Properties

Label 126.6.g.g
Level $126$
Weight $6$
Character orbit 126.g
Analytic conductor $20.208$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,6,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,-32,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{505})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 127x^{2} + 126x + 15876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_1 q^{2} + (16 \beta_1 - 16) q^{4} + (\beta_{3} + 3 \beta_{2} + 10 \beta_1 - 1) q^{5} + ( - \beta_{3} + 2 \beta_{2} + \cdots - 95) q^{7} + 64 q^{8} + (8 \beta_{3} - 4 \beta_{2} - 36 \beta_1 + 40) q^{10}+ \cdots + ( - 2516 \beta_{3} - 1156 \beta_{2} + \cdots + 5112) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 32 q^{4} + 17 q^{5} - 408 q^{7} + 256 q^{8} + 68 q^{10} + 145 q^{11} - 1430 q^{13} + 612 q^{14} - 512 q^{16} + 1372 q^{17} - 1081 q^{19} - 544 q^{20} - 1160 q^{22} - 4508 q^{23} - 6267 q^{25}+ \cdots - 16652 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 127x^{2} + 126x + 15876 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 127\nu^{2} - 127\nu + 15876 ) / 16002 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 64\nu^{3} - 127\nu^{2} + 24130\nu + 63 ) / 8001 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -379\nu^{3} + 127\nu^{2} - 32131\nu - 63756 ) / 16002 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 3\beta_{2} + 5\beta _1 - 1 ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{3} + \beta_{2} + 886\beta _1 - 887 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -381\beta_{3} - 254\beta_{2} - 127\beta _1 - 1390 ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−5.36805 + 9.29774i
5.86805 10.1638i
−5.36805 9.29774i
5.86805 + 10.1638i
−2.00000 + 3.46410i 0 −8.00000 13.8564i −35.0764 + 60.7540i 0 −90.7639 + 92.5684i 64.0000 0 −140.305 243.016i
37.2 −2.00000 + 3.46410i 0 −8.00000 13.8564i 43.5764 75.4765i 0 −113.236 63.1236i 64.0000 0 174.305 + 301.906i
109.1 −2.00000 3.46410i 0 −8.00000 + 13.8564i −35.0764 60.7540i 0 −90.7639 92.5684i 64.0000 0 −140.305 + 243.016i
109.2 −2.00000 3.46410i 0 −8.00000 + 13.8564i 43.5764 + 75.4765i 0 −113.236 + 63.1236i 64.0000 0 174.305 301.906i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.6.g.g 4
3.b odd 2 1 42.6.e.d 4
7.c even 3 1 inner 126.6.g.g 4
7.c even 3 1 882.6.a.bm 2
7.d odd 6 1 882.6.a.bs 2
12.b even 2 1 336.6.q.h 4
21.c even 2 1 294.6.e.y 4
21.g even 6 1 294.6.a.o 2
21.g even 6 1 294.6.e.y 4
21.h odd 6 1 42.6.e.d 4
21.h odd 6 1 294.6.a.p 2
84.n even 6 1 336.6.q.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.d 4 3.b odd 2 1
42.6.e.d 4 21.h odd 6 1
126.6.g.g 4 1.a even 1 1 trivial
126.6.g.g 4 7.c even 3 1 inner
294.6.a.o 2 21.g even 6 1
294.6.a.p 2 21.h odd 6 1
294.6.e.y 4 21.c even 2 1
294.6.e.y 4 21.g even 6 1
336.6.q.h 4 12.b even 2 1
336.6.q.h 4 84.n even 6 1
882.6.a.bm 2 7.c even 3 1
882.6.a.bs 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 17T_{5}^{3} + 6403T_{5}^{2} + 103938T_{5} + 37380996 \) acting on \(S_{6}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 17 T^{3} + \cdots + 37380996 \) Copy content Toggle raw display
$7$ \( T^{4} + 408 T^{3} + \cdots + 282475249 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 88726536900 \) Copy content Toggle raw display
$13$ \( (T^{2} + 715 T + 121620)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 4015631241216 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 17788453428496 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 24815700919296 \) Copy content Toggle raw display
$29$ \( (T^{2} + 7865 T - 6069780)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 331894030125681 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 156377425969216 \) Copy content Toggle raw display
$41$ \( (T^{2} + 7350 T - 13441680)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 5921 T - 15788666)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 92983900409856 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 76\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{2} + 91744 T + 1804825884)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 47\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( (T^{2} + 33841 T + 280358334)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 6584027556096 \) Copy content Toggle raw display
$97$ \( (T^{2} + 46671 T - 4062781666)^{2} \) Copy content Toggle raw display
show more
show less