.694 - 1577.37i) q^{25} +(2317.74 + 4014.44i) q^{26} +(491.478 - 2015.20i) q^{28} +5656.78 q^{29} +(1157.35 - 2004.59i) q^{31} +(512.000 - 886.810i) q^{32} +4952.32 q^{34} +(3383.72 + 3234.23i) q^{35} +(1166.59 + 2020.59i) q^{37} +(-560.558 + 970.916i) q^{38} +(1155.38 + 2001.17i) q^{40} -3812.61 q^{41} +3925.73 q^{43} +(1243.48 + 2153.77i) q^{44} +(6964.78 - 12063.4i) q^{46} +(-5558.23 - 9627.13i) q^{47} +(14161.0 - 9052.14i) q^{49} +7285.56 q^{50} +(-9270.96 + 16057.8i) q^{52} +(-5593.10 + 9687.54i) q^{53} -5612.06 q^{55} +(7963.82 - 2327.88i) q^{56} +(11313.6 + 19595.7i) q^{58} +(-3005.18 + 5205.12i) q^{59} +(7419.36 + 12850.7i) q^{61} +9258.81 q^{62} +4096.00 q^{64} +(-20920.8 - 36235.9i) q^{65} +(21491.9 - 37225.1i) q^{67} +(9904.64 + 17155.3i) q^{68} +(-4436.27 + 18190.0i) q^{70} +19962.4 q^{71} +(-22775.3 + 39448.0i) q^{73} +(-4666.35 + 8082.36i) q^{74} -4484.47 q^{76} +(-4774.54 + 19577.0i) q^{77} +(-54496.0 - 94389.9i) q^{79} +(-4621.51 + 8004.69i) q^{80} +(-7625.22 - 13207.3i) q^{82} -55829.0 q^{83} -44701.6 q^{85} +(7851.47 + 13599.1i) q^{86} +(-4973.91 + 8615.07i) q^{88} +(-47772.9 - 82745.1i) q^{89} +(-144204. + 42151.6i) q^{91} +55718.2 q^{92} +(22232.9 - 38508.5i) q^{94} +(5059.82 - 8763.86i) q^{95} +15004.9 q^{97} +(59679.5 + 30950.9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 32 q^{4} + 70 q^{5} - 256 q^{8} - 280 q^{10} + 62 q^{11} + 3640 q^{13} - 504 q^{14} - 512 q^{16} + 1694 q^{17} - 826 q^{19} - 2240 q^{20} + 496 q^{22} - 2734 q^{23} - 6312 q^{25} + 7280 q^{26}+ \cdots + 113288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −18.0528 31.2683i −0.322938 0.559345i 0.658155 0.752883i \(-0.271337\pi\)
−0.981093 + 0.193538i \(0.938004\pi\)
\(6\) 0 0
\(7\) −124.435 + 36.3731i −0.959835 + 0.280566i
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 72.2111 125.073i 0.228352 0.395517i
\(11\) 77.7174 134.610i 0.193658 0.335426i −0.752801 0.658248i \(-0.771298\pi\)
0.946460 + 0.322821i \(0.104631\pi\)
\(12\) 0 0
\(13\) 1158.87 1.90185 0.950925 0.309422i \(-0.100136\pi\)
0.950925 + 0.309422i \(0.100136\pi\)
\(14\) −374.869 358.308i −0.511164 0.488581i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 619.040 1072.21i 0.519513 0.899823i −0.480230 0.877143i \(-0.659447\pi\)
0.999743 0.0226804i \(-0.00722003\pi\)
\(18\) 0 0
\(19\) 140.140 + 242.729i 0.0890588 + 0.154254i 0.907114 0.420886i \(-0.138281\pi\)
−0.818055 + 0.575140i \(0.804947\pi\)
\(20\) 577.689 0.322938
\(21\) 0 0
\(22\) 621.739 0.273874
\(23\) −1741.20 3015.84i −0.686322 1.18874i −0.973019 0.230723i \(-0.925891\pi\)
0.286698 0.958021i \(-0.407443\pi\)
\(24\) 0 0
\(25\) 910.694 1577.37i 0.291422 0.504758i
\(26\) 2317.74 + 4014.44i 0.672405 + 1.16464i
\(27\) 0 0
\(28\) 491.478 2015.20i 0.118470 0.485762i
\(29\) 5656.78 1.24903 0.624517 0.781011i \(-0.285296\pi\)
0.624517 + 0.781011i \(0.285296\pi\)
\(30\) 0 0
\(31\) 1157.35 2004.59i 0.216302 0.374646i −0.737372 0.675486i \(-0.763934\pi\)
0.953675 + 0.300840i \(0.0972671\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 4952.32 0.734703
\(35\) 3383.72 + 3234.23i 0.466900 + 0.446273i
\(36\) 0 0
\(37\) 1166.59 + 2020.59i 0.140092 + 0.242646i 0.927531 0.373746i \(-0.121927\pi\)
−0.787439 + 0.616392i \(0.788594\pi\)
\(38\) −560.558 + 970.916i −0.0629741 + 0.109074i
\(39\) 0 0
\(40\) 1155.38 + 2001.17i 0.114176 + 0.197758i
\(41\) −3812.61 −0.354211 −0.177106 0.984192i \(-0.556673\pi\)
−0.177106 + 0.984192i \(0.556673\pi\)
\(42\) 0 0
\(43\) 3925.73 0.323780 0.161890 0.986809i \(-0.448241\pi\)
0.161890 + 0.986809i \(0.448241\pi\)
\(44\) 1243.48 + 2153.77i 0.0968292 + 0.167713i
\(45\) 0 0
\(46\) 6964.78 12063.4i 0.485303 0.840569i
\(47\) −5558.23 9627.13i −0.367022 0.635700i 0.622077 0.782956i \(-0.286289\pi\)
−0.989098 + 0.147256i \(0.952956\pi\)
\(48\) 0 0
\(49\) 14161.0 9052.14i 0.842566 0.538594i
\(50\) 7285.56 0.412133
\(51\) 0 0
\(52\) −9270.96 + 16057.8i −0.475462 + 0.823525i
\(53\) −5593.10 + 9687.54i −0.273504 + 0.473722i −0.969757 0.244074i \(-0.921516\pi\)
0.696253 + 0.717797i \(0.254849\pi\)
\(54\) 0 0
\(55\) −5612.06 −0.250159
\(56\) 7963.82 2327.88i 0.339353 0.0991950i
\(57\) 0 0
\(58\) 11313.6 + 19595.7i 0.441600 + 0.764874i
\(59\) −3005.18 + 5205.12i −0.112393 + 0.194671i −0.916735 0.399497i \(-0.869185\pi\)
0.804342 + 0.594167i \(0.202518\pi\)
\(60\) 0 0
\(61\) 7419.36 + 12850.7i 0.255295 + 0.442183i 0.964975 0.262340i \(-0.0844942\pi\)
−0.709681 + 0.704523i \(0.751161\pi\)
\(62\) 9258.81 0.305897
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −20920.8 36235.9i −0.614179 1.06379i
\(66\) 0 0
\(67\) 21491.9 37225.1i 0.584909 1.01309i −0.409977 0.912096i \(-0.634463\pi\)
0.994887 0.100997i \(-0.0322032\pi\)
\(68\) 9904.64 + 17155.3i 0.259757 + 0.449912i
\(69\) 0 0
\(70\) −4436.27 + 18190.0i −0.108211 + 0.443698i
\(71\) 19962.4 0.469967 0.234984 0.971999i \(-0.424496\pi\)
0.234984 + 0.971999i \(0.424496\pi\)
\(72\) 0 0
\(73\) −22775.3 + 39448.0i −0.500215 + 0.866398i 0.499785 + 0.866150i \(0.333412\pi\)
−1.00000 0.000248463i \(0.999921\pi\)
\(74\) −4666.35 + 8082.36i −0.0990599 + 0.171577i
\(75\) 0 0
\(76\) −4484.47 −0.0890588
\(77\) −4774.54 + 19577.0i −0.0917709 + 0.376288i
\(78\) 0 0
\(79\) −54496.0 94389.9i −0.982419 1.70160i −0.652885 0.757457i \(-0.726442\pi\)
−0.329534 0.944144i \(-0.606892\pi\)
\(80\) −4621.51 + 8004.69i −0.0807345 + 0.139836i
\(81\) 0 0
\(82\) −7625.22 13207.3i −0.125233 0.216909i
\(83\) −55829.0 −0.889538 −0.444769 0.895645i \(-0.646714\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(84\) 0 0
\(85\) −44701.6 −0.671082
\(86\) 7851.47 + 13599.1i 0.114473 + 0.198274i
\(87\) 0 0
\(88\) −4973.91 + 8615.07i −0.0684686 + 0.118591i
\(89\) −47772.9 82745.1i −0.639303 1.10731i −0.985586 0.169175i \(-0.945890\pi\)
0.346283 0.938130i \(-0.387444\pi\)
\(90\) 0 0
\(91\) −144204. + 42151.6i −1.82546 + 0.533594i
\(92\) 55718.2 0.686322
\(93\) 0 0
\(94\) 22232.9 38508.5i 0.259523 0.449508i
\(95\) 5059.82 8763.86i 0.0575209 0.0996292i
\(96\) 0 0
\(97\) 15004.9 0.161922 0.0809609 0.996717i \(-0.474201\pi\)
0.0809609 + 0.996717i \(0.474201\pi\)
\(98\) 59679.5 + 30950.9i 0.627712 + 0.325542i
\(99\) 0 0
\(100\) 14571.1 + 25237.9i 0.145711 + 0.252379i
\(101\) 13438.1 23275.4i 0.131079 0.227036i −0.793014 0.609204i \(-0.791489\pi\)
0.924093 + 0.382168i \(0.124822\pi\)
\(102\) 0 0
\(103\) 25957.6 + 44959.9i 0.241086 + 0.417573i 0.961024 0.276466i \(-0.0891632\pi\)
−0.719938 + 0.694038i \(0.755830\pi\)
\(104\) −74167.6 −0.672405
\(105\) 0 0
\(106\) −44744.8 −0.386793
\(107\) −12487.4 21628.8i −0.105442 0.182630i 0.808477 0.588528i \(-0.200292\pi\)
−0.913919 + 0.405898i \(0.866959\pi\)
\(108\) 0 0
\(109\) 1818.07 3148.99i 0.0146570 0.0253867i −0.858604 0.512640i \(-0.828668\pi\)
0.873261 + 0.487253i \(0.162001\pi\)
\(110\) −11224.1 19440.7i −0.0884444 0.153190i
\(111\) 0 0
\(112\) 23991.6 + 22931.7i 0.180724 + 0.172740i
\(113\) −62175.0 −0.458057 −0.229028 0.973420i \(-0.573555\pi\)
−0.229028 + 0.973420i \(0.573555\pi\)
\(114\) 0 0
\(115\) −62866.8 + 108889.i −0.443279 + 0.767781i
\(116\) −45254.2 + 78382.7i −0.312259 + 0.540848i
\(117\) 0 0
\(118\) −24041.4 −0.158948
\(119\) −38030.6 + 155936.i −0.246187 + 1.00944i
\(120\) 0 0
\(121\) 68445.5 + 118551.i 0.424993 + 0.736109i
\(122\) −29677.4 + 51402.8i −0.180521 + 0.312671i
\(123\) 0 0
\(124\) 18517.6 + 32073.4i 0.108151 + 0.187323i
\(125\) −178592. −1.02232
\(126\) 0 0
\(127\) 63550.3 0.349630 0.174815 0.984601i \(-0.444067\pi\)
0.174815 + 0.984601i \(0.444067\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 83683.2 144944.i 0.434290 0.752213i
\(131\) 68148.5 + 118037.i 0.346959 + 0.600950i 0.985708 0.168465i \(-0.0538810\pi\)
−0.638749 + 0.769415i \(0.720548\pi\)
\(132\) 0 0
\(133\) −26267.0 25106.6i −0.128760 0.123072i
\(134\) 171935. 0.827187
\(135\) 0 0
\(136\) −39618.6 + 68621.4i −0.183676 + 0.318136i
\(137\) 167652. 290381.i 0.763144 1.32180i −0.178078 0.984016i \(-0.556988\pi\)
0.941222 0.337788i \(-0.109679\pi\)
\(138\) 0 0
\(139\) 58195.2 0.255476 0.127738 0.991808i \(-0.459228\pi\)
0.127738 + 0.991808i \(0.459228\pi\)
\(140\) −71884.6 + 21012.3i −0.309967 + 0.0906054i
\(141\) 0 0
\(142\) 39924.9 + 69151.9i 0.166158 + 0.287795i
\(143\) 90064.3 155996.i 0.368309 0.637930i
\(144\) 0 0
\(145\) −102121. 176878.i −0.403360 0.698641i
\(146\) −182202. −0.707411
\(147\) 0 0
\(148\) −37330.8 −0.140092
\(149\) 141529. + 245135.i 0.522251 + 0.904566i 0.999665 + 0.0258870i \(0.00824101\pi\)
−0.477414 + 0.878679i \(0.658426\pi\)
\(150\) 0 0
\(151\) 120779. 209195.i 0.431071 0.746637i −0.565895 0.824477i \(-0.691469\pi\)
0.996966 + 0.0778407i \(0.0248026\pi\)
\(152\) −8968.93 15534.6i −0.0314870 0.0545372i
\(153\) 0 0
\(154\) −77365.9 + 22614.6i −0.262874 + 0.0768398i
\(155\) −83573.6 −0.279409
\(156\) 0 0
\(157\) 107014. 185354.i 0.346492 0.600142i −0.639132 0.769097i \(-0.720706\pi\)
0.985624 + 0.168956i \(0.0540394\pi\)
\(158\) 217984. 377559.i 0.694675 1.20321i
\(159\) 0 0
\(160\) −36972.1 −0.114176
\(161\) 326360. + 311942.i 0.992277 + 0.948440i
\(162\) 0 0
\(163\) −32233.0 55829.2i −0.0950237 0.164586i 0.814595 0.580030i \(-0.196959\pi\)
−0.909619 + 0.415445i \(0.863626\pi\)
\(164\) 30500.9 52829.1i 0.0885529 0.153378i
\(165\) 0 0
\(166\) −111658. 193397.i −0.314499 0.544729i
\(167\) 442694. 1.22832 0.614162 0.789180i \(-0.289494\pi\)
0.614162 + 0.789180i \(0.289494\pi\)
\(168\) 0 0
\(169\) 971685. 2.61703
\(170\) −89403.2 154851.i −0.237263 0.410952i
\(171\) 0 0
\(172\) −31405.9 + 54396.6i −0.0809449 + 0.140201i
\(173\) −39299.5 68068.8i −0.0998325 0.172915i 0.811783 0.583960i \(-0.198497\pi\)
−0.911615 + 0.411045i \(0.865164\pi\)
\(174\) 0 0
\(175\) −55948.3 + 229404.i −0.138099 + 0.566247i
\(176\) −39791.3 −0.0968292
\(177\) 0 0
\(178\) 191092. 330980.i 0.452055 0.782983i
\(179\) −255214. + 442043.i −0.595348 + 1.03117i 0.398149 + 0.917321i \(0.369653\pi\)
−0.993498 + 0.113853i \(0.963681\pi\)
\(180\) 0 0
\(181\) −22051.8 −0.0500319 −0.0250160 0.999687i \(-0.507964\pi\)
−0.0250160 + 0.999687i \(0.507964\pi\)
\(182\) −434425. 415233.i −0.972156 0.929208i
\(183\) 0 0
\(184\) 111436. + 193014.i 0.242651 + 0.420285i
\(185\) 42120.3 72954.5i 0.0904820 0.156719i
\(186\) 0 0
\(187\) −96220.4 166659.i −0.201216 0.348517i
\(188\) 177863. 0.367022
\(189\) 0 0
\(190\) 40478.5 0.0813469
\(191\) −279076. 483374.i −0.553528 0.958738i −0.998016 0.0629535i \(-0.979948\pi\)
0.444489 0.895784i \(-0.353385\pi\)
\(192\) 0 0
\(193\) 24658.1 42709.1i 0.0476504 0.0825330i −0.841216 0.540699i \(-0.818160\pi\)
0.888867 + 0.458166i \(0.151493\pi\)
\(194\) 30009.9 + 51978.7i 0.0572480 + 0.0991564i
\(195\) 0 0
\(196\) 12142.2 + 268638.i 0.0225765 + 0.499490i
\(197\) 941509. 1.72846 0.864229 0.503099i \(-0.167807\pi\)
0.864229 + 0.503099i \(0.167807\pi\)
\(198\) 0 0
\(199\) −320006. + 554267.i −0.572830 + 0.992170i 0.423444 + 0.905922i \(0.360821\pi\)
−0.996274 + 0.0862477i \(0.972512\pi\)
\(200\) −58284.4 + 100952.i −0.103033 + 0.178459i
\(201\) 0 0
\(202\) 107505. 0.185374
\(203\) −703900. + 205754.i −1.19887 + 0.350436i
\(204\) 0 0
\(205\) 68828.2 + 119214.i 0.114388 + 0.198126i
\(206\) −103830. + 179840.i −0.170473 + 0.295268i
\(207\) 0 0
\(208\) −148335. 256924.i −0.237731 0.411762i
\(209\) 43565.1 0.0689879
\(210\) 0 0
\(211\) 921869. 1.42549 0.712743 0.701425i \(-0.247452\pi\)
0.712743 + 0.701425i \(0.247452\pi\)
\(212\) −89489.7 155001.i −0.136752 0.236861i
\(213\) 0 0
\(214\) 49949.5 86515.1i 0.0745585 0.129139i
\(215\) −70870.4 122751.i −0.104561 0.181105i
\(216\) 0 0
\(217\) −71101.5 + 291537.i −0.102501 + 0.420285i
\(218\) 14544.6 0.0207281
\(219\) 0 0
\(220\) 44896.5 77762.9i 0.0625396 0.108322i
\(221\) 717387. 1.24255e6i 0.988036 1.71133i
\(222\) 0 0
\(223\) −837700. −1.12805 −0.564023 0.825759i \(-0.690747\pi\)
−0.564023 + 0.825759i \(0.690747\pi\)
\(224\) −31454.6 + 128973.i −0.0418855 + 0.171743i
\(225\) 0 0
\(226\) −124350. 215380.i −0.161948 0.280501i
\(227\) −665344. + 1.15241e6i −0.857002 + 1.48437i 0.0177731 + 0.999842i \(0.494342\pi\)
−0.874775 + 0.484529i \(0.838991\pi\)
\(228\) 0 0
\(229\) −505317. 875234.i −0.636759 1.10290i −0.986140 0.165918i \(-0.946941\pi\)
0.349381 0.936981i \(-0.386392\pi\)
\(230\) −502935. −0.626891
\(231\) 0 0
\(232\) −362034. −0.441600
\(233\) 743050. + 1.28700e6i 0.896661 + 1.55306i 0.831736 + 0.555172i \(0.187347\pi\)
0.0649249 + 0.997890i \(0.479319\pi\)
\(234\) 0 0
\(235\) −200683. + 347593.i −0.237050 + 0.410583i
\(236\) −48082.8 83281.9i −0.0561966 0.0973353i
\(237\) 0 0
\(238\) −616241. + 180131.i −0.705193 + 0.206132i
\(239\) −875637. −0.991584 −0.495792 0.868441i \(-0.665122\pi\)
−0.495792 + 0.868441i \(0.665122\pi\)
\(240\) 0 0
\(241\) −726472. + 1.25829e6i −0.805706 + 1.39552i 0.110108 + 0.993920i \(0.464880\pi\)
−0.915814 + 0.401604i \(0.868453\pi\)
\(242\) −273782. + 474204.i −0.300515 + 0.520508i
\(243\) 0 0
\(244\) −237419. −0.255295
\(245\) −538691. 279374.i −0.573356 0.297352i
\(246\) 0 0
\(247\) 162403. + 281291.i 0.169376 + 0.293369i
\(248\) −74070.4 + 128294.i −0.0764743 + 0.132457i
\(249\) 0 0
\(250\) −357184. 618661.i −0.361445 0.626041i
\(251\) 198384. 0.198757 0.0993786 0.995050i \(-0.468315\pi\)
0.0993786 + 0.995050i \(0.468315\pi\)
\(252\) 0 0
\(253\) −541284. −0.531648
\(254\) 127101. + 220145.i 0.123613 + 0.214104i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 239786. + 415321.i 0.226460 + 0.392240i 0.956756 0.290890i \(-0.0939515\pi\)
−0.730297 + 0.683130i \(0.760618\pi\)
\(258\) 0 0
\(259\) −218659. 208999.i −0.202543 0.193595i
\(260\) 669466. 0.614179
\(261\) 0 0
\(262\) −272594. + 472147.i −0.245337 + 0.424936i
\(263\) 227471. 393992.i 0.202786 0.351235i −0.746639 0.665229i \(-0.768334\pi\)
0.949425 + 0.313994i \(0.101667\pi\)
\(264\) 0 0
\(265\) 403884. 0.353299
\(266\) 34437.7 141205.i 0.0298422 0.122362i
\(267\) 0 0
\(268\) 343871. + 595602.i 0.292455 + 0.506546i
\(269\) −430068. + 744900.i −0.362374 + 0.627650i −0.988351 0.152192i \(-0.951367\pi\)
0.625977 + 0.779841i \(0.284700\pi\)
\(270\) 0 0
\(271\) −652790. 1.13067e6i −0.539946 0.935214i −0.998906 0.0467569i \(-0.985111\pi\)
0.458960 0.888457i \(-0.348222\pi\)
\(272\) −316949. −0.259757
\(273\) 0 0
\(274\) 1.34121e6 1.07925
\(275\) −141554. 245178.i −0.112873 0.195501i
\(276\) 0 0
\(277\) 271554. 470346.i 0.212646 0.368314i −0.739896 0.672721i \(-0.765125\pi\)
0.952542 + 0.304408i \(0.0984586\pi\)
\(278\) 116390. + 201594.i 0.0903245 + 0.156447i
\(279\) 0 0
\(280\) −216558. 206991.i −0.165074 0.157781i
\(281\) −998089. −0.754055 −0.377028 0.926202i \(-0.623054\pi\)
−0.377028 + 0.926202i \(0.623054\pi\)
\(282\) 0 0
\(283\) −888660. + 1.53920e6i −0.659583 + 1.14243i 0.321140 + 0.947032i \(0.395934\pi\)
−0.980724 + 0.195400i \(0.937399\pi\)
\(284\) −159699. + 276608.i −0.117492 + 0.203502i
\(285\) 0 0
\(286\) 720514. 0.520868
\(287\) 474421. 138676.i 0.339984 0.0993796i
\(288\) 0 0
\(289\) −56493.2 97849.1i −0.0397880 0.0689148i
\(290\) 408482. 707512.i 0.285219 0.494014i
\(291\) 0 0
\(292\) −364405. 631167.i −0.250108 0.433199i
\(293\) 1.63987e6 1.11594 0.557969 0.829862i \(-0.311581\pi\)
0.557969 + 0.829862i \(0.311581\pi\)
\(294\) 0 0
\(295\) 217007. 0.145184
\(296\) −74661.6 129318.i −0.0495300 0.0857884i
\(297\) 0 0
\(298\) −566116. + 980541.i −0.369287 + 0.639625i
\(299\) −2.01782e6 3.49496e6i −1.30528 2.26081i
\(300\) 0 0
\(301\) −488498. + 142791.i −0.310775 + 0.0908415i
\(302\) 966231. 0.609626
\(303\) 0 0
\(304\) 35875.7 62138.6i 0.0222647 0.0385636i
\(305\) 267880. 463982.i 0.164889 0.285595i
\(306\) 0 0
\(307\) 2.38130e6 1.44201 0.721006 0.692928i \(-0.243680\pi\)
0.721006 + 0.692928i \(0.243680\pi\)
\(308\) −233071. 222774.i −0.139995 0.133810i
\(309\) 0 0
\(310\) −167147. 289507.i −0.0987859 0.171102i
\(311\) −622564. + 1.07831e6i −0.364992 + 0.632184i −0.988775 0.149413i \(-0.952262\pi\)
0.623783 + 0.781597i \(0.285595\pi\)
\(312\) 0 0
\(313\) −831495. 1.44019e6i −0.479732 0.830921i 0.519997 0.854168i \(-0.325933\pi\)
−0.999730 + 0.0232470i \(0.992600\pi\)
\(314\) 856115. 0.490014
\(315\) 0 0
\(316\) 1.74387e6 0.982419
\(317\) −1.31243e6 2.27319e6i −0.733547 1.27054i −0.955358 0.295450i \(-0.904530\pi\)
0.221812 0.975090i \(-0.428803\pi\)
\(318\) 0 0
\(319\) 439630. 761462.i 0.241886 0.418959i
\(320\) −73944.2 128075.i −0.0403672 0.0699181i
\(321\) 0 0
\(322\) −427879. + 1.75443e6i −0.229976 + 0.942967i
\(323\) 347008. 0.185069
\(324\) 0 0
\(325\) 1.05538e6 1.82796e6i 0.554241 0.959974i
\(326\) 128932. 223317.i 0.0671919 0.116380i
\(327\) 0 0
\(328\) 244007. 0.125233
\(329\) 1.04180e6 + 995780.i 0.530636 + 0.507193i
\(330\) 0 0
\(331\) −869428. 1.50589e6i −0.436178 0.755482i 0.561213 0.827671i \(-0.310335\pi\)
−0.997391 + 0.0721894i \(0.977001\pi\)
\(332\) 446632. 773589.i 0.222385 0.385181i
\(333\) 0 0
\(334\) 885389. + 1.53354e6i 0.434278 + 0.752191i
\(335\) −1.55196e6 −0.755558
\(336\) 0 0
\(337\) 853564. 0.409413 0.204706 0.978823i \(-0.434376\pi\)
0.204706 + 0.978823i \(0.434376\pi\)
\(338\) 1.94337e6 + 3.36602e6i 0.925260 + 1.60260i
\(339\) 0 0
\(340\) 357613. 619403.i 0.167771 0.290587i
\(341\) −179892. 311583.i −0.0837774 0.145107i
\(342\) 0 0
\(343\) −1.43287e6 + 1.64148e6i −0.657613 + 0.753356i
\(344\) −251247. −0.114473
\(345\) 0 0
\(346\) 157198. 272275.i 0.0705922 0.122269i
\(347\) −1.49250e6 + 2.58508e6i −0.665411 + 1.15253i 0.313763 + 0.949501i \(0.398410\pi\)
−0.979174 + 0.203024i \(0.934923\pi\)
\(348\) 0 0
\(349\) 2.87467e6 1.26335 0.631676 0.775233i \(-0.282367\pi\)
0.631676 + 0.775233i \(0.282367\pi\)
\(350\) −906576. + 264998.i −0.395580 + 0.115631i
\(351\) 0 0
\(352\) −79582.6 137841.i −0.0342343 0.0592955i
\(353\) 735546. 1.27400e6i 0.314176 0.544169i −0.665086 0.746767i \(-0.731605\pi\)
0.979262 + 0.202598i \(0.0649384\pi\)
\(354\) 0 0
\(355\) −360377. 624192.i −0.151770 0.262874i
\(356\) 1.52873e6 0.639303
\(357\) 0 0
\(358\) −2.04171e6 −0.841950
\(359\) 1.53900e6 + 2.66562e6i 0.630233 + 1.09160i 0.987504 + 0.157595i \(0.0503741\pi\)
−0.357270 + 0.934001i \(0.616293\pi\)
\(360\) 0 0
\(361\) 1.19877e6 2.07633e6i 0.484137 0.838550i
\(362\) −44103.6 76389.6i −0.0176890 0.0306382i
\(363\) 0 0
\(364\) 569559. 2.33536e6i 0.225312 0.923846i
\(365\) 1.64463e6 0.646154
\(366\) 0 0
\(367\) −808349. + 1.40010e6i −0.313281 + 0.542618i −0.979071 0.203521i \(-0.934761\pi\)
0.665790 + 0.746139i \(0.268095\pi\)
\(368\) −445746. + 772055.i −0.171580 + 0.297186i
\(369\) 0 0
\(370\) 336962. 0.127961
\(371\) 343611. 1.40890e6i 0.129608 0.531431i
\(372\) 0 0
\(373\) 2.38059e6 + 4.12331e6i 0.885958 + 1.53452i 0.844612 + 0.535379i \(0.179831\pi\)
0.0413462 + 0.999145i \(0.486835\pi\)
\(374\) 384881. 666634.i 0.142281 0.246439i
\(375\) 0 0
\(376\) 355727. + 616136.i 0.129762 + 0.224754i
\(377\) 6.55547e6 2.37548
\(378\) 0 0
\(379\) 1.00193e6 0.358294 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(380\) 80957.1 + 140222.i 0.0287605 + 0.0498146i
\(381\) 0 0
\(382\) 1.11630e6 1.93350e6i 0.391403 0.677930i
\(383\) −1.41076e6 2.44351e6i −0.491424 0.851172i 0.508527 0.861046i \(-0.330190\pi\)
−0.999951 + 0.00987425i \(0.996857\pi\)
\(384\) 0 0
\(385\) 698335. 204128.i 0.240111 0.0701859i
\(386\) 197265. 0.0673879
\(387\) 0 0
\(388\) −120040. + 207915.i −0.0404804 + 0.0701142i
\(389\) −621198. + 1.07595e6i −0.208140 + 0.360510i −0.951129 0.308795i \(-0.900074\pi\)
0.742988 + 0.669304i \(0.233408\pi\)
\(390\) 0 0
\(391\) −4.31148e6 −1.42621
\(392\) −906304. + 579337.i −0.297892 + 0.190422i
\(393\) 0 0
\(394\) 1.88302e6 + 3.26148e6i 0.611102 + 1.05846i
\(395\) −1.96761e6 + 3.40800e6i −0.634521 + 1.09902i
\(396\) 0 0
\(397\) −1.37281e6 2.37778e6i −0.437154 0.757173i 0.560315 0.828280i \(-0.310680\pi\)
−0.997469 + 0.0711068i \(0.977347\pi\)
\(398\) −2.56005e6 −0.810103
\(399\) 0 0
\(400\) −466276. −0.145711
\(401\) −1.85668e6 3.21586e6i −0.576601 0.998702i −0.995866 0.0908378i \(-0.971046\pi\)
0.419265 0.907864i \(-0.362288\pi\)
\(402\) 0 0
\(403\) 1.34122e6 2.32306e6i 0.411374 0.712521i
\(404\) 215009. + 372407.i 0.0655396 + 0.113518i
\(405\) 0 0
\(406\) −2.12055e6 2.02687e6i −0.638461 0.610255i
\(407\) 362656. 0.108520
\(408\) 0 0
\(409\) −1.87970e6 + 3.25574e6i −0.555623 + 0.962367i 0.442232 + 0.896901i \(0.354187\pi\)
−0.997855 + 0.0654664i \(0.979146\pi\)
\(410\) −275313. + 476856.i −0.0808847 + 0.140096i
\(411\) 0 0
\(412\) −830643. −0.241086
\(413\) 184622. 757005.i 0.0532609 0.218385i
\(414\) 0 0
\(415\) 1.00787e6 + 1.74568e6i 0.287266 + 0.497559i
\(416\) 593341. 1.02770e6i 0.168101 0.291160i
\(417\) 0 0
\(418\) 87130.2 + 150914.i 0.0243909 + 0.0422463i
\(419\) −4.60027e6 −1.28011 −0.640056 0.768328i \(-0.721089\pi\)
−0.640056 + 0.768328i \(0.721089\pi\)
\(420\) 0 0
\(421\) −404864. −0.111328 −0.0556639 0.998450i \(-0.517728\pi\)
−0.0556639 + 0.998450i \(0.517728\pi\)
\(422\) 1.84374e6 + 3.19345e6i 0.503986 + 0.872929i
\(423\) 0 0
\(424\) 357959. 620003.i 0.0966982 0.167486i
\(425\) −1.12751e6 1.95291e6i −0.302795 0.524457i
\(426\) 0 0
\(427\) −1.39065e6 1.32921e6i −0.369102 0.352796i
\(428\) 399596. 0.105442
\(429\) 0 0
\(430\) 283482. 491004.i 0.0739356 0.128060i
\(431\) 47379.2 82063.2i 0.0122856 0.0212792i −0.859817 0.510602i \(-0.829423\pi\)
0.872103 + 0.489323i \(0.162756\pi\)
\(432\) 0 0
\(433\) 4.31727e6 1.10660 0.553298 0.832983i \(-0.313369\pi\)
0.553298 + 0.832983i \(0.313369\pi\)
\(434\) −1.15212e6 + 336771.i −0.293611 + 0.0858244i
\(435\) 0 0
\(436\) 29089.2 + 50383.9i 0.00732850 + 0.0126933i
\(437\) 488021. 845277.i 0.122246 0.211736i
\(438\) 0 0
\(439\) 1.11184e6 + 1.92576e6i 0.275346 + 0.476914i 0.970222 0.242216i \(-0.0778741\pi\)
−0.694876 + 0.719130i \(0.744541\pi\)
\(440\) 359172. 0.0884444
\(441\) 0 0
\(442\) 5.73909e6 1.39729
\(443\) −2.34213e6 4.05668e6i −0.567024 0.982114i −0.996858 0.0792062i \(-0.974761\pi\)
0.429835 0.902908i \(-0.358572\pi\)
\(444\) 0 0
\(445\) −1.72487e6 + 2.98756e6i −0.412910 + 0.715182i
\(446\) −1.67540e6 2.90188e6i −0.398824 0.690784i
\(447\) 0 0
\(448\) −509685. + 148984.i −0.119979 + 0.0350707i
\(449\) −897932. −0.210198 −0.105099 0.994462i \(-0.533516\pi\)
−0.105099 + 0.994462i \(0.533516\pi\)
\(450\) 0 0
\(451\) −296306. + 513217.i −0.0685960 + 0.118812i
\(452\) 497400. 861522.i 0.114514 0.198344i
\(453\) 0 0
\(454\) −5.32276e6 −1.21198
\(455\) 3.92129e6 + 3.74805e6i 0.887974 + 0.848745i
\(456\) 0 0
\(457\) −2.99091e6 5.18040e6i −0.669903 1.16031i −0.977931 0.208929i \(-0.933002\pi\)
0.308027 0.951377i \(-0.400331\pi\)
\(458\) 2.02127e6 3.50094e6i 0.450256 0.779867i
\(459\) 0 0
\(460\) −1.00587e6 1.74222e6i −0.221639 0.383891i
\(461\) −1.62507e6 −0.356138 −0.178069 0.984018i \(-0.556985\pi\)
−0.178069 + 0.984018i \(0.556985\pi\)
\(462\) 0 0
\(463\) −8.46295e6 −1.83472 −0.917359 0.398060i \(-0.869683\pi\)
−0.917359 + 0.398060i \(0.869683\pi\)
\(464\) −724068. 1.25412e6i −0.156129 0.270424i
\(465\) 0 0
\(466\) −2.97220e6 + 5.14800e6i −0.634035 + 1.09818i
\(467\) 3.83297e6 + 6.63890e6i 0.813286 + 1.40865i 0.910552 + 0.413395i \(0.135657\pi\)
−0.0972658 + 0.995258i \(0.531010\pi\)
\(468\) 0 0
\(469\) −1.32035e6 + 5.41383e6i −0.277177 + 1.13651i
\(470\) −1.60546e6 −0.335240
\(471\) 0 0
\(472\) 192331. 333127.i 0.0397370 0.0688265i
\(473\) 305098. 528445.i 0.0627027 0.108604i
\(474\) 0 0
\(475\) 510497. 0.103815
\(476\) −1.85647e6 1.77446e6i −0.375553 0.358962i
\(477\) 0 0
\(478\) −1.75127e6 3.03330e6i −0.350578 0.607219i
\(479\) −1.20146e6 + 2.08099e6i −0.239261 + 0.414412i −0.960502 0.278272i \(-0.910238\pi\)
0.721242 + 0.692683i \(0.243572\pi\)
\(480\) 0 0
\(481\) 1.35192e6 + 2.34160e6i 0.266434 + 0.461477i
\(482\) −5.81178e6 −1.13944
\(483\) 0 0
\(484\) −2.19026e6 −0.424993
\(485\) −270881. 469180.i −0.0522907 0.0905701i
\(486\) 0 0
\(487\) 85150.8 147486.i 0.0162692 0.0281791i −0.857776 0.514023i \(-0.828154\pi\)
0.874045 + 0.485844i \(0.161488\pi\)
\(488\) −474839. 822445.i −0.0902603 0.156335i
\(489\) 0 0
\(490\) −109600. 2.42483e6i −0.0206215 0.456237i
\(491\) 5.77628e6 1.08130 0.540648 0.841249i \(-0.318179\pi\)
0.540648 + 0.841249i \(0.318179\pi\)
\(492\) 0 0
\(493\) 3.50177e6 6.06525e6i 0.648890 1.12391i
\(494\) −649614. + 1.12516e6i −0.119767 + 0.207443i
\(495\) 0 0
\(496\) −592564. −0.108151
\(497\) −2.48402e6 + 726095.i −0.451091 + 0.131857i
\(498\) 0 0
\(499\) −271801. 470773.i −0.0488652 0.0846369i 0.840558 0.541721i \(-0.182227\pi\)
−0.889423 + 0.457084i \(0.848894\pi\)
\(500\) 1.42874e6 2.47464e6i 0.255580 0.442678i
\(501\) 0 0
\(502\) 396769. + 687223.i 0.0702713 + 0.121713i
\(503\) 5.40086e6 0.951794 0.475897 0.879501i \(-0.342124\pi\)
0.475897 + 0.879501i \(0.342124\pi\)
\(504\) 0 0
\(505\) −970378. −0.169322
\(506\) −1.08257e6 1.87506e6i −0.187966 0.325567i
\(507\) 0 0
\(508\) −508402. + 880579.i −0.0874074 + 0.151394i
\(509\) 4.17209e6 + 7.22628e6i 0.713772 + 1.23629i 0.963431 + 0.267955i \(0.0863480\pi\)
−0.249659 + 0.968334i \(0.580319\pi\)
\(510\) 0 0
\(511\) 1.39919e6 5.73710e6i 0.237042 0.971942i
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −959144. + 1.66129e6i −0.160131 + 0.277355i
\(515\) 937213. 1.62330e6i 0.155711 0.269700i
\(516\) 0 0
\(517\) −1.72788e6 −0.284307
\(518\) 286676. 1.17546e6i 0.0469426 0.192478i
\(519\) 0 0
\(520\) 1.33893e6 + 2.31910e6i 0.217145 + 0.376106i
\(521\) −5.73919e6 + 9.94057e6i −0.926310 + 1.60442i −0.136870 + 0.990589i \(0.543704\pi\)
−0.789441 + 0.613827i \(0.789629\pi\)
\(522\) 0 0
\(523\) 2.19367e6 + 3.79955e6i 0.350685 + 0.607404i 0.986370 0.164545i \(-0.0526155\pi\)
−0.635685 + 0.771949i \(0.719282\pi\)
\(524\) −2.18075e6 −0.346959
\(525\) 0 0
\(526\) 1.81977e6 0.286782
\(527\) −1.43289e6 2.48184e6i −0.224744 0.389267i
\(528\) 0 0
\(529\) −2.84535e6 + 4.92829e6i −0.442075 + 0.765697i
\(530\) 807769. + 1.39910e6i 0.124910 + 0.216350i
\(531\) 0 0
\(532\) 558023. 163114.i 0.0854817 0.0249869i
\(533\) −4.41832e6 −0.673657
\(534\) 0 0
\(535\) −450864. + 780919.i −0.0681022 + 0.117956i
\(536\) −1.37548e6 + 2.38241e6i −0.206797 + 0.358182i
\(537\) 0 0
\(538\) −3.44055e6 −0.512474
\(539\) −117957. 2.60973e6i −0.0174885 0.386922i
\(540\) 0 0
\(541\) −3.61153e6 6.25535e6i −0.530515 0.918879i −0.999366 0.0356020i \(-0.988665\pi\)
0.468851 0.883277i \(-0.344668\pi\)
\(542\) 2.61116e6 4.52266e6i 0.381799 0.661296i
\(543\) 0 0
\(544\) −633897. 1.09794e6i −0.0918378 0.159068i
\(545\) −131285. −0.0189332
\(546\) 0 0
\(547\) 3.54529e6 0.506622 0.253311 0.967385i \(-0.418480\pi\)
0.253311 + 0.967385i \(0.418480\pi\)
\(548\) 2.68243e6 + 4.64610e6i 0.381572 + 0.660902i
\(549\) 0 0
\(550\) 566214. 980712.i 0.0798131 0.138240i
\(551\) 792739. + 1.37306e6i 0.111237 + 0.192669i
\(552\) 0 0
\(553\) 1.02144e7 + 9.76319e6i 1.42037 + 1.35762i
\(554\) 2.17243e6 0.300727
\(555\) 0 0
\(556\) −465562. + 806377.i −0.0638691 + 0.110624i
\(557\) 5.18314e6 8.97747e6i 0.707873 1.22607i −0.257772 0.966206i \(-0.582988\pi\)
0.965645 0.259866i \(-0.0836783\pi\)
\(558\) 0 0
\(559\) 4.54941e6 0.615780
\(560\) 283921. 1.16416e6i 0.0382585 0.156871i
\(561\) 0 0
\(562\) −1.99618e6 3.45748e6i −0.266599 0.461763i
\(563\) −2.24141e6 + 3.88223e6i −0.298023 + 0.516191i −0.975684 0.219184i \(-0.929661\pi\)
0.677660 + 0.735375i \(0.262994\pi\)
\(564\) 0 0
\(565\) 1.12243e6 + 1.94411e6i 0.147924 + 0.256212i
\(566\) −7.10928e6 −0.932792
\(567\) 0 0
\(568\) −1.27760e6 −0.166158
\(569\) 3.24668e6 + 5.62341e6i 0.420396 + 0.728147i 0.995978 0.0895969i \(-0.0285579\pi\)
−0.575582 + 0.817744i \(0.695225\pi\)
\(570\) 0 0
\(571\) 248754. 430854.i 0.0319286 0.0553019i −0.849620 0.527396i \(-0.823168\pi\)
0.881548 + 0.472094i \(0.156502\pi\)
\(572\) 1.44103e6 + 2.49593e6i 0.184155 + 0.318965i
\(573\) 0 0
\(574\) 1.42923e6 + 1.36609e6i 0.181060 + 0.173061i
\(575\) −6.34279e6 −0.800038
\(576\) 0 0
\(577\) 3.27561e6 5.67353e6i 0.409594 0.709437i −0.585250 0.810853i \(-0.699004\pi\)
0.994844 + 0.101416i \(0.0323372\pi\)
\(578\) 225973. 391397.i 0.0281343 0.0487301i
\(579\) 0 0
\(580\) 3.26786e6 0.403360
\(581\) 6.94707e6 2.03067e6i 0.853810 0.249574i
\(582\) 0 0
\(583\) 869363. + 1.50578e6i 0.105933 + 0.183481i
\(584\) 1.45762e6 2.52467e6i 0.176853 0.306318i
\(585\) 0 0
\(586\) 3.27974e6 + 5.68067e6i 0.394543 + 0.683369i
\(587\) 30793.5 0.00368862 0.00184431 0.999998i \(-0.499413\pi\)
0.00184431 + 0.999998i \(0.499413\pi\)
\(588\) 0 0
\(589\) 648763. 0.0770544
\(590\) 434014. + 751735.i 0.0513303 + 0.0889067i
\(591\) 0 0
\(592\) 298646. 517271.i 0.0350230 0.0606616i
\(593\) 285468. + 494446.i 0.0333366 + 0.0577407i 0.882212 0.470852i \(-0.156053\pi\)
−0.848876 + 0.528592i \(0.822720\pi\)
\(594\) 0 0
\(595\) 5.56243e6 1.62593e6i 0.644128 0.188283i
\(596\) −4.52893e6 −0.522251
\(597\) 0 0
\(598\) 8.07127e6 1.39799e7i 0.922973 1.59864i
\(599\) 4.53555e6 7.85581e6i 0.516492 0.894590i −0.483325 0.875441i \(-0.660571\pi\)
0.999817 0.0191488i \(-0.00609561\pi\)
\(600\) 0 0
\(601\) −1.36309e7 −1.53936 −0.769679 0.638431i \(-0.779584\pi\)
−0.769679 + 0.638431i \(0.779584\pi\)
\(602\) −1.47164e6 1.40662e6i −0.165504 0.158193i
\(603\) 0 0
\(604\) 1.93246e6 + 3.34712e6i 0.215535 + 0.373318i
\(605\) 2.47126e6 4.28035e6i 0.274493 0.475435i
\(606\) 0 0
\(607\) 1.97825e6 + 3.42644e6i 0.217927 + 0.377460i 0.954174 0.299253i \(-0.0967373\pi\)
−0.736247 + 0.676713i \(0.763404\pi\)
\(608\) 287006. 0.0314870
\(609\) 0 0
\(610\) 2.14304e6 0.233188
\(611\) −6.44126e6 1.11566e7i −0.698020 1.20901i
\(612\) 0 0
\(613\) −661552. + 1.14584e6i −0.0711070 + 0.123161i −0.899387 0.437154i \(-0.855987\pi\)
0.828280 + 0.560315i \(0.189320\pi\)
\(614\) 4.76261e6 + 8.24908e6i 0.509828 + 0.883049i
\(615\) 0 0
\(616\) 305571. 1.25293e6i 0.0324459 0.133038i
\(617\) −9.26370e6 −0.979651 −0.489826 0.871820i \(-0.662940\pi\)
−0.489826 + 0.871820i \(0.662940\pi\)
\(618\) 0 0
\(619\) −334693. + 579705.i −0.0351091 + 0.0608107i −0.883046 0.469286i \(-0.844511\pi\)
0.847937 + 0.530097i \(0.177845\pi\)
\(620\) 668589. 1.15803e6i 0.0698521 0.120987i
\(621\) 0 0
\(622\) −4.98051e6 −0.516176
\(623\) 8.95430e6 + 8.55872e6i 0.924297 + 0.883463i
\(624\) 0 0
\(625\) 378164. + 654999.i 0.0387240 + 0.0670719i
\(626\) 3.32598e6 5.76077e6i 0.339222 0.587550i
\(627\) 0 0
\(628\) 1.71223e6 + 2.96567e6i 0.173246 + 0.300071i
\(629\) 2.88866e6 0.291118
\(630\) 0 0
\(631\) −666246. −0.0666133 −0.0333067 0.999445i \(-0.510604\pi\)
−0.0333067 + 0.999445i \(0.510604\pi\)
\(632\) 3.48774e6 + 6.04095e6i 0.347338 + 0.601607i
\(633\) 0 0
\(634\) 5.24972e6 9.09277e6i 0.518696 0.898407i
\(635\) −1.14726e6 1.98711e6i −0.112909 0.195564i
\(636\) 0 0
\(637\) 1.64108e7 1.04903e7i 1.60243 1.02432i
\(638\) 3.51704e6 0.342078
\(639\) 0 0
\(640\) 295777. 512300.i 0.0285439 0.0494396i
\(641\) −1.05439e6 + 1.82625e6i −0.101357 + 0.175556i −0.912244 0.409647i \(-0.865652\pi\)
0.810887 + 0.585203i \(0.198985\pi\)
\(642\) 0 0
\(643\) 1.25977e7 1.20161 0.600806 0.799395i \(-0.294846\pi\)
0.600806 + 0.799395i \(0.294846\pi\)
\(644\) −6.93328e6 + 2.02664e6i −0.658756 + 0.192558i
\(645\) 0 0
\(646\) 694016. + 1.20207e6i 0.0654317 + 0.113331i
\(647\) 8.56496e6 1.48349e7i 0.804386 1.39324i −0.112319 0.993672i \(-0.535828\pi\)
0.916705 0.399565i \(-0.130839\pi\)
\(648\) 0 0
\(649\) 467109. + 809056.i 0.0435318 + 0.0753992i
\(650\) 8.44301e6 0.783815
\(651\) 0 0
\(652\) 1.03146e6 0.0950237
\(653\) −4.12762e6 7.14925e6i −0.378806 0.656112i 0.612083 0.790794i \(-0.290332\pi\)
−0.990889 + 0.134682i \(0.956999\pi\)
\(654\) 0 0
\(655\) 2.46054e6 4.26178e6i 0.224092 0.388139i
\(656\) 488014. + 845265.i 0.0442764 + 0.0766890i
\(657\) 0 0
\(658\) −1.36587e6 + 5.60048e6i −0.122983 + 0.504267i
\(659\) 1.05417e7 0.945581 0.472790 0.881175i \(-0.343247\pi\)
0.472790 + 0.881175i \(0.343247\pi\)
\(660\) 0 0
\(661\) −2.23820e6 + 3.87668e6i −0.199249 + 0.345109i −0.948285 0.317420i \(-0.897184\pi\)
0.749036 + 0.662529i \(0.230517\pi\)
\(662\) 3.47771e6 6.02357e6i 0.308424 0.534206i
\(663\) 0 0
\(664\) 3.57306e6 0.314499
\(665\) −310848. + 1.27457e6i −0.0272580 + 0.111766i
\(666\) 0 0
\(667\) −9.84956e6 1.70599e7i −0.857240 1.48478i
\(668\) −3.54155e6 + 6.13415e6i −0.307081 + 0.531880i
\(669\) 0 0
\(670\) −3.10391e6 5.37614e6i −0.267130 0.462683i
\(671\) 2.30645e6 0.197760
\(672\) 0 0
\(673\) −1.87165e7 −1.59289 −0.796447 0.604708i \(-0.793290\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(674\) 1.70713e6 + 2.95683e6i 0.144749 + 0.250713i
\(675\) 0 0
\(676\) −7.77348e6 + 1.34641e7i −0.654258 + 1.13321i
\(677\) 2.08116e6 + 3.60467e6i 0.174515 + 0.302270i 0.939993 0.341192i \(-0.110831\pi\)
−0.765478 + 0.643462i \(0.777497\pi\)
\(678\) 0 0
\(679\) −1.86714e6 + 545776.i −0.155418 + 0.0454297i
\(680\) 2.86090e6 0.237263
\(681\) 0 0
\(682\) 719570. 1.24633e6i 0.0592396 0.102606i
\(683\) −6.43455e6 + 1.11450e7i −0.527796 + 0.914170i 0.471679 + 0.881770i \(0.343648\pi\)
−0.999475 + 0.0323992i \(0.989685\pi\)
\(684\) 0 0
\(685\) −1.21063e7 −0.985793
\(686\) −8.55199e6 1.68063e6i −0.693836 0.136352i
\(687\) 0 0
\(688\) −502494. 870345.i −0.0404725 0.0701004i
\(689\) −6.48168e6 + 1.12266e7i −0.520163 + 0.900949i
\(690\) 0 0
\(691\) 4.64518e6 + 8.04569e6i 0.370090 + 0.641015i 0.989579 0.143990i \(-0.0459934\pi\)
−0.619489 + 0.785006i \(0.712660\pi\)
\(692\) 1.25758e6 0.0998325
\(693\) 0 0
\(694\) −1.19400e7 −0.941033
\(695\) −1.05059e6 1.81967e6i −0.0825029 0.142899i
\(696\) 0 0
\(697\) −2.36016e6 + 4.08791e6i −0.184018 + 0.318728i
\(698\) 5.74934e6 + 9.95815e6i 0.446662 + 0.773642i
\(699\) 0 0
\(700\) −2.73113e6 2.61048e6i −0.210668 0.201361i
\(701\) −2.50809e7 −1.92774 −0.963870 0.266375i \(-0.914174\pi\)
−0.963870 + 0.266375i \(0.914174\pi\)
\(702\) 0 0
\(703\) −326970. + 566329.i −0.0249528 + 0.0432196i
\(704\) 318330. 551364.i 0.0242073 0.0419283i
\(705\) 0 0
\(706\) 5.88437e6 0.444312
\(707\) −825564. + 3.38505e6i −0.0621158 + 0.254693i
\(708\) 0 0
\(709\) −4.96890e6 8.60639e6i −0.371231 0.642991i 0.618524 0.785766i \(-0.287731\pi\)
−0.989755 + 0.142774i \(0.954398\pi\)
\(710\) 1.44151e6 2.49677e6i 0.107318 0.185880i
\(711\) 0 0
\(712\) 3.05747e6 + 5.29569e6i 0.226028 + 0.391491i
\(713\) −8.06069e6 −0.593811
\(714\) 0 0
\(715\) −6.50364e6 −0.475764
\(716\) −4.08342e6 7.07269e6i −0.297674 0.515587i
\(717\) 0 0
\(718\) −6.15598e6 + 1.06625e7i −0.445642 + 0.771875i
\(719\) −7.00047e6 1.21252e7i −0.505016 0.874713i −0.999983 0.00580117i \(-0.998153\pi\)
0.494968 0.868911i \(-0.335180\pi\)
\(720\) 0 0
\(721\) −4.86536e6 4.65041e6i −0.348559 0.333160i
\(722\) 9.59017e6 0.684673
\(723\) 0 0
\(724\) 176414. 305559.i 0.0125080 0.0216645i
\(725\) 5.15160e6 8.92283e6i 0.363996 0.630460i
\(726\) 0 0
\(727\) 8.27315e6 0.580544 0.290272 0.956944i \(-0.406254\pi\)
0.290272 + 0.956944i \(0.406254\pi\)
\(728\) 9.22903e6 2.69770e6i 0.645398 0.188654i
\(729\) 0 0
\(730\) 3.28926e6 + 5.69716e6i 0.228450 + 0.395687i
\(731\) 2.43019e6 4.20921e6i 0.168208 0.291345i
\(732\) 0 0
\(733\) 1.64295e6 + 2.84568e6i 0.112945 + 0.195626i 0.916956 0.398988i \(-0.130638\pi\)
−0.804012 + 0.594614i \(0.797305\pi\)
\(734\) −6.46679e6 −0.443046
\(735\) 0 0
\(736\) −3.56597e6 −0.242651
\(737\) −3.34059e6 5.78608e6i −0.226545 0.392388i
\(738\) 0 0
\(739\) −5.04564e6 + 8.73930e6i −0.339864 + 0.588662i −0.984407 0.175907i \(-0.943714\pi\)
0.644543 + 0.764568i \(0.277048\pi\)
\(740\) 673925. + 1.16727e6i 0.0452410 + 0.0783597i
\(741\) 0 0
\(742\) 5.56781e6 1.62751e6i 0.371257 0.108521i
\(743\) −1.73443e7 −1.15261 −0.576307 0.817233i \(-0.695507\pi\)
−0.576307 + 0.817233i \(0.695507\pi\)
\(744\) 0 0
\(745\) 5.10998e6 8.85074e6i 0.337309 0.584237i
\(746\) −9.52237e6 + 1.64932e7i −0.626467 + 1.08507i
\(747\) 0 0
\(748\) 3.07905e6 0.201216
\(749\) 2.34057e6 + 2.23717e6i 0.152446 + 0.145711i
\(750\) 0 0
\(751\) 8.79857e6 + 1.52396e7i 0.569262 + 0.985990i 0.996639 + 0.0819170i \(0.0261042\pi\)
−0.427377 + 0.904073i \(0.640562\pi\)
\(752\) −1.42291e6 + 2.46455e6i −0.0917554 + 0.158925i
\(753\) 0 0
\(754\) 1.31109e7 + 2.27088e7i 0.839857 + 1.45468i
\(755\) −8.72158e6 −0.556836
\(756\) 0 0
\(757\) −4.66480e6 −0.295865 −0.147932 0.988997i \(-0.547262\pi\)
−0.147932 + 0.988997i \(0.547262\pi\)
\(758\) 2.00386e6 + 3.47079e6i 0.126676 + 0.219409i
\(759\) 0 0
\(760\) −323828. + 560887.i −0.0203367 + 0.0352242i
\(761\) 9.13585e6 + 1.58238e7i 0.571857 + 0.990485i 0.996375 + 0.0850658i \(0.0271101\pi\)
−0.424518 + 0.905419i \(0.639557\pi\)
\(762\) 0 0
\(763\) −111693. + 457973.i −0.00694566 + 0.0284792i
\(764\) 8.93044e6 0.553528
\(765\) 0 0
\(766\) 5.64305e6 9.77404e6i 0.347489 0.601869i
\(767\) −3.48261e6 + 6.03205e6i −0.213755 + 0.370234i
\(768\) 0 0
\(769\) −2.31895e7 −1.41409 −0.707043 0.707171i \(-0.749971\pi\)
−0.707043 + 0.707171i \(0.749971\pi\)
\(770\) 2.10379e6 + 2.01085e6i 0.127872 + 0.122223i
\(771\) 0 0
\(772\) 394530. + 683346.i 0.0238252 + 0.0412665i
\(773\) 1.01074e6 1.75066e6i 0.0608405 0.105379i −0.834001 0.551763i \(-0.813955\pi\)
0.894841 + 0.446384i \(0.147289\pi\)
\(774\) 0 0
\(775\) −2.10799e6 3.65114e6i −0.126070 0.218360i
\(776\) −960317. −0.0572480
\(777\) 0 0
\(778\) −4.96959e6 −0.294355
\(779\) −534297. 925430.i −0.0315456 0.0546387i
\(780\) 0 0
\(781\) 1.55143e6 2.68715e6i 0.0910131 0.157639i
\(782\) −8.62296e6 1.49354e7i −0.504243 0.873374i
\(783\) 0 0
\(784\) −3.81949e6 1.98085e6i −0.221930 0.115097i
\(785\) −7.72763e6 −0.447582
\(786\) 0 0
\(787\) −7.88722e6 + 1.36611e7i −0.453928 + 0.786227i −0.998626 0.0524059i \(-0.983311\pi\)
0.544698 + 0.838632i \(0.316644\pi\)
\(788\) −7.53207e6 + 1.30459e7i −0.432114 + 0.748444i
\(789\) 0 0
\(790\) −1.57409e7 −0.897348
\(791\) 7.73672e6 2.26149e6i 0.439659 0.128515i
\(792\) 0 0
\(793\) 8.59807e6 + 1.48923e7i 0.485532 + 0.840966i
\(794\) 5.49124e6 9.51111e6i 0.309115 0.535402i
\(795\) 0 0
\(796\) −5.12010e6 8.86827e6i −0.286415 0.496085i
\(797\) −1.22436e6 −0.0682750 −0.0341375 0.999417i \(-0.510868\pi\)
−0.0341375 + 0.999417i \(0.510868\pi\)
\(798\) 0 0
\(799\) −1.37631e7 −0.762690
\(800\) −932551. 1.61523e6i −0.0515167 0.0892295i
\(801\) 0 0
\(802\) 7.42670e6 1.28634e7i 0.407718 0.706189i
\(803\) 3.54007e6 + 6.13158e6i 0.193742 + 0.335571i
\(804\) 0 0
\(805\) 3.86221e6 1.58362e7i 0.210061 0.861312i
\(806\) 1.07297e7 0.581771
\(807\) 0 0
\(808\) −860037. + 1.48963e6i −0.0463435 + 0.0802692i
\(809\) −1.38662e7 + 2.40170e7i −0.744882 + 1.29017i 0.205368 + 0.978685i \(0.434161\pi\)
−0.950250 + 0.311489i \(0.899172\pi\)
\(810\) 0 0
\(811\) −1.19246e7 −0.636636 −0.318318 0.947984i \(-0.603118\pi\)
−0.318318 + 0.947984i \(0.603118\pi\)
\(812\) 2.78018e6 1.13996e7i 0.147973 0.606734i
\(813\) 0 0
\(814\) 725313. + 1.25628e6i 0.0383676 + 0.0664546i
\(815\) −1.16379e6 + 2.01575e6i −0.0613735 + 0.106302i
\(816\) 0 0
\(817\) 550151. + 952889.i 0.0288354 + 0.0499444i
\(818\) −1.50376e7 −0.785770
\(819\) 0 0
\(820\) −2.20250e6 −0.114388
\(821\) 8.02312e6 + 1.38965e7i 0.415418 + 0.719525i 0.995472 0.0950526i \(-0.0303019\pi\)
−0.580054 + 0.814578i \(0.696969\pi\)
\(822\) 0 0
\(823\) 5.61533e6 9.72603e6i 0.288985 0.500537i −0.684583 0.728935i \(-0.740016\pi\)
0.973568 + 0.228398i \(0.0733489\pi\)
\(824\) −1.66129e6 2.87743e6i −0.0852367 0.147634i
\(825\) 0 0
\(826\) 2.99159e6 874460.i 0.152564 0.0445954i
\(827\) 2.68427e7 1.36478 0.682389 0.730989i \(-0.260941\pi\)
0.682389 + 0.730989i \(0.260941\pi\)
\(828\) 0 0
\(829\) −1.40210e7 + 2.42850e7i −0.708584 + 1.22730i 0.256798 + 0.966465i \(0.417332\pi\)
−0.965382 + 0.260839i \(0.916001\pi\)
\(830\) −4.03147e6 + 6.98272e6i −0.203127 + 0.351827i
\(831\) 0 0
\(832\) 4.74673e6 0.237731
\(833\) −939564. 2.07872e7i −0.0469152 1.03797i
\(834\) 0 0
\(835\) −7.99186e6 1.38423e7i −0.396672 0.687056i
\(836\) −348521. + 603656.i −0.0172470 + 0.0298727i
\(837\) 0 0
\(838\) −9.20054e6 1.59358e7i −0.452588 0.783905i
\(839\) 3.30603e7 1.62145 0.810723 0.585430i \(-0.199074\pi\)
0.810723 + 0.585430i \(0.199074\pi\)
\(840\) 0 0
\(841\) 1.14880e7 0.560086
\(842\) −809728. 1.40249e6i −0.0393604 0.0681741i
\(843\) 0 0
\(844\) −7.37495e6 + 1.27738e7i −0.356372 + 0.617254i
\(845\) −1.75416e7 3.03830e7i −0.845139 1.46382i
\(846\) 0 0
\(847\) −1.28291e7 1.22623e7i −0.614450 0.587305i
\(848\) 2.86367e6 0.136752
\(849\) 0 0
\(850\) 4.51005e6 7.81164e6i 0.214109 0.370847i
\(851\) 4.06251e6 7.03648e6i 0.192296 0.333067i
\(852\) 0 0
\(853\) 2.73897e7 1.28889 0.644444 0.764652i \(-0.277089\pi\)
0.644444 + 0.764652i \(0.277089\pi\)
\(854\) 1.82322e6 7.47575e6i 0.0855452 0.350760i
\(855\) 0 0
\(856\) 799192. + 1.38424e6i 0.0372792 + 0.0645695i
\(857\) −1.48360e6 + 2.56968e6i −0.0690027 + 0.119516i −0.898463 0.439050i \(-0.855315\pi\)
0.829460 + 0.558566i \(0.188648\pi\)
\(858\) 0 0
\(859\) 1.98980e7 + 3.44643e7i 0.920081 + 1.59363i 0.799287 + 0.600949i \(0.205211\pi\)
0.120794 + 0.992678i \(0.461456\pi\)
\(860\) 2.26785e6 0.104561
\(861\) 0 0
\(862\) 379034. 0.0173744
\(863\) 3.59799e6 + 6.23190e6i 0.164450 + 0.284835i 0.936460 0.350775i \(-0.114082\pi\)
−0.772010 + 0.635610i \(0.780749\pi\)
\(864\) 0 0
\(865\) −1.41893e6 + 2.45766e6i −0.0644794 + 0.111682i
\(866\) 8.63453e6 + 1.49554e7i 0.391241 + 0.677649i
\(867\) 0 0
\(868\) −3.47084e6 3.31751e6i −0.156364 0.149456i
\(869\) −1.69411e7 −0.761015
\(870\) 0 0
\(871\) 2.49063e7 4.31391e7i 1.11241 1.92675i
\(872\) −116357. + 201536.i −0.00518203 + 0.00897554i
\(873\) 0 0
\(874\) 3.90417e6 0.172882
\(875\) 2.22231e7 6.49594e6i 0.981259 0.286828i
\(876\) 0 0
\(877\) −1.25621e7 2.17582e7i −0.551523 0.955266i −0.998165 0.0605532i \(-0.980714\pi\)
0.446642 0.894713i \(-0.352620\pi\)
\(878\) −4.44734e6 + 7.70303e6i −0.194699 + 0.337229i
\(879\) 0 0
\(880\) 718343. + 1.24421e6i 0.0312698 + 0.0541609i
\(881\) −120262. −0.00522022 −0.00261011 0.999997i \(-0.500831\pi\)
−0.00261011 + 0.999997i \(0.500831\pi\)
\(882\) 0 0
\(883\) 2.43497e7 1.05097 0.525487 0.850802i \(-0.323883\pi\)
0.525487 + 0.850802i \(0.323883\pi\)
\(884\) 1.14782e7 + 1.98808e7i 0.494018 + 0.855664i
\(885\) 0 0
\(886\) 9.36851e6 1.62267e7i 0.400946 0.694459i
\(887\) −1.41383e7 2.44883e7i −0.603377 1.04508i −0.992306 0.123812i \(-0.960488\pi\)
0.388929 0.921268i \(-0.372845\pi\)
\(888\) 0 0
\(889\) −7.90786e6 + 2.31152e6i −0.335587 + 0.0980941i
\(890\) −1.37989e7 −0.583943
\(891\) 0 0
\(892\) 6.70160e6 1.16075e7i 0.282011 0.488458i
\(893\) 1.55786e6 2.69828e6i 0.0653730 0.113229i
\(894\) 0 0
\(895\) 1.84293e7 0.769042
\(896\) −1.53547e6 1.46763e6i −0.0638955 0.0610727i
\(897\) 0 0
\(898\) −1.79586e6 3.11053e6i −0.0743161 0.128719i
\(899\) 6.54688e6 1.13395e7i 0.270169 0.467946i
\(900\) 0 0
\(901\) 6.92471e6 + 1.19940e7i 0.284178 + 0.492210i
\(902\) −2.37045e6 −0.0970094
\(903\) 0 0
\(904\) 3.97920e6 0.161948
\(905\) 398096. + 689523.i 0.0161572 + 0.0279851i
\(906\) 0 0
\(907\) 1.21584e7 2.10590e7i 0.490748 0.850000i −0.509195 0.860651i \(-0.670057\pi\)
0.999943 + 0.0106507i \(0.00339029\pi\)
\(908\) −1.06455e7 1.84386e7i −0.428501 0.742186i
\(909\) 0 0
\(910\) −5.14106e6 + 2.10798e7i −0.205802 + 0.843847i
\(911\) 3.36224e7 1.34225 0.671123 0.741346i \(-0.265812\pi\)
0.671123 + 0.741346i \(0.265812\pi\)
\(912\) 0 0
\(913\) −4.33888e6 + 7.51517e6i −0.172267 + 0.298374i
\(914\) 1.19636e7 2.07216e7i 0.473693 0.820461i
\(915\) 0 0
\(916\) 1.61701e7 0.636759
\(917\) −1.27734e7 1.22091e7i −0.501629 0.479468i
\(918\) 0 0
\(919\) 4.06874e6 + 7.04727e6i 0.158917 + 0.275253i 0.934479 0.356019i \(-0.115866\pi\)
−0.775561 + 0.631272i \(0.782533\pi\)
\(920\) 4.02348e6 6.96887e6i 0.156723 0.271452i
\(921\) 0 0
\(922\) −3.25013e6 5.62939e6i −0.125914 0.218089i
\(923\) 2.31338e7 0.893807
\(924\) 0 0
\(925\) 4.24962e6 0.163304
\(926\) −1.69259e7 2.93165e7i −0.648671 1.12353i
\(927\) 0 0
\(928\) 2.89627e6 5.01649e6i 0.110400 0.191219i
\(929\) 1.79027e7 + 3.10084e7i 0.680580 + 1.17880i 0.974804 + 0.223063i \(0.0716054\pi\)
−0.294224 + 0.955736i \(0.595061\pi\)
\(930\) 0 0
\(931\) 4.18173e6 + 2.16872e6i 0.158118 + 0.0820029i
\(932\) −2.37776e7 −0.896661
\(933\) 0 0
\(934\) −1.53319e7 + 2.65556e7i −0.575080 + 0.996068i
\(935\) −3.47409e6 + 6.01730e6i −0.129961 + 0.225098i
\(936\) 0 0
\(937\) 4.65849e7 1.73339 0.866694 0.498840i \(-0.166241\pi\)
0.866694 + 0.498840i \(0.166241\pi\)
\(938\) −2.13947e7 + 6.25382e6i −0.793963 + 0.232080i
\(939\) 0 0
\(940\) −3.21093e6 5.56149e6i −0.118525 0.205292i
\(941\) −1.03362e6 + 1.79029e6i −0.0380529 + 0.0659096i −0.884425 0.466683i \(-0.845449\pi\)
0.846372 + 0.532593i \(0.178782\pi\)
\(942\) 0 0
\(943\) 6.63850e6 + 1.14982e7i 0.243103 + 0.421067i
\(944\) 1.53865e6 0.0561966
\(945\) 0 0
\(946\) 2.44078e6 0.0886750
\(947\) 1.18386e7 + 2.05051e7i 0.428970 + 0.742998i 0.996782 0.0801602i \(-0.0255432\pi\)
−0.567812 + 0.823158i \(0.692210\pi\)
\(948\) 0 0
\(949\) −2.63936e7 + 4.57150e7i −0.951334 + 1.64776i
\(950\) 1.02099e6 + 1.76841e6i 0.0367041 + 0.0635734i
\(951\) 0 0
\(952\) 2.43396e6 9.97993e6i 0.0870403 0.356891i
\(953\) 3.40521e6 0.121454 0.0607270 0.998154i \(-0.480658\pi\)
0.0607270 + 0.998154i \(0.480658\pi\)
\(954\) 0 0
\(955\) −1.00762e7 + 1.74525e7i −0.357510 + 0.619226i
\(956\) 7.00510e6 1.21332e7i 0.247896 0.429368i
\(957\) 0 0
\(958\) −9.61170e6 −0.338366
\(959\) −1.02996e7 + 4.22315e7i −0.361639 + 1.48283i
\(960\) 0 0
\(961\) 1.16357e7 + 2.01535e7i 0.406427 + 0.703952i
\(962\) −5.40769e6 + 9.36639e6i −0.188397 + 0.326313i
\(963\) 0 0
\(964\) −1.16236e7 2.01326e7i −0.402853 0.697762i
\(965\) −1.78059e6 −0.0615525
\(966\) 0 0
\(967\) 1.44238e6 0.0496036 0.0248018 0.999692i \(-0.492105\pi\)
0.0248018 + 0.999692i \(0.492105\pi\)
\(968\) −4.38051e6 7.58727e6i −0.150258 0.260254i
\(969\) 0 0
\(970\) 1.08352e6 1.87672e6i 0.0369751 0.0640427i
\(971\) −2.57977e6 4.46830e6i −0.0878078 0.152088i 0.818776 0.574113i \(-0.194653\pi\)
−0.906584 + 0.422025i \(0.861319\pi\)
\(972\) 0 0
\(973\) −7.24151e6 + 2.11674e6i −0.245215 + 0.0716779i
\(974\) 681206. 0.0230081
\(975\) 0 0
\(976\) 1.89936e6 3.28978e6i 0.0638237 0.110546i
\(977\) −3.48825e6 + 6.04183e6i −0.116915 + 0.202503i −0.918544 0.395319i \(-0.870634\pi\)
0.801628 + 0.597823i \(0.203967\pi\)
\(978\) 0 0
\(979\) −1.48511e7 −0.495225
\(980\) 8.18065e6 5.22932e6i 0.272096 0.173932i
\(981\) 0 0
\(982\) 1.15526e7 + 2.00096e7i 0.382296 + 0.662156i
\(983\) −1.40784e7 + 2.43845e7i −0.464696 + 0.804878i −0.999188 0.0402961i \(-0.987170\pi\)
0.534491 + 0.845174i \(0.320503\pi\)
\(984\) 0 0
\(985\) −1.69968e7 2.94394e7i −0.558184 0.966804i
\(986\) 2.80142e7 0.917669
\(987\) 0 0
\(988\) −5.19691e6 −0.169376
\(989\) −6.83547e6 1.18394e7i −0.222217 0.384891i
\(990\) 0 0
\(991\) 1.17022e7 2.02687e7i 0.378514 0.655606i −0.612332 0.790601i \(-0.709768\pi\)
0.990846 + 0.134995i \(0.0431018\pi\)
\(992\) −1.18513e6 2.05270e6i −0.0382372 0.0662287i
\(993\) 0 0
\(994\) −7.48330e6 7.15271e6i −0.240230 0.229617i
\(995\) 2.31080e7 0.739954
\(996\) 0 0
\(997\) 2.15142e7 3.72637e7i 0.685468 1.18727i −0.287822 0.957684i \(-0.592931\pi\)
0.973290 0.229581i \(-0.0737356\pi\)
\(998\) 1.08720e6 1.88309e6i 0.0345529 0.0598474i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.6.g.j.109.1 4
3.2 odd 2 14.6.c.a.11.1 yes 4
7.2 even 3 inner 126.6.g.j.37.1 4
7.3 odd 6 882.6.a.bi.1.1 2
7.4 even 3 882.6.a.ba.1.2 2
12.11 even 2 112.6.i.d.81.2 4
21.2 odd 6 14.6.c.a.9.1 4
21.5 even 6 98.6.c.e.79.2 4
21.11 odd 6 98.6.a.h.1.2 2
21.17 even 6 98.6.a.g.1.1 2
21.20 even 2 98.6.c.e.67.2 4
84.11 even 6 784.6.a.s.1.1 2
84.23 even 6 112.6.i.d.65.2 4
84.59 odd 6 784.6.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.1 4 21.2 odd 6
14.6.c.a.11.1 yes 4 3.2 odd 2
98.6.a.g.1.1 2 21.17 even 6
98.6.a.h.1.2 2 21.11 odd 6
98.6.c.e.67.2 4 21.20 even 2
98.6.c.e.79.2 4 21.5 even 6
112.6.i.d.65.2 4 84.23 even 6
112.6.i.d.81.2 4 12.11 even 2
126.6.g.j.37.1 4 7.2 even 3 inner
126.6.g.j.109.1 4 1.1 even 1 trivial
784.6.a.s.1.1 2 84.11 even 6
784.6.a.bb.1.2 2 84.59 odd 6
882.6.a.ba.1.2 2 7.4 even 3
882.6.a.bi.1.1 2 7.3 odd 6