Properties

Label 126.6.g.e.109.2
Level $126$
Weight $6$
Character 126.109
Analytic conductor $20.208$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,6,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,-32,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{130})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 130x^{2} + 16900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(5.70088 - 9.87421i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.6.g.e.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-10.5000 - 18.1865i) q^{5} +(126.411 - 28.7642i) q^{7} +64.0000 q^{8} +(-42.0000 + 72.7461i) q^{10} +(-312.937 + 542.023i) q^{11} -206.821 q^{13} +(-352.463 - 380.371i) q^{14} +(-128.000 - 221.703i) q^{16} +(530.732 - 919.254i) q^{17} +(941.989 + 1631.57i) q^{19} +336.000 q^{20} +2503.49 q^{22} +(1858.68 + 3219.34i) q^{23} +(1342.00 - 2324.41i) q^{25} +(413.642 + 716.449i) q^{26} +(-612.716 + 1981.71i) q^{28} +123.747 q^{29} +(4554.63 - 7888.85i) q^{31} +(-512.000 + 886.810i) q^{32} -4245.85 q^{34} +(-1850.43 - 1996.95i) q^{35} +(3014.36 + 5221.03i) q^{37} +(3767.96 - 6526.29i) q^{38} +(-672.000 - 1163.94i) q^{40} +17201.9 q^{41} +5401.98 q^{43} +(-5006.99 - 8672.36i) q^{44} +(7434.74 - 12877.3i) q^{46} +(937.621 + 1624.01i) q^{47} +(15152.2 - 7272.19i) q^{49} -10736.0 q^{50} +(1654.57 - 2865.80i) q^{52} +(9353.62 - 16200.9i) q^{53} +13143.3 q^{55} +(8090.27 - 1840.91i) q^{56} +(-247.495 - 428.673i) q^{58} +(-1267.39 + 2195.18i) q^{59} +(1047.35 + 1814.07i) q^{61} -36437.1 q^{62} +4096.00 q^{64} +(2171.62 + 3761.36i) q^{65} +(-29310.4 + 50767.1i) q^{67} +(8491.71 + 14708.1i) q^{68} +(-3216.76 + 10404.0i) q^{70} +31279.5 q^{71} +(3575.24 - 6192.49i) q^{73} +(12057.5 - 20884.1i) q^{74} -30143.7 q^{76} +(-23967.7 + 77518.7i) q^{77} +(-1489.91 - 2580.59i) q^{79} +(-2688.00 + 4655.75i) q^{80} +(-34403.7 - 59589.0i) q^{82} -45954.6 q^{83} -22290.7 q^{85} +(-10804.0 - 18713.0i) q^{86} +(-20028.0 + 34689.4i) q^{88} +(49520.0 + 85771.1i) q^{89} +(-26144.4 + 5949.04i) q^{91} -59477.9 q^{92} +(3750.48 - 6496.03i) q^{94} +(19781.8 - 34263.0i) q^{95} -115548. q^{97} +(-55496.1 - 37944.5i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 32 q^{4} - 42 q^{5} + 232 q^{7} + 256 q^{8} - 168 q^{10} - 294 q^{11} - 280 q^{13} + 232 q^{14} - 512 q^{16} + 1302 q^{17} + 1442 q^{19} + 1344 q^{20} + 2352 q^{22} + 2646 q^{23} + 5368 q^{25}+ \cdots - 63272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −10.5000 18.1865i −0.187830 0.325331i 0.756697 0.653766i \(-0.226812\pi\)
−0.944526 + 0.328436i \(0.893479\pi\)
\(6\) 0 0
\(7\) 126.411 28.7642i 0.975075 0.221874i
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −42.0000 + 72.7461i −0.132816 + 0.230043i
\(11\) −312.937 + 542.023i −0.779785 + 1.35063i 0.152280 + 0.988337i \(0.451338\pi\)
−0.932065 + 0.362290i \(0.881995\pi\)
\(12\) 0 0
\(13\) −206.821 −0.339419 −0.169710 0.985494i \(-0.554283\pi\)
−0.169710 + 0.985494i \(0.554283\pi\)
\(14\) −352.463 380.371i −0.480611 0.518665i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 530.732 919.254i 0.445402 0.771460i −0.552678 0.833395i \(-0.686394\pi\)
0.998080 + 0.0619354i \(0.0197273\pi\)
\(18\) 0 0
\(19\) 941.989 + 1631.57i 0.598635 + 1.03687i 0.993023 + 0.117922i \(0.0376233\pi\)
−0.394388 + 0.918944i \(0.629043\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) 2503.49 1.10278
\(23\) 1858.68 + 3219.34i 0.732632 + 1.26896i 0.955754 + 0.294166i \(0.0950418\pi\)
−0.223122 + 0.974790i \(0.571625\pi\)
\(24\) 0 0
\(25\) 1342.00 2324.41i 0.429440 0.743812i
\(26\) 413.642 + 716.449i 0.120003 + 0.207851i
\(27\) 0 0
\(28\) −612.716 + 1981.71i −0.147694 + 0.477689i
\(29\) 123.747 0.0273238 0.0136619 0.999907i \(-0.495651\pi\)
0.0136619 + 0.999907i \(0.495651\pi\)
\(30\) 0 0
\(31\) 4554.63 7888.85i 0.851234 1.47438i −0.0288611 0.999583i \(-0.509188\pi\)
0.880095 0.474797i \(-0.157479\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −4245.85 −0.629894
\(35\) −1850.43 1996.95i −0.255331 0.275547i
\(36\) 0 0
\(37\) 3014.36 + 5221.03i 0.361986 + 0.626977i 0.988288 0.152603i \(-0.0487656\pi\)
−0.626302 + 0.779581i \(0.715432\pi\)
\(38\) 3767.96 6526.29i 0.423299 0.733175i
\(39\) 0 0
\(40\) −672.000 1163.94i −0.0664078 0.115022i
\(41\) 17201.9 1.59814 0.799071 0.601236i \(-0.205325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(42\) 0 0
\(43\) 5401.98 0.445535 0.222767 0.974872i \(-0.428491\pi\)
0.222767 + 0.974872i \(0.428491\pi\)
\(44\) −5006.99 8672.36i −0.389893 0.675314i
\(45\) 0 0
\(46\) 7434.74 12877.3i 0.518049 0.897288i
\(47\) 937.621 + 1624.01i 0.0619131 + 0.107237i 0.895321 0.445422i \(-0.146946\pi\)
−0.833407 + 0.552659i \(0.813613\pi\)
\(48\) 0 0
\(49\) 15152.2 7272.19i 0.901544 0.432688i
\(50\) −10736.0 −0.607320
\(51\) 0 0
\(52\) 1654.57 2865.80i 0.0848548 0.146973i
\(53\) 9353.62 16200.9i 0.457393 0.792229i −0.541429 0.840747i \(-0.682116\pi\)
0.998822 + 0.0485180i \(0.0154498\pi\)
\(54\) 0 0
\(55\) 13143.3 0.585867
\(56\) 8090.27 1840.91i 0.344741 0.0784444i
\(57\) 0 0
\(58\) −247.495 428.673i −0.00966042 0.0167323i
\(59\) −1267.39 + 2195.18i −0.0474002 + 0.0820995i −0.888752 0.458388i \(-0.848427\pi\)
0.841352 + 0.540488i \(0.181760\pi\)
\(60\) 0 0
\(61\) 1047.35 + 1814.07i 0.0360386 + 0.0624208i 0.883482 0.468465i \(-0.155193\pi\)
−0.847444 + 0.530886i \(0.821859\pi\)
\(62\) −36437.1 −1.20383
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 2171.62 + 3761.36i 0.0637530 + 0.110423i
\(66\) 0 0
\(67\) −29310.4 + 50767.1i −0.797691 + 1.38164i 0.123426 + 0.992354i \(0.460612\pi\)
−0.921117 + 0.389287i \(0.872722\pi\)
\(68\) 8491.71 + 14708.1i 0.222701 + 0.385730i
\(69\) 0 0
\(70\) −3216.76 + 10404.0i −0.0784645 + 0.253778i
\(71\) 31279.5 0.736401 0.368201 0.929746i \(-0.379974\pi\)
0.368201 + 0.929746i \(0.379974\pi\)
\(72\) 0 0
\(73\) 3575.24 6192.49i 0.0785231 0.136006i −0.824090 0.566459i \(-0.808313\pi\)
0.902613 + 0.430453i \(0.141646\pi\)
\(74\) 12057.5 20884.1i 0.255962 0.443340i
\(75\) 0 0
\(76\) −30143.7 −0.598635
\(77\) −23967.7 + 77518.7i −0.460680 + 1.48998i
\(78\) 0 0
\(79\) −1489.91 2580.59i −0.0268591 0.0465213i 0.852283 0.523080i \(-0.175217\pi\)
−0.879143 + 0.476559i \(0.841884\pi\)
\(80\) −2688.00 + 4655.75i −0.0469574 + 0.0813327i
\(81\) 0 0
\(82\) −34403.7 59589.0i −0.565029 0.978659i
\(83\) −45954.6 −0.732207 −0.366103 0.930574i \(-0.619308\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) −10804.0 18713.0i −0.157520 0.272833i
\(87\) 0 0
\(88\) −20028.0 + 34689.4i −0.275696 + 0.477519i
\(89\) 49520.0 + 85771.1i 0.662682 + 1.14780i 0.979908 + 0.199450i \(0.0639154\pi\)
−0.317226 + 0.948350i \(0.602751\pi\)
\(90\) 0 0
\(91\) −26144.4 + 5949.04i −0.330959 + 0.0753084i
\(92\) −59477.9 −0.732632
\(93\) 0 0
\(94\) 3750.48 6496.03i 0.0437792 0.0758278i
\(95\) 19781.8 34263.0i 0.224883 0.389509i
\(96\) 0 0
\(97\) −115548. −1.24691 −0.623454 0.781860i \(-0.714271\pi\)
−0.623454 + 0.781860i \(0.714271\pi\)
\(98\) −55496.1 37944.5i −0.583710 0.399102i
\(99\) 0 0
\(100\) 21472.0 + 37190.6i 0.214720 + 0.371906i
\(101\) 5475.73 9484.25i 0.0534120 0.0925123i −0.838083 0.545542i \(-0.816324\pi\)
0.891495 + 0.453030i \(0.149657\pi\)
\(102\) 0 0
\(103\) 68862.2 + 119273.i 0.639570 + 1.10777i 0.985527 + 0.169517i \(0.0542208\pi\)
−0.345957 + 0.938250i \(0.612446\pi\)
\(104\) −13236.5 −0.120003
\(105\) 0 0
\(106\) −74828.9 −0.646852
\(107\) 37786.5 + 65448.1i 0.319064 + 0.552634i 0.980293 0.197550i \(-0.0632983\pi\)
−0.661229 + 0.750184i \(0.729965\pi\)
\(108\) 0 0
\(109\) −22263.1 + 38560.9i −0.179482 + 0.310871i −0.941703 0.336445i \(-0.890775\pi\)
0.762221 + 0.647316i \(0.224109\pi\)
\(110\) −26286.7 45529.9i −0.207135 0.358769i
\(111\) 0 0
\(112\) −22557.6 24343.7i −0.169922 0.183376i
\(113\) −90456.5 −0.666413 −0.333207 0.942854i \(-0.608131\pi\)
−0.333207 + 0.942854i \(0.608131\pi\)
\(114\) 0 0
\(115\) 39032.4 67606.0i 0.275220 0.476695i
\(116\) −989.979 + 1714.69i −0.00683095 + 0.0118315i
\(117\) 0 0
\(118\) 10139.1 0.0670340
\(119\) 40648.5 131469.i 0.263134 0.851055i
\(120\) 0 0
\(121\) −115333. 199763.i −0.716130 1.24037i
\(122\) 4189.41 7256.27i 0.0254832 0.0441381i
\(123\) 0 0
\(124\) 72874.1 + 126222.i 0.425617 + 0.737190i
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) 187707. 1.03269 0.516346 0.856380i \(-0.327292\pi\)
0.516346 + 0.856380i \(0.327292\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 8686.48 15045.4i 0.0450802 0.0780812i
\(131\) 77206.1 + 133725.i 0.393073 + 0.680823i 0.992853 0.119342i \(-0.0380785\pi\)
−0.599780 + 0.800165i \(0.704745\pi\)
\(132\) 0 0
\(133\) 166008. + 179153.i 0.813768 + 0.878201i
\(134\) 234483. 1.12810
\(135\) 0 0
\(136\) 33966.8 58832.3i 0.157474 0.272752i
\(137\) 54618.9 94602.7i 0.248623 0.430628i −0.714521 0.699614i \(-0.753355\pi\)
0.963144 + 0.268986i \(0.0866886\pi\)
\(138\) 0 0
\(139\) −204695. −0.898609 −0.449305 0.893379i \(-0.648328\pi\)
−0.449305 + 0.893379i \(0.648328\pi\)
\(140\) 42473.9 9664.77i 0.183148 0.0416746i
\(141\) 0 0
\(142\) −62559.1 108355.i −0.260357 0.450952i
\(143\) 64721.9 112102.i 0.264674 0.458429i
\(144\) 0 0
\(145\) −1299.35 2250.54i −0.00513222 0.00888926i
\(146\) −28601.9 −0.111048
\(147\) 0 0
\(148\) −96459.6 −0.361986
\(149\) −203154. 351873.i −0.749651 1.29843i −0.947990 0.318300i \(-0.896888\pi\)
0.198339 0.980134i \(-0.436445\pi\)
\(150\) 0 0
\(151\) 208419. 360992.i 0.743866 1.28841i −0.206856 0.978371i \(-0.566323\pi\)
0.950723 0.310043i \(-0.100343\pi\)
\(152\) 60287.3 + 104421.i 0.211649 + 0.366588i
\(153\) 0 0
\(154\) 316468. 72011.0i 1.07530 0.244679i
\(155\) −191295. −0.639548
\(156\) 0 0
\(157\) −59645.3 + 103309.i −0.193120 + 0.334493i −0.946283 0.323341i \(-0.895194\pi\)
0.753163 + 0.657834i \(0.228527\pi\)
\(158\) −5959.62 + 10322.4i −0.0189922 + 0.0328955i
\(159\) 0 0
\(160\) 21504.0 0.0664078
\(161\) 327559. + 353494.i 0.995920 + 1.07478i
\(162\) 0 0
\(163\) −23686.2 41025.7i −0.0698275 0.120945i 0.828998 0.559252i \(-0.188912\pi\)
−0.898825 + 0.438307i \(0.855578\pi\)
\(164\) −137615. + 238356.i −0.399536 + 0.692016i
\(165\) 0 0
\(166\) 91909.2 + 159191.i 0.258874 + 0.448383i
\(167\) 231669. 0.642802 0.321401 0.946943i \(-0.395846\pi\)
0.321401 + 0.946943i \(0.395846\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) 44581.5 + 77217.3i 0.118313 + 0.204924i
\(171\) 0 0
\(172\) −43215.8 + 74852.0i −0.111384 + 0.192922i
\(173\) 67169.6 + 116341.i 0.170631 + 0.295541i 0.938641 0.344897i \(-0.112086\pi\)
−0.768010 + 0.640438i \(0.778753\pi\)
\(174\) 0 0
\(175\) 102783. 332432.i 0.253704 0.820554i
\(176\) 160224. 0.389893
\(177\) 0 0
\(178\) 198080. 343085.i 0.468587 0.811617i
\(179\) 23292.2 40343.2i 0.0543347 0.0941105i −0.837579 0.546317i \(-0.816030\pi\)
0.891913 + 0.452206i \(0.149363\pi\)
\(180\) 0 0
\(181\) 829210. 1.88134 0.940672 0.339317i \(-0.110196\pi\)
0.940672 + 0.339317i \(0.110196\pi\)
\(182\) 72896.8 + 78668.6i 0.163129 + 0.176045i
\(183\) 0 0
\(184\) 118956. + 206037.i 0.259025 + 0.448644i
\(185\) 63301.6 109642.i 0.135983 0.235530i
\(186\) 0 0
\(187\) 332171. + 575337.i 0.694636 + 1.20315i
\(188\) −30003.9 −0.0619131
\(189\) 0 0
\(190\) −158254. −0.318032
\(191\) −235958. 408692.i −0.468006 0.810611i 0.531325 0.847168i \(-0.321694\pi\)
−0.999332 + 0.0365572i \(0.988361\pi\)
\(192\) 0 0
\(193\) −344177. + 596132.i −0.665103 + 1.15199i 0.314155 + 0.949372i \(0.398279\pi\)
−0.979257 + 0.202620i \(0.935054\pi\)
\(194\) 231097. + 400271.i 0.440849 + 0.763573i
\(195\) 0 0
\(196\) −20451.5 + 268133.i −0.0380263 + 0.498552i
\(197\) −311915. −0.572625 −0.286313 0.958136i \(-0.592430\pi\)
−0.286313 + 0.958136i \(0.592430\pi\)
\(198\) 0 0
\(199\) 143606. 248733.i 0.257063 0.445246i −0.708391 0.705820i \(-0.750579\pi\)
0.965454 + 0.260574i \(0.0839119\pi\)
\(200\) 85888.0 148762.i 0.151830 0.262977i
\(201\) 0 0
\(202\) −43805.9 −0.0755360
\(203\) 15643.0 3559.49i 0.0266428 0.00606245i
\(204\) 0 0
\(205\) −180619. 312842.i −0.300179 0.519925i
\(206\) 275449. 477091.i 0.452244 0.783310i
\(207\) 0 0
\(208\) 26473.1 + 45852.7i 0.0424274 + 0.0734864i
\(209\) −1.17913e6 −1.86723
\(210\) 0 0
\(211\) −460493. −0.712061 −0.356031 0.934474i \(-0.615870\pi\)
−0.356031 + 0.934474i \(0.615870\pi\)
\(212\) 149658. + 259215.i 0.228697 + 0.396114i
\(213\) 0 0
\(214\) 151146. 261793.i 0.225612 0.390771i
\(215\) −56720.8 98243.3i −0.0836847 0.144946i
\(216\) 0 0
\(217\) 348837. 1.12824e6i 0.502890 1.62650i
\(218\) 178105. 0.253825
\(219\) 0 0
\(220\) −105147. + 182120.i −0.146467 + 0.253688i
\(221\) −109766. + 190121.i −0.151178 + 0.261848i
\(222\) 0 0
\(223\) −1.19776e6 −1.61290 −0.806449 0.591304i \(-0.798613\pi\)
−0.806449 + 0.591304i \(0.798613\pi\)
\(224\) −39213.8 + 126829.i −0.0522179 + 0.168888i
\(225\) 0 0
\(226\) 180913. + 313350.i 0.235613 + 0.408093i
\(227\) 447281. 774713.i 0.576123 0.997875i −0.419795 0.907619i \(-0.637898\pi\)
0.995919 0.0902559i \(-0.0287685\pi\)
\(228\) 0 0
\(229\) 129628. + 224522.i 0.163347 + 0.282925i 0.936067 0.351822i \(-0.114438\pi\)
−0.772720 + 0.634747i \(0.781104\pi\)
\(230\) −312259. −0.389220
\(231\) 0 0
\(232\) 7919.83 0.00966042
\(233\) 105657. + 183004.i 0.127500 + 0.220836i 0.922707 0.385501i \(-0.125971\pi\)
−0.795207 + 0.606337i \(0.792638\pi\)
\(234\) 0 0
\(235\) 19690.0 34104.2i 0.0232582 0.0402845i
\(236\) −20278.2 35122.9i −0.0237001 0.0410498i
\(237\) 0 0
\(238\) −536720. + 122129.i −0.614194 + 0.139757i
\(239\) −463.018 −0.000524328 −0.000262164 1.00000i \(-0.500083\pi\)
−0.000262164 1.00000i \(0.500083\pi\)
\(240\) 0 0
\(241\) −143197. + 248025.i −0.158815 + 0.275076i −0.934442 0.356116i \(-0.884101\pi\)
0.775626 + 0.631192i \(0.217434\pi\)
\(242\) −461334. + 799053.i −0.506380 + 0.877076i
\(243\) 0 0
\(244\) −33515.3 −0.0360386
\(245\) −291355. 199209.i −0.310103 0.212028i
\(246\) 0 0
\(247\) −194823. 337444.i −0.203188 0.351932i
\(248\) 291496. 504887.i 0.300957 0.521272i
\(249\) 0 0
\(250\) 243978. + 422582.i 0.246888 + 0.427623i
\(251\) 1.37168e6 1.37426 0.687129 0.726535i \(-0.258870\pi\)
0.687129 + 0.726535i \(0.258870\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) −375414. 650236.i −0.365112 0.632392i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −379612. 657507.i −0.358515 0.620965i 0.629198 0.777245i \(-0.283383\pi\)
−0.987713 + 0.156279i \(0.950050\pi\)
\(258\) 0 0
\(259\) 531226. + 573287.i 0.492073 + 0.531035i
\(260\) −69491.9 −0.0637530
\(261\) 0 0
\(262\) 308825. 534900.i 0.277945 0.481415i
\(263\) −536222. + 928764.i −0.478030 + 0.827973i −0.999683 0.0251852i \(-0.991982\pi\)
0.521652 + 0.853158i \(0.325316\pi\)
\(264\) 0 0
\(265\) −392852. −0.343648
\(266\) 288586. 933375.i 0.250075 0.808820i
\(267\) 0 0
\(268\) −468966. 812273.i −0.398845 0.690820i
\(269\) −883056. + 1.52950e6i −0.744059 + 1.28875i 0.206574 + 0.978431i \(0.433769\pi\)
−0.950633 + 0.310317i \(0.899565\pi\)
\(270\) 0 0
\(271\) 1.02586e6 + 1.77684e6i 0.848522 + 1.46968i 0.882527 + 0.470262i \(0.155841\pi\)
−0.0340046 + 0.999422i \(0.510826\pi\)
\(272\) −271735. −0.222701
\(273\) 0 0
\(274\) −436951. −0.351606
\(275\) 839922. + 1.45479e6i 0.669742 + 1.16003i
\(276\) 0 0
\(277\) −435341. + 754033.i −0.340903 + 0.590461i −0.984601 0.174819i \(-0.944066\pi\)
0.643698 + 0.765280i \(0.277399\pi\)
\(278\) 409391. + 709085.i 0.317706 + 0.550284i
\(279\) 0 0
\(280\) −118428. 127804.i −0.0902730 0.0974207i
\(281\) −2.35412e6 −1.77854 −0.889270 0.457383i \(-0.848787\pi\)
−0.889270 + 0.457383i \(0.848787\pi\)
\(282\) 0 0
\(283\) 1.09518e6 1.89690e6i 0.812863 1.40792i −0.0979887 0.995188i \(-0.531241\pi\)
0.910852 0.412733i \(-0.135426\pi\)
\(284\) −250236. + 433422.i −0.184100 + 0.318871i
\(285\) 0 0
\(286\) −517775. −0.374306
\(287\) 2.17450e6 494797.i 1.55831 0.354587i
\(288\) 0 0
\(289\) 146576. + 253878.i 0.103233 + 0.178805i
\(290\) −5197.39 + 9002.14i −0.00362903 + 0.00628566i
\(291\) 0 0
\(292\) 57203.8 + 99079.9i 0.0392616 + 0.0680030i
\(293\) 807700. 0.549644 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(294\) 0 0
\(295\) 53230.4 0.0356127
\(296\) 192919. + 334146.i 0.127981 + 0.221670i
\(297\) 0 0
\(298\) −812615. + 1.40749e6i −0.530083 + 0.918131i
\(299\) −384415. 665826.i −0.248669 0.430708i
\(300\) 0 0
\(301\) 682867. 155384.i 0.434430 0.0988528i
\(302\) −1.66735e6 −1.05199
\(303\) 0 0
\(304\) 241149. 417683.i 0.149659 0.259217i
\(305\) 21994.4 38095.4i 0.0135383 0.0234489i
\(306\) 0 0
\(307\) 211516. 0.128085 0.0640424 0.997947i \(-0.479601\pi\)
0.0640424 + 0.997947i \(0.479601\pi\)
\(308\) −882390. 952256.i −0.530009 0.571975i
\(309\) 0 0
\(310\) 382589. + 662664.i 0.226114 + 0.391642i
\(311\) −145855. + 252627.i −0.0855104 + 0.148108i −0.905609 0.424114i \(-0.860585\pi\)
0.820098 + 0.572223i \(0.193919\pi\)
\(312\) 0 0
\(313\) 997988. + 1.72857e6i 0.575791 + 0.997299i 0.995955 + 0.0898507i \(0.0286390\pi\)
−0.420165 + 0.907448i \(0.638028\pi\)
\(314\) 477162. 0.273113
\(315\) 0 0
\(316\) 47677.0 0.0268591
\(317\) −1.40479e6 2.43316e6i −0.785167 1.35995i −0.928899 0.370332i \(-0.879244\pi\)
0.143733 0.989617i \(-0.454089\pi\)
\(318\) 0 0
\(319\) −38725.1 + 67073.9i −0.0213067 + 0.0369043i
\(320\) −43008.0 74492.0i −0.0234787 0.0406663i
\(321\) 0 0
\(322\) 569423. 1.84169e6i 0.306052 0.989865i
\(323\) 1.99977e6 1.06653
\(324\) 0 0
\(325\) −277554. + 480737.i −0.145760 + 0.252464i
\(326\) −94744.8 + 164103.i −0.0493755 + 0.0855209i
\(327\) 0 0
\(328\) 1.10092e6 0.565029
\(329\) 165238. + 178322.i 0.0841630 + 0.0908269i
\(330\) 0 0
\(331\) −690248. 1.19554e6i −0.346286 0.599785i 0.639301 0.768957i \(-0.279224\pi\)
−0.985587 + 0.169172i \(0.945891\pi\)
\(332\) 367637. 636766.i 0.183052 0.317055i
\(333\) 0 0
\(334\) −463338. 802526.i −0.227265 0.393634i
\(335\) 1.23104e6 0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) 657036. + 1.13802e6i 0.312822 + 0.541824i
\(339\) 0 0
\(340\) 178326. 308869.i 0.0836598 0.144903i
\(341\) 2.85062e6 + 4.93743e6i 1.32756 + 2.29940i
\(342\) 0 0
\(343\) 1.70622e6 1.35512e6i 0.783070 0.621933i
\(344\) 345727. 0.157520
\(345\) 0 0
\(346\) 268678. 465365.i 0.120654 0.208979i
\(347\) 270104. 467833.i 0.120422 0.208577i −0.799512 0.600650i \(-0.794908\pi\)
0.919934 + 0.392073i \(0.128242\pi\)
\(348\) 0 0
\(349\) 1.73807e6 0.763841 0.381921 0.924195i \(-0.375263\pi\)
0.381921 + 0.924195i \(0.375263\pi\)
\(350\) −1.35714e6 + 308812.i −0.592183 + 0.134749i
\(351\) 0 0
\(352\) −320447. 555031.i −0.137848 0.238759i
\(353\) 537109. 930300.i 0.229417 0.397362i −0.728219 0.685345i \(-0.759651\pi\)
0.957635 + 0.287983i \(0.0929847\pi\)
\(354\) 0 0
\(355\) −328435. 568866.i −0.138318 0.239574i
\(356\) −1.58464e6 −0.662682
\(357\) 0 0
\(358\) −186337. −0.0768409
\(359\) 60601.9 + 104966.i 0.0248170 + 0.0429844i 0.878167 0.478354i \(-0.158766\pi\)
−0.853350 + 0.521338i \(0.825433\pi\)
\(360\) 0 0
\(361\) −536639. + 929486.i −0.216728 + 0.375383i
\(362\) −1.65842e6 2.87247e6i −0.665156 1.15208i
\(363\) 0 0
\(364\) 126723. 409859.i 0.0501303 0.162137i
\(365\) −150160. −0.0589959
\(366\) 0 0
\(367\) 276914. 479630.i 0.107320 0.185884i −0.807364 0.590054i \(-0.799106\pi\)
0.914684 + 0.404171i \(0.132440\pi\)
\(368\) 475823. 824150.i 0.183158 0.317239i
\(369\) 0 0
\(370\) −506413. −0.192309
\(371\) 716389. 2.31702e6i 0.270218 0.873966i
\(372\) 0 0
\(373\) 250739. + 434293.i 0.0933146 + 0.161626i 0.908904 0.417006i \(-0.136920\pi\)
−0.815589 + 0.578631i \(0.803587\pi\)
\(374\) 1.32868e6 2.30135e6i 0.491182 0.850752i
\(375\) 0 0
\(376\) 60007.7 + 103936.i 0.0218896 + 0.0379139i
\(377\) −25593.6 −0.00927422
\(378\) 0 0
\(379\) 999004. 0.357248 0.178624 0.983917i \(-0.442835\pi\)
0.178624 + 0.983917i \(0.442835\pi\)
\(380\) 316508. + 548209.i 0.112441 + 0.194754i
\(381\) 0 0
\(382\) −943833. + 1.63477e6i −0.330930 + 0.573188i
\(383\) 326232. + 565050.i 0.113640 + 0.196829i 0.917235 0.398346i \(-0.130416\pi\)
−0.803596 + 0.595176i \(0.797082\pi\)
\(384\) 0 0
\(385\) 1.66146e6 378058.i 0.571265 0.129989i
\(386\) 2.75342e6 0.940597
\(387\) 0 0
\(388\) 924387. 1.60109e6i 0.311727 0.539927i
\(389\) −39626.5 + 68635.1i −0.0132774 + 0.0229971i −0.872588 0.488457i \(-0.837560\pi\)
0.859310 + 0.511454i \(0.170893\pi\)
\(390\) 0 0
\(391\) 3.94585e6 1.30526
\(392\) 969743. 465420.i 0.318744 0.152978i
\(393\) 0 0
\(394\) 623830. + 1.08050e6i 0.202454 + 0.350660i
\(395\) −31288.0 + 54192.4i −0.0100899 + 0.0174762i
\(396\) 0 0
\(397\) −2.00443e6 3.47177e6i −0.638284 1.10554i −0.985809 0.167870i \(-0.946311\pi\)
0.347525 0.937671i \(-0.387022\pi\)
\(398\) −1.14885e6 −0.363542
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) 337209. + 584063.i 0.104722 + 0.181384i 0.913625 0.406559i \(-0.133271\pi\)
−0.808903 + 0.587943i \(0.799938\pi\)
\(402\) 0 0
\(403\) −941994. + 1.63158e6i −0.288925 + 0.500433i
\(404\) 87611.7 + 151748.i 0.0267060 + 0.0462561i
\(405\) 0 0
\(406\) −43616.4 47069.8i −0.0131321 0.0141719i
\(407\) −3.77322e6 −1.12908
\(408\) 0 0
\(409\) 1.42706e6 2.47175e6i 0.421828 0.730627i −0.574291 0.818652i \(-0.694722\pi\)
0.996118 + 0.0880244i \(0.0280553\pi\)
\(410\) −722478. + 1.25137e6i −0.212258 + 0.367642i
\(411\) 0 0
\(412\) −2.20359e6 −0.639570
\(413\) −97068.7 + 313950.i −0.0280030 + 0.0905701i
\(414\) 0 0
\(415\) 482523. + 835755.i 0.137530 + 0.238209i
\(416\) 105892. 183411.i 0.0300007 0.0519627i
\(417\) 0 0
\(418\) 2.35827e6 + 4.08464e6i 0.660164 + 1.14344i
\(419\) 4.66553e6 1.29827 0.649136 0.760672i \(-0.275130\pi\)
0.649136 + 0.760672i \(0.275130\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) 920987. + 1.59520e6i 0.251752 + 0.436047i
\(423\) 0 0
\(424\) 598631. 1.03686e6i 0.161713 0.280095i
\(425\) −1.42448e6 2.46728e6i −0.382547 0.662591i
\(426\) 0 0
\(427\) 184577. + 199191.i 0.0489899 + 0.0528689i
\(428\) −1.20917e6 −0.319064
\(429\) 0 0
\(430\) −226883. + 392973.i −0.0591740 + 0.102492i
\(431\) 482335. 835429.i 0.125071 0.216629i −0.796690 0.604388i \(-0.793418\pi\)
0.921761 + 0.387760i \(0.126751\pi\)
\(432\) 0 0
\(433\) −6.18096e6 −1.58429 −0.792147 0.610330i \(-0.791037\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(434\) −4.60603e6 + 1.04808e6i −1.17382 + 0.267098i
\(435\) 0 0
\(436\) −356210. 616974.i −0.0897409 0.155436i
\(437\) −3.50172e6 + 6.06516e6i −0.877158 + 1.51928i
\(438\) 0 0
\(439\) 107567. + 186312.i 0.0266391 + 0.0461402i 0.879038 0.476752i \(-0.158186\pi\)
−0.852399 + 0.522893i \(0.824853\pi\)
\(440\) 841174. 0.207135
\(441\) 0 0
\(442\) 878132. 0.213798
\(443\) −3.59934e6 6.23423e6i −0.871391 1.50929i −0.860558 0.509353i \(-0.829885\pi\)
−0.0108335 0.999941i \(-0.503448\pi\)
\(444\) 0 0
\(445\) 1.03992e6 1.80119e6i 0.248943 0.431182i
\(446\) 2.39551e6 + 4.14915e6i 0.570245 + 0.987694i
\(447\) 0 0
\(448\) 517778. 117818.i 0.121884 0.0277343i
\(449\) −3.92153e6 −0.917994 −0.458997 0.888438i \(-0.651791\pi\)
−0.458997 + 0.888438i \(0.651791\pi\)
\(450\) 0 0
\(451\) −5.38309e6 + 9.32379e6i −1.24621 + 2.15850i
\(452\) 723652. 1.25340e6i 0.166603 0.288565i
\(453\) 0 0
\(454\) −3.57824e6 −0.814761
\(455\) 382708. + 413010.i 0.0866641 + 0.0935260i
\(456\) 0 0
\(457\) −660839. 1.14461e6i −0.148015 0.256369i 0.782479 0.622677i \(-0.213955\pi\)
−0.930494 + 0.366308i \(0.880622\pi\)
\(458\) 518512. 898090.i 0.115504 0.200058i
\(459\) 0 0
\(460\) 624518. + 1.08170e6i 0.137610 + 0.238348i
\(461\) 75459.1 0.0165371 0.00826855 0.999966i \(-0.497368\pi\)
0.00826855 + 0.999966i \(0.497368\pi\)
\(462\) 0 0
\(463\) −3.28757e6 −0.712727 −0.356363 0.934347i \(-0.615984\pi\)
−0.356363 + 0.934347i \(0.615984\pi\)
\(464\) −15839.7 27435.1i −0.00341547 0.00591577i
\(465\) 0 0
\(466\) 422630. 732016.i 0.0901561 0.156155i
\(467\) −321691. 557185.i −0.0682569 0.118224i 0.829877 0.557946i \(-0.188410\pi\)
−0.898134 + 0.439722i \(0.855077\pi\)
\(468\) 0 0
\(469\) −2.24487e6 + 7.26058e6i −0.471258 + 1.52419i
\(470\) −157520. −0.0328921
\(471\) 0 0
\(472\) −81112.9 + 140492.i −0.0167585 + 0.0290266i
\(473\) −1.69048e6 + 2.92799e6i −0.347422 + 0.601752i
\(474\) 0 0
\(475\) 5.05660e6 1.02831
\(476\) 1.49651e6 + 1.61500e6i 0.302734 + 0.326704i
\(477\) 0 0
\(478\) 926.036 + 1603.94i 0.000185378 + 0.000321084i
\(479\) −3.71324e6 + 6.43152e6i −0.739459 + 1.28078i 0.213280 + 0.976991i \(0.431585\pi\)
−0.952739 + 0.303790i \(0.901748\pi\)
\(480\) 0 0
\(481\) −623434. 1.07982e6i −0.122865 0.212808i
\(482\) 1.14558e6 0.224599
\(483\) 0 0
\(484\) 3.69067e6 0.716130
\(485\) 1.21326e6 + 2.10143e6i 0.234207 + 0.405658i
\(486\) 0 0
\(487\) 2.08542e6 3.61206e6i 0.398448 0.690132i −0.595087 0.803662i \(-0.702882\pi\)
0.993535 + 0.113529i \(0.0362156\pi\)
\(488\) 67030.6 + 116100.i 0.0127416 + 0.0220691i
\(489\) 0 0
\(490\) −107370. + 1.40770e6i −0.0202019 + 0.264862i
\(491\) 3.73674e6 0.699502 0.349751 0.936843i \(-0.386266\pi\)
0.349751 + 0.936843i \(0.386266\pi\)
\(492\) 0 0
\(493\) 65676.6 113755.i 0.0121701 0.0210792i
\(494\) −779293. + 1.34978e6i −0.143676 + 0.248854i
\(495\) 0 0
\(496\) −2.33197e6 −0.425617
\(497\) 3.95406e6 899731.i 0.718047 0.163389i
\(498\) 0 0
\(499\) −4.35431e6 7.54188e6i −0.782831 1.35590i −0.930286 0.366834i \(-0.880442\pi\)
0.147456 0.989069i \(-0.452892\pi\)
\(500\) 975912. 1.69033e6i 0.174576 0.302375i
\(501\) 0 0
\(502\) −2.74336e6 4.75164e6i −0.485874 0.841558i
\(503\) −3.28384e6 −0.578711 −0.289355 0.957222i \(-0.593441\pi\)
−0.289355 + 0.957222i \(0.593441\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) 4.65321e6 + 8.05959e6i 0.807934 + 1.39938i
\(507\) 0 0
\(508\) −1.50166e6 + 2.60094e6i −0.258173 + 0.447169i
\(509\) −4.71851e6 8.17271e6i −0.807255 1.39821i −0.914758 0.404002i \(-0.867619\pi\)
0.107503 0.994205i \(-0.465714\pi\)
\(510\) 0 0
\(511\) 273826. 885635.i 0.0463897 0.150038i
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −1.51845e6 + 2.63003e6i −0.253508 + 0.439089i
\(515\) 1.44611e6 2.50473e6i 0.240260 0.416143i
\(516\) 0 0
\(517\) −1.17366e6 −0.193116
\(518\) 923474. 2.98680e6i 0.151217 0.489081i
\(519\) 0 0
\(520\) 138984. + 240727.i 0.0225401 + 0.0390406i
\(521\) 2.95363e6 5.11584e6i 0.476719 0.825701i −0.522926 0.852378i \(-0.675159\pi\)
0.999644 + 0.0266776i \(0.00849276\pi\)
\(522\) 0 0
\(523\) −327168. 566672.i −0.0523019 0.0905895i 0.838689 0.544610i \(-0.183322\pi\)
−0.890991 + 0.454021i \(0.849989\pi\)
\(524\) −2.47060e6 −0.393073
\(525\) 0 0
\(526\) 4.28978e6 0.676037
\(527\) −4.83457e6 8.37373e6i −0.758284 1.31339i
\(528\) 0 0
\(529\) −3.69124e6 + 6.39342e6i −0.573500 + 0.993331i
\(530\) 785704. + 1.36088e6i 0.121498 + 0.210441i
\(531\) 0 0
\(532\) −3.81048e6 + 867058.i −0.583714 + 0.132822i
\(533\) −3.55771e6 −0.542440
\(534\) 0 0
\(535\) 793516. 1.37441e6i 0.119859 0.207602i
\(536\) −1.87586e6 + 3.24909e6i −0.282026 + 0.488484i
\(537\) 0 0
\(538\) 7.06445e6 1.05226
\(539\) −800002. + 1.04886e7i −0.118609 + 1.55505i
\(540\) 0 0
\(541\) 431558. + 747480.i 0.0633936 + 0.109801i 0.895980 0.444094i \(-0.146474\pi\)
−0.832587 + 0.553895i \(0.813141\pi\)
\(542\) 4.10342e6 7.10734e6i 0.599996 1.03922i
\(543\) 0 0
\(544\) 543469. + 941316.i 0.0787368 + 0.136376i
\(545\) 935052. 0.134848
\(546\) 0 0
\(547\) −5.45692e6 −0.779794 −0.389897 0.920859i \(-0.627489\pi\)
−0.389897 + 0.920859i \(0.627489\pi\)
\(548\) 873903. + 1.51364e6i 0.124312 + 0.215314i
\(549\) 0 0
\(550\) 3.35969e6 5.81915e6i 0.473579 0.820263i
\(551\) 116569. + 201903.i 0.0163570 + 0.0283311i
\(552\) 0 0
\(553\) −262568. 283358.i −0.0365115 0.0394024i
\(554\) 3.48273e6 0.482109
\(555\) 0 0
\(556\) 1.63756e6 2.83634e6i 0.224652 0.389109i
\(557\) 5.58881e6 9.68010e6i 0.763275 1.32203i −0.177879 0.984052i \(-0.556923\pi\)
0.941154 0.337979i \(-0.109743\pi\)
\(558\) 0 0
\(559\) −1.11724e6 −0.151223
\(560\) −205873. + 665854.i −0.0277414 + 0.0897241i
\(561\) 0 0
\(562\) 4.70825e6 + 8.15493e6i 0.628809 + 1.08913i
\(563\) 440132. 762332.i 0.0585211 0.101361i −0.835281 0.549824i \(-0.814695\pi\)
0.893802 + 0.448462i \(0.148028\pi\)
\(564\) 0 0
\(565\) 949793. + 1.64509e6i 0.125172 + 0.216805i
\(566\) −8.76140e6 −1.14956
\(567\) 0 0
\(568\) 2.00189e6 0.260357
\(569\) −774858. 1.34209e6i −0.100332 0.173781i 0.811489 0.584367i \(-0.198657\pi\)
−0.911822 + 0.410587i \(0.865324\pi\)
\(570\) 0 0
\(571\) 5.48507e6 9.50043e6i 0.704032 1.21942i −0.263008 0.964794i \(-0.584715\pi\)
0.967040 0.254625i \(-0.0819521\pi\)
\(572\) 1.03555e6 + 1.79363e6i 0.132337 + 0.229214i
\(573\) 0 0
\(574\) −6.06302e6 6.54308e6i −0.768085 0.828900i
\(575\) 9.97742e6 1.25849
\(576\) 0 0
\(577\) 6.29341e6 1.09005e7i 0.786948 1.36303i −0.140880 0.990027i \(-0.544993\pi\)
0.927828 0.373008i \(-0.121674\pi\)
\(578\) 586306. 1.01551e6i 0.0729969 0.126434i
\(579\) 0 0
\(580\) 41579.1 0.00513222
\(581\) −5.80915e6 + 1.32185e6i −0.713957 + 0.162458i
\(582\) 0 0
\(583\) 5.85418e6 + 1.01397e7i 0.713337 + 1.23554i
\(584\) 228815. 396319.i 0.0277621 0.0480854i
\(585\) 0 0
\(586\) −1.61540e6 2.79796e6i −0.194328 0.336587i
\(587\) −1.19962e7 −1.43697 −0.718484 0.695544i \(-0.755164\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) −106461. 184395.i −0.0125910 0.0218082i
\(591\) 0 0
\(592\) 771677. 1.33658e6i 0.0904964 0.156744i
\(593\) 2.66154e6 + 4.60993e6i 0.310811 + 0.538341i 0.978538 0.206065i \(-0.0660659\pi\)
−0.667727 + 0.744406i \(0.732733\pi\)
\(594\) 0 0
\(595\) −2.81778e6 + 641175.i −0.326298 + 0.0742479i
\(596\) 6.50092e6 0.749651
\(597\) 0 0
\(598\) −1.53766e6 + 2.66331e6i −0.175836 + 0.304557i
\(599\) 3.77757e6 6.54293e6i 0.430175 0.745085i −0.566713 0.823915i \(-0.691785\pi\)
0.996888 + 0.0788305i \(0.0251186\pi\)
\(600\) 0 0
\(601\) 4.44758e6 0.502270 0.251135 0.967952i \(-0.419196\pi\)
0.251135 + 0.967952i \(0.419196\pi\)
\(602\) −1.90400e6 2.05475e6i −0.214129 0.231083i
\(603\) 0 0
\(604\) 3.33470e6 + 5.77588e6i 0.371933 + 0.644207i
\(605\) −2.42200e6 + 4.19503e6i −0.269021 + 0.465958i
\(606\) 0 0
\(607\) −2.78660e6 4.82653e6i −0.306975 0.531696i 0.670724 0.741707i \(-0.265983\pi\)
−0.977699 + 0.210011i \(0.932650\pi\)
\(608\) −1.92919e6 −0.211649
\(609\) 0 0
\(610\) −175955. −0.0191460
\(611\) −193920. 335879.i −0.0210145 0.0363982i
\(612\) 0 0
\(613\) 5.56323e6 9.63580e6i 0.597965 1.03571i −0.395156 0.918614i \(-0.629309\pi\)
0.993121 0.117092i \(-0.0373573\pi\)
\(614\) −423032. 732713.i −0.0452848 0.0784356i
\(615\) 0 0
\(616\) −1.53393e6 + 4.96120e6i −0.162875 + 0.526787i
\(617\) 1.07454e7 1.13634 0.568170 0.822911i \(-0.307651\pi\)
0.568170 + 0.822911i \(0.307651\pi\)
\(618\) 0 0
\(619\) −6.78781e6 + 1.17568e7i −0.712038 + 1.23329i 0.252053 + 0.967713i \(0.418894\pi\)
−0.964091 + 0.265572i \(0.914439\pi\)
\(620\) 1.53036e6 2.65065e6i 0.159887 0.276933i
\(621\) 0 0
\(622\) 1.16684e6 0.120930
\(623\) 8.72698e6 + 9.41797e6i 0.900833 + 0.972159i
\(624\) 0 0
\(625\) −2.91287e6 5.04523e6i −0.298277 0.516632i
\(626\) 3.99195e6 6.91427e6i 0.407145 0.705197i
\(627\) 0 0
\(628\) −954324. 1.65294e6i −0.0965599 0.167247i
\(629\) 6.39927e6 0.644917
\(630\) 0 0
\(631\) 1.27986e7 1.27964 0.639820 0.768525i \(-0.279009\pi\)
0.639820 + 0.768525i \(0.279009\pi\)
\(632\) −95353.9 165158.i −0.00949611 0.0164478i
\(633\) 0 0
\(634\) −5.61914e6 + 9.73264e6i −0.555197 + 0.961629i
\(635\) −1.97092e6 3.41374e6i −0.193970 0.335966i
\(636\) 0 0
\(637\) −3.13380e6 + 1.50404e6i −0.306001 + 0.146863i
\(638\) 309801. 0.0301322
\(639\) 0 0
\(640\) −172032. + 297968.i −0.0166020 + 0.0287554i
\(641\) −442417. + 766288.i −0.0425291 + 0.0736626i −0.886506 0.462716i \(-0.846875\pi\)
0.843977 + 0.536379i \(0.180208\pi\)
\(642\) 0 0
\(643\) 6.66271e6 0.635511 0.317756 0.948173i \(-0.397071\pi\)
0.317756 + 0.948173i \(0.397071\pi\)
\(644\) −7.51863e6 + 1.71083e6i −0.714372 + 0.162552i
\(645\) 0 0
\(646\) −3.99955e6 6.92742e6i −0.377077 0.653116i
\(647\) −8.45887e6 + 1.46512e7i −0.794423 + 1.37598i 0.128782 + 0.991673i \(0.458893\pi\)
−0.923205 + 0.384308i \(0.874440\pi\)
\(648\) 0 0
\(649\) −793226. 1.37391e6i −0.0739239 0.128040i
\(650\) 2.22043e6 0.206136
\(651\) 0 0
\(652\) 757959. 0.0698275
\(653\) 4.74654e6 + 8.22124e6i 0.435606 + 0.754492i 0.997345 0.0728230i \(-0.0232008\pi\)
−0.561739 + 0.827315i \(0.689867\pi\)
\(654\) 0 0
\(655\) 1.62133e6 2.80822e6i 0.147662 0.255758i
\(656\) −2.20184e6 3.81369e6i −0.199768 0.346008i
\(657\) 0 0
\(658\) 287248. 929046.i 0.0258638 0.0836513i
\(659\) 4.97563e6 0.446308 0.223154 0.974783i \(-0.428365\pi\)
0.223154 + 0.974783i \(0.428365\pi\)
\(660\) 0 0
\(661\) −1.05765e7 + 1.83191e7i −0.941543 + 1.63080i −0.179013 + 0.983847i \(0.557290\pi\)
−0.762530 + 0.646953i \(0.776043\pi\)
\(662\) −2.76099e6 + 4.78218e6i −0.244861 + 0.424112i
\(663\) 0 0
\(664\) −2.94110e6 −0.258874
\(665\) 1.51508e6 4.90022e6i 0.132856 0.429696i
\(666\) 0 0
\(667\) 230007. + 398384.i 0.0200183 + 0.0346727i
\(668\) −1.85335e6 + 3.21010e6i −0.160700 + 0.278341i
\(669\) 0 0
\(670\) −2.46207e6 4.26443e6i −0.211892 0.367007i
\(671\) −1.31102e6 −0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) −1.13286e6 1.96217e6i −0.0960562 0.166374i
\(675\) 0 0
\(676\) 2.62814e6 4.55208e6i 0.221199 0.383127i
\(677\) 1.31234e6 + 2.27304e6i 0.110046 + 0.190605i 0.915789 0.401661i \(-0.131567\pi\)
−0.805743 + 0.592266i \(0.798233\pi\)
\(678\) 0 0
\(679\) −1.46065e7 + 3.32366e6i −1.21583 + 0.276657i
\(680\) −1.42661e6 −0.118313
\(681\) 0 0
\(682\) 1.14025e7 1.97497e7i 0.938726 1.62592i
\(683\) −4.37227e6 + 7.57300e6i −0.358637 + 0.621178i −0.987733 0.156149i \(-0.950092\pi\)
0.629096 + 0.777328i \(0.283425\pi\)
\(684\) 0 0
\(685\) −2.29399e6 −0.186795
\(686\) −8.10674e6 3.20029e6i −0.657712 0.259644i
\(687\) 0 0
\(688\) −691453. 1.19763e6i −0.0556919 0.0964611i
\(689\) −1.93452e6 + 3.35069e6i −0.155248 + 0.268898i
\(690\) 0 0
\(691\) −2.19834e6 3.80763e6i −0.175146 0.303361i 0.765066 0.643952i \(-0.222706\pi\)
−0.940212 + 0.340591i \(0.889373\pi\)
\(692\) −2.14943e6 −0.170631
\(693\) 0 0
\(694\) −2.16083e6 −0.170303
\(695\) 2.14930e6 + 3.72270e6i 0.168786 + 0.292345i
\(696\) 0 0
\(697\) 9.12957e6 1.58129e7i 0.711817 1.23290i
\(698\) −3.47614e6 6.02084e6i −0.270059 0.467755i
\(699\) 0 0
\(700\) 3.78404e6 + 4.08366e6i 0.291885 + 0.314995i
\(701\) −6.51339e6 −0.500624 −0.250312 0.968165i \(-0.580533\pi\)
−0.250312 + 0.968165i \(0.580533\pi\)
\(702\) 0 0
\(703\) −5.67900e6 + 9.83631e6i −0.433394 + 0.750661i
\(704\) −1.28179e6 + 2.22012e6i −0.0974731 + 0.168828i
\(705\) 0 0
\(706\) −4.29687e6 −0.324445
\(707\) 419383. 1.35641e6i 0.0315546 0.102057i
\(708\) 0 0
\(709\) 5.23256e6 + 9.06305e6i 0.390929 + 0.677110i 0.992572 0.121655i \(-0.0388203\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(710\) −1.31374e6 + 2.27547e6i −0.0978056 + 0.169404i
\(711\) 0 0
\(712\) 3.16928e6 + 5.48935e6i 0.234294 + 0.405808i
\(713\) 3.38625e7 2.49457
\(714\) 0 0
\(715\) −2.71832e6 −0.198855
\(716\) 372675. + 645492.i 0.0271674 + 0.0470553i
\(717\) 0 0
\(718\) 242408. 419862.i 0.0175483 0.0303946i
\(719\) −8.40746e6 1.45621e7i −0.606516 1.05052i −0.991810 0.127723i \(-0.959233\pi\)
0.385294 0.922794i \(-0.374100\pi\)
\(720\) 0 0
\(721\) 1.21357e7 + 1.30966e7i 0.869414 + 0.938252i
\(722\) 4.29311e6 0.306499
\(723\) 0 0
\(724\) −6.63368e6 + 1.14899e7i −0.470336 + 0.814646i
\(725\) 166069. 287640.i 0.0117339 0.0203238i
\(726\) 0 0
\(727\) −1.71928e7 −1.20646 −0.603228 0.797569i \(-0.706119\pi\)
−0.603228 + 0.797569i \(0.706119\pi\)
\(728\) −1.67324e6 + 380739.i −0.117012 + 0.0266255i
\(729\) 0 0
\(730\) 300320. + 520169.i 0.0208582 + 0.0361275i
\(731\) 2.86700e6 4.96579e6i 0.198442 0.343712i
\(732\) 0 0
\(733\) −9.86827e6 1.70923e7i −0.678393 1.17501i −0.975465 0.220155i \(-0.929344\pi\)
0.297072 0.954855i \(-0.403990\pi\)
\(734\) −2.21531e6 −0.151773
\(735\) 0 0
\(736\) −3.80659e6 −0.259025
\(737\) −1.83446e7 3.17738e7i −1.24405 2.15477i
\(738\) 0 0
\(739\) −6.43593e6 + 1.11474e7i −0.433511 + 0.750863i −0.997173 0.0751426i \(-0.976059\pi\)
0.563662 + 0.826006i \(0.309392\pi\)
\(740\) 1.01283e6 + 1.75427e6i 0.0679916 + 0.117765i
\(741\) 0 0
\(742\) −9.45916e6 + 2.15239e6i −0.630729 + 0.143520i
\(743\) −2.45606e7 −1.63218 −0.816089 0.577927i \(-0.803862\pi\)
−0.816089 + 0.577927i \(0.803862\pi\)
\(744\) 0 0
\(745\) −4.26623e6 + 7.38933e6i −0.281614 + 0.487769i
\(746\) 1.00296e6 1.73717e6i 0.0659834 0.114287i
\(747\) 0 0
\(748\) −1.06295e7 −0.694636
\(749\) 6.65917e6 + 7.18643e6i 0.433726 + 0.468068i
\(750\) 0 0
\(751\) 162983. + 282294.i 0.0105449 + 0.0182643i 0.871250 0.490840i \(-0.163310\pi\)
−0.860705 + 0.509104i \(0.829977\pi\)
\(752\) 240031. 415746.i 0.0154783 0.0268092i
\(753\) 0 0
\(754\) 51187.1 + 88658.7i 0.00327893 + 0.00567928i
\(755\) −8.75360e6 −0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) −1.99801e6 3.46065e6i −0.126306 0.218769i
\(759\) 0 0
\(760\) 1.26603e6 2.19283e6i 0.0795081 0.137712i
\(761\) 2.56313e6 + 4.43947e6i 0.160439 + 0.277888i 0.935026 0.354579i \(-0.115376\pi\)
−0.774587 + 0.632467i \(0.782042\pi\)
\(762\) 0 0
\(763\) −1.70512e6 + 5.51488e6i −0.106034 + 0.342945i
\(764\) 7.55066e6 0.468006
\(765\) 0 0
\(766\) 1.30493e6 2.26020e6i 0.0803553 0.139179i
\(767\) 262123. 454010.i 0.0160885 0.0278662i
\(768\) 0 0
\(769\) 1.63432e6 0.0996602 0.0498301 0.998758i \(-0.484132\pi\)
0.0498301 + 0.998758i \(0.484132\pi\)
\(770\) −4.63255e6 4.99934e6i −0.281574 0.303869i
\(771\) 0 0
\(772\) −5.50683e6 9.53811e6i −0.332551 0.575996i
\(773\) −2.14128e6 + 3.70881e6i −0.128892 + 0.223247i −0.923248 0.384206i \(-0.874475\pi\)
0.794356 + 0.607453i \(0.207809\pi\)
\(774\) 0 0
\(775\) −1.22246e7 2.11737e7i −0.731108 1.26632i
\(776\) −7.39510e6 −0.440849
\(777\) 0 0
\(778\) 317012. 0.0187770
\(779\) 1.62040e7 + 2.80661e7i 0.956704 + 1.65706i
\(780\) 0 0
\(781\) −9.78852e6 + 1.69542e7i −0.574235 + 0.994604i
\(782\) −7.89170e6 1.36688e7i −0.461481 0.799308i
\(783\) 0 0
\(784\) −3.55175e6 2.42845e6i −0.206373 0.141104i
\(785\) 2.50510e6 0.145095
\(786\) 0 0
\(787\) 3.91482e6 6.78066e6i 0.225307 0.390243i −0.731105 0.682265i \(-0.760995\pi\)
0.956411 + 0.292022i \(0.0943282\pi\)
\(788\) 2.49532e6 4.32202e6i 0.143156 0.247954i
\(789\) 0 0
\(790\) 250304. 0.0142692
\(791\) −1.14346e7 + 2.60191e6i −0.649803 + 0.147860i
\(792\) 0 0
\(793\) −216615. 375187.i −0.0122322 0.0211868i
\(794\) −8.01771e6 + 1.38871e7i −0.451335 + 0.781736i
\(795\) 0 0
\(796\) 2.29769e6 + 3.97972e6i 0.128531 + 0.222623i
\(797\) 3.68238e6 0.205344 0.102672 0.994715i \(-0.467261\pi\)
0.102672 + 0.994715i \(0.467261\pi\)
\(798\) 0 0
\(799\) 1.99050e6 0.110305
\(800\) 1.37421e6 + 2.38020e6i 0.0759150 + 0.131489i
\(801\) 0 0
\(802\) 1.34884e6 2.33625e6i 0.0740497 0.128258i
\(803\) 2.23765e6 + 3.87572e6i 0.122462 + 0.212111i
\(804\) 0 0
\(805\) 2.98947e6 9.66885e6i 0.162594 0.525878i
\(806\) 7.53595e6 0.408602
\(807\) 0 0
\(808\) 350447. 606992.i 0.0188840 0.0327080i
\(809\) 1.04091e7 1.80290e7i 0.559165 0.968502i −0.438402 0.898779i \(-0.644455\pi\)
0.997566 0.0697227i \(-0.0222114\pi\)
\(810\) 0 0
\(811\) 3.03542e7 1.62057 0.810283 0.586039i \(-0.199313\pi\)
0.810283 + 0.586039i \(0.199313\pi\)
\(812\) −75822.0 + 245231.i −0.00403557 + 0.0130523i
\(813\) 0 0
\(814\) 7.54644e6 + 1.30708e7i 0.399191 + 0.691420i
\(815\) −497410. + 861540.i −0.0262314 + 0.0454341i
\(816\) 0 0
\(817\) 5.08861e6 + 8.81373e6i 0.266713 + 0.461960i
\(818\) −1.14165e7 −0.596555
\(819\) 0 0
\(820\) 5.77982e6 0.300179
\(821\) 1.37193e7 + 2.37626e7i 0.710355 + 1.23037i 0.964724 + 0.263264i \(0.0847990\pi\)
−0.254369 + 0.967107i \(0.581868\pi\)
\(822\) 0 0
\(823\) −7.95629e6 + 1.37807e7i −0.409459 + 0.709204i −0.994829 0.101562i \(-0.967616\pi\)
0.585370 + 0.810766i \(0.300949\pi\)
\(824\) 4.40718e6 + 7.63346e6i 0.226122 + 0.391655i
\(825\) 0 0
\(826\) 1.28169e6 291643.i 0.0653632 0.0148731i
\(827\) −1.40824e7 −0.716001 −0.358001 0.933721i \(-0.616541\pi\)
−0.358001 + 0.933721i \(0.616541\pi\)
\(828\) 0 0
\(829\) −1.09441e7 + 1.89558e7i −0.553089 + 0.957978i 0.444960 + 0.895550i \(0.353218\pi\)
−0.998049 + 0.0624281i \(0.980116\pi\)
\(830\) 1.93009e6 3.34302e6i 0.0972486 0.168439i
\(831\) 0 0
\(832\) −847139. −0.0424274
\(833\) 1.35678e6 1.77883e7i 0.0677480 0.888225i
\(834\) 0 0
\(835\) −2.43253e6 4.21326e6i −0.120737 0.209123i
\(836\) 9.43306e6 1.63385e7i 0.466807 0.808533i
\(837\) 0 0
\(838\) −9.33106e6 1.61619e7i −0.459009 0.795026i
\(839\) 1.98669e7 0.974372 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) 7.46635e6 + 1.29321e7i 0.362934 + 0.628620i
\(843\) 0 0
\(844\) 3.68395e6 6.38078e6i 0.178015 0.308332i
\(845\) 3.44944e6 + 5.97460e6i 0.166191 + 0.287851i
\(846\) 0 0
\(847\) −2.03254e7 2.19347e7i −0.973488 1.05057i
\(848\) −4.78905e6 −0.228697
\(849\) 0 0
\(850\) −5.69793e6 + 9.86911e6i −0.270502 + 0.468523i
\(851\) −1.12055e7 + 1.94085e7i −0.530405 + 0.918688i
\(852\) 0 0
\(853\) 8.75258e6 0.411873 0.205937 0.978565i \(-0.433976\pi\)
0.205937 + 0.978565i \(0.433976\pi\)
\(854\) 320865. 1.03777e6i 0.0150549 0.0486921i
\(855\) 0 0
\(856\) 2.41834e6 + 4.18868e6i 0.112806 + 0.195386i
\(857\) −977384. + 1.69288e6i −0.0454583 + 0.0787361i −0.887859 0.460115i \(-0.847808\pi\)
0.842401 + 0.538851i \(0.181141\pi\)
\(858\) 0 0
\(859\) −2.49225e6 4.31670e6i −0.115241 0.199604i 0.802635 0.596471i \(-0.203431\pi\)
−0.917876 + 0.396867i \(0.870098\pi\)
\(860\) 1.81506e6 0.0836847
\(861\) 0 0
\(862\) −3.85868e6 −0.176877
\(863\) −8.49654e6 1.47164e7i −0.388343 0.672629i 0.603884 0.797072i \(-0.293619\pi\)
−0.992227 + 0.124443i \(0.960286\pi\)
\(864\) 0 0
\(865\) 1.41056e6 2.44316e6i 0.0640991 0.111023i
\(866\) 1.23619e7 + 2.14115e7i 0.560133 + 0.970179i
\(867\) 0 0
\(868\) 1.28427e7 + 1.38596e7i 0.578572 + 0.624383i
\(869\) 1.86498e6 0.0837772
\(870\) 0 0
\(871\) 6.06200e6 1.04997e7i 0.270751 0.468955i
\(872\) −1.42484e6 + 2.46790e6i −0.0634564 + 0.109910i
\(873\) 0 0
\(874\) 2.80138e7 1.24049
\(875\) −1.54207e7 + 3.50892e6i −0.680901 + 0.154936i
\(876\) 0 0
\(877\) −9.09797e6 1.57581e7i −0.399434 0.691840i 0.594222 0.804301i \(-0.297460\pi\)
−0.993656 + 0.112461i \(0.964127\pi\)
\(878\) 430269. 745249.i 0.0188367 0.0326261i
\(879\) 0 0
\(880\) −1.68235e6 2.91391e6i −0.0732334 0.126844i
\(881\) −1.77637e7 −0.771068 −0.385534 0.922694i \(-0.625983\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(882\) 0 0
\(883\) 1.71479e6 0.0740131 0.0370065 0.999315i \(-0.488218\pi\)
0.0370065 + 0.999315i \(0.488218\pi\)
\(884\) −1.75626e6 3.04194e6i −0.0755891 0.130924i
\(885\) 0 0
\(886\) −1.43973e7 + 2.49369e7i −0.616167 + 1.06723i
\(887\) −1.21218e7 2.09955e7i −0.517318 0.896021i −0.999798 0.0201139i \(-0.993597\pi\)
0.482480 0.875907i \(-0.339736\pi\)
\(888\) 0 0
\(889\) 2.37281e7 5.39924e6i 1.00695 0.229128i
\(890\) −8.31936e6 −0.352058
\(891\) 0 0
\(892\) 9.58206e6 1.65966e7i 0.403224 0.698405i
\(893\) −1.76646e6 + 3.05960e6i −0.0741267 + 0.128391i
\(894\) 0 0
\(895\) −978272. −0.0408227
\(896\) −1.44369e6 1.55800e6i −0.0600764 0.0648331i
\(897\) 0 0
\(898\) 7.84306e6 + 1.35846e7i 0.324560 + 0.562154i
\(899\) 563624. 976225.i 0.0232589 0.0402857i
\(900\) 0 0
\(901\) −9.92852e6 1.71967e7i −0.407448 0.705721i
\(902\) 4.30647e7 1.76240
\(903\) 0 0
\(904\) −5.78921e6 −0.235613
\(905\) −8.70671e6 1.50805e7i −0.353372 0.612059i
\(906\) 0 0
\(907\) 9.52161e6 1.64919e7i 0.384319 0.665661i −0.607355 0.794430i \(-0.707769\pi\)
0.991675 + 0.128770i \(0.0411028\pi\)
\(908\) 7.15649e6 + 1.23954e7i 0.288062 + 0.498937i
\(909\) 0 0
\(910\) 665293. 2.15176e6i 0.0266324 0.0861371i
\(911\) 3.18731e7 1.27242 0.636208 0.771518i \(-0.280502\pi\)
0.636208 + 0.771518i \(0.280502\pi\)
\(912\) 0 0
\(913\) 1.43809e7 2.49084e7i 0.570964 0.988939i
\(914\) −2.64336e6 + 4.57843e6i −0.104662 + 0.181280i
\(915\) 0 0
\(916\) −4.14810e6 −0.163347
\(917\) 1.36062e7 + 1.46835e7i 0.534333 + 0.576641i
\(918\) 0 0
\(919\) 1.47429e7 + 2.55355e7i 0.575830 + 0.997367i 0.995951 + 0.0898988i \(0.0286544\pi\)
−0.420121 + 0.907468i \(0.638012\pi\)
\(920\) 2.49807e6 4.32679e6i 0.0973050 0.168537i
\(921\) 0 0
\(922\) −150918. 261398.i −0.00584675 0.0101269i
\(923\) −6.46927e6 −0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) 6.57515e6 + 1.13885e7i 0.251987 + 0.436454i
\(927\) 0 0
\(928\) −63358.6 + 109740.i −0.00241510 + 0.00418308i
\(929\) −4.86935e6 8.43397e6i −0.185111 0.320621i 0.758503 0.651670i \(-0.225931\pi\)
−0.943614 + 0.331048i \(0.892598\pi\)
\(930\) 0 0
\(931\) 2.61384e7 + 1.78717e7i 0.988335 + 0.675757i
\(932\) −3.38104e6 −0.127500
\(933\) 0 0
\(934\) −1.28676e6 + 2.22874e6i −0.0482649 + 0.0835973i
\(935\) 6.97559e6 1.20821e7i 0.260947 0.451973i
\(936\) 0 0
\(937\) 2.66734e7 0.992498 0.496249 0.868180i \(-0.334710\pi\)
0.496249 + 0.868180i \(0.334710\pi\)
\(938\) 2.96411e7 6.74472e6i 1.09999 0.250298i
\(939\) 0 0
\(940\) 315041. + 545666.i 0.0116291 + 0.0201422i
\(941\) 1.61432e6 2.79609e6i 0.0594315 0.102938i −0.834779 0.550585i \(-0.814405\pi\)
0.894210 + 0.447647i \(0.147738\pi\)
\(942\) 0 0
\(943\) 3.19728e7 + 5.53785e7i 1.17085 + 2.02797i
\(944\) 648903. 0.0237001
\(945\) 0 0
\(946\) 1.35238e7 0.491328
\(947\) −2.29622e6 3.97717e6i −0.0832029 0.144112i 0.821421 0.570322i \(-0.193182\pi\)
−0.904624 + 0.426210i \(0.859848\pi\)
\(948\) 0 0
\(949\) −739434. + 1.28074e6i −0.0266523 + 0.0461631i
\(950\) −1.01132e7 1.75166e7i −0.363563 0.629709i
\(951\) 0 0
\(952\) 2.60150e6 8.41405e6i 0.0930318 0.300893i
\(953\) −2.97125e7 −1.05976 −0.529880 0.848073i \(-0.677763\pi\)
−0.529880 + 0.848073i \(0.677763\pi\)
\(954\) 0 0
\(955\) −4.95512e6 + 8.58253e6i −0.175811 + 0.304514i
\(956\) 3704.14 6415.77i 0.000131082 0.000227041i
\(957\) 0 0
\(958\) 2.97059e7 1.04575
\(959\) 4.18323e6 1.35299e7i 0.146881 0.475058i
\(960\) 0 0
\(961\) −2.71748e7 4.70681e7i −0.949199 1.64406i
\(962\) −2.49373e6 + 4.31928e6i −0.0868786 + 0.150478i
\(963\) 0 0
\(964\) −2.29116e6 3.96840e6i −0.0794077 0.137538i
\(965\) 1.44554e7 0.499704
\(966\) 0 0
\(967\) 7.64435e6 0.262890 0.131445 0.991323i \(-0.458038\pi\)
0.131445 + 0.991323i \(0.458038\pi\)
\(968\) −7.38134e6 1.27849e7i −0.253190 0.438538i
\(969\) 0 0
\(970\) 4.85303e6 8.40570e6i 0.165609 0.286843i
\(971\) −2.49810e7 4.32684e7i −0.850281 1.47273i −0.880955 0.473200i \(-0.843099\pi\)
0.0306743 0.999529i \(-0.490235\pi\)
\(972\) 0 0
\(973\) −2.58756e7 + 5.88790e6i −0.876212 + 0.199378i
\(974\) −1.66834e7 −0.563491
\(975\) 0 0
\(976\) 268122. 464401.i 0.00900966 0.0156052i
\(977\) 2.02697e7 3.51082e7i 0.679378 1.17672i −0.295791 0.955253i \(-0.595583\pi\)
0.975169 0.221464i \(-0.0710836\pi\)
\(978\) 0 0
\(979\) −6.19865e7 −2.06700
\(980\) 5.09115e6 2.44346e6i 0.169337 0.0812717i
\(981\) 0 0
\(982\) −7.47348e6 1.29445e7i −0.247311 0.428356i
\(983\) −2.06528e7 + 3.57717e7i −0.681703 + 1.18074i 0.292757 + 0.956187i \(0.405427\pi\)
−0.974461 + 0.224558i \(0.927906\pi\)
\(984\) 0 0
\(985\) 3.27511e6 + 5.67265e6i 0.107556 + 0.186292i
\(986\) −525413. −0.0172111
\(987\) 0 0
\(988\) 6.23434e6 0.203188
\(989\) 1.00406e7 + 1.73908e7i 0.326413 + 0.565364i
\(990\) 0 0
\(991\) 9.20419e6 1.59421e7i 0.297715 0.515658i −0.677897 0.735156i \(-0.737109\pi\)
0.975613 + 0.219498i \(0.0704420\pi\)
\(992\) 4.66394e6 + 8.07819e6i 0.150478 + 0.260636i
\(993\) 0 0
\(994\) −1.10249e7 1.18978e7i −0.353922 0.381945i
\(995\) −6.03144e6 −0.193136
\(996\) 0 0
\(997\) 1.69854e7 2.94196e7i 0.541175 0.937343i −0.457662 0.889126i \(-0.651313\pi\)
0.998837 0.0482164i \(-0.0153537\pi\)
\(998\) −1.74172e7 + 3.01675e7i −0.553545 + 0.958768i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.6.g.e.109.2 4
3.2 odd 2 14.6.c.b.11.1 yes 4
7.2 even 3 inner 126.6.g.e.37.2 4
7.3 odd 6 882.6.a.bl.1.2 2
7.4 even 3 882.6.a.bt.1.2 2
12.11 even 2 112.6.i.b.81.2 4
21.2 odd 6 14.6.c.b.9.1 4
21.5 even 6 98.6.c.f.79.2 4
21.11 odd 6 98.6.a.c.1.2 2
21.17 even 6 98.6.a.f.1.1 2
21.20 even 2 98.6.c.f.67.2 4
84.11 even 6 784.6.a.bc.1.1 2
84.23 even 6 112.6.i.b.65.2 4
84.59 odd 6 784.6.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 21.2 odd 6
14.6.c.b.11.1 yes 4 3.2 odd 2
98.6.a.c.1.2 2 21.11 odd 6
98.6.a.f.1.1 2 21.17 even 6
98.6.c.f.67.2 4 21.20 even 2
98.6.c.f.79.2 4 21.5 even 6
112.6.i.b.65.2 4 84.23 even 6
112.6.i.b.81.2 4 12.11 even 2
126.6.g.e.37.2 4 7.2 even 3 inner
126.6.g.e.109.2 4 1.1 even 1 trivial
784.6.a.r.1.2 2 84.59 odd 6
784.6.a.bc.1.1 2 84.11 even 6
882.6.a.bl.1.2 2 7.3 odd 6
882.6.a.bt.1.2 2 7.4 even 3