Properties

Label 126.6.g.c.109.1
Level $126$
Weight $6$
Character 126.109
Analytic conductor $20.208$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.6.g.c.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-3.00000 - 5.19615i) q^{5} +(59.5000 - 115.181i) q^{7} -64.0000 q^{8} +O(q^{10})\) \(q+(2.00000 + 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-3.00000 - 5.19615i) q^{5} +(59.5000 - 115.181i) q^{7} -64.0000 q^{8} +(12.0000 - 20.7846i) q^{10} +(-333.000 + 576.773i) q^{11} -559.000 q^{13} +(518.000 - 24.2487i) q^{14} +(-128.000 - 221.703i) q^{16} +(-870.000 + 1506.88i) q^{17} +(-578.500 - 1001.99i) q^{19} +96.0000 q^{20} -2664.00 q^{22} +(-1734.00 - 3003.38i) q^{23} +(1544.50 - 2675.15i) q^{25} +(-1118.00 - 1936.43i) q^{26} +(1120.00 + 1745.91i) q^{28} -3372.00 q^{29} +(-3146.50 + 5449.90i) q^{31} +(512.000 - 886.810i) q^{32} -6960.00 q^{34} +(-777.000 + 36.3731i) q^{35} +(-1565.50 - 2711.53i) q^{37} +(2314.00 - 4007.97i) q^{38} +(192.000 + 332.554i) q^{40} +4866.00 q^{41} -11407.0 q^{43} +(-5328.00 - 9228.37i) q^{44} +(6936.00 - 12013.5i) q^{46} +(1155.00 + 2000.52i) q^{47} +(-9726.50 - 13706.6i) q^{49} +12356.0 q^{50} +(4472.00 - 7745.73i) q^{52} +(-14148.0 + 24505.1i) q^{53} +3996.00 q^{55} +(-3808.00 + 7371.61i) q^{56} +(-6744.00 - 11681.0i) q^{58} +(10272.0 - 17791.6i) q^{59} +(2315.00 + 4009.70i) q^{61} -25172.0 q^{62} +4096.00 q^{64} +(1677.00 + 2904.65i) q^{65} +(9372.50 - 16233.6i) q^{67} +(-13920.0 - 24110.1i) q^{68} +(-1680.00 - 2618.86i) q^{70} +38226.0 q^{71} +(-35294.5 + 61131.9i) q^{73} +(6262.00 - 10846.1i) q^{74} +18512.0 q^{76} +(46620.0 + 72673.4i) q^{77} +(31146.5 + 53947.3i) q^{79} +(-768.000 + 1330.22i) q^{80} +(9732.00 + 16856.3i) q^{82} -79818.0 q^{83} +10440.0 q^{85} +(-22814.0 - 39515.0i) q^{86} +(21312.0 - 36913.5i) q^{88} +(-9060.00 - 15692.4i) q^{89} +(-33260.5 + 64386.4i) q^{91} +55488.0 q^{92} +(-4620.00 + 8002.07i) q^{94} +(-3471.00 + 6011.95i) q^{95} +124754. q^{97} +(28028.0 - 61106.8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 16 q^{4} - 6 q^{5} + 119 q^{7} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 16 q^{4} - 6 q^{5} + 119 q^{7} - 128 q^{8} + 24 q^{10} - 666 q^{11} - 1118 q^{13} + 1036 q^{14} - 256 q^{16} - 1740 q^{17} - 1157 q^{19} + 192 q^{20} - 5328 q^{22} - 3468 q^{23} + 3089 q^{25} - 2236 q^{26} + 2240 q^{28} - 6744 q^{29} - 6293 q^{31} + 1024 q^{32} - 13920 q^{34} - 1554 q^{35} - 3131 q^{37} + 4628 q^{38} + 384 q^{40} + 9732 q^{41} - 22814 q^{43} - 10656 q^{44} + 13872 q^{46} + 2310 q^{47} - 19453 q^{49} + 24712 q^{50} + 8944 q^{52} - 28296 q^{53} + 7992 q^{55} - 7616 q^{56} - 13488 q^{58} + 20544 q^{59} + 4630 q^{61} - 50344 q^{62} + 8192 q^{64} + 3354 q^{65} + 18745 q^{67} - 27840 q^{68} - 3360 q^{70} + 76452 q^{71} - 70589 q^{73} + 12524 q^{74} + 37024 q^{76} + 93240 q^{77} + 62293 q^{79} - 1536 q^{80} + 19464 q^{82} - 159636 q^{83} + 20880 q^{85} - 45628 q^{86} + 42624 q^{88} - 18120 q^{89} - 66521 q^{91} + 110976 q^{92} - 9240 q^{94} - 6942 q^{95} + 249508 q^{97} + 56056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −3.00000 5.19615i −0.0536656 0.0929516i 0.837945 0.545755i \(-0.183757\pi\)
−0.891610 + 0.452804i \(0.850424\pi\)
\(6\) 0 0
\(7\) 59.5000 115.181i 0.458957 0.888459i
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 12.0000 20.7846i 0.0379473 0.0657267i
\(11\) −333.000 + 576.773i −0.829779 + 1.43722i 0.0684322 + 0.997656i \(0.478200\pi\)
−0.898211 + 0.439564i \(0.855133\pi\)
\(12\) 0 0
\(13\) −559.000 −0.917389 −0.458694 0.888594i \(-0.651683\pi\)
−0.458694 + 0.888594i \(0.651683\pi\)
\(14\) 518.000 24.2487i 0.706333 0.0330650i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −870.000 + 1506.88i −0.730125 + 1.26461i 0.226705 + 0.973963i \(0.427205\pi\)
−0.956830 + 0.290649i \(0.906129\pi\)
\(18\) 0 0
\(19\) −578.500 1001.99i −0.367637 0.636766i 0.621558 0.783368i \(-0.286500\pi\)
−0.989196 + 0.146602i \(0.953166\pi\)
\(20\) 96.0000 0.0536656
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) −1734.00 3003.38i −0.683486 1.18383i −0.973910 0.226934i \(-0.927130\pi\)
0.290424 0.956898i \(-0.406204\pi\)
\(24\) 0 0
\(25\) 1544.50 2675.15i 0.494240 0.856049i
\(26\) −1118.00 1936.43i −0.324346 0.561784i
\(27\) 0 0
\(28\) 1120.00 + 1745.91i 0.269975 + 0.420849i
\(29\) −3372.00 −0.744548 −0.372274 0.928123i \(-0.621422\pi\)
−0.372274 + 0.928123i \(0.621422\pi\)
\(30\) 0 0
\(31\) −3146.50 + 5449.90i −0.588063 + 1.01855i 0.406423 + 0.913685i \(0.366776\pi\)
−0.994486 + 0.104869i \(0.966558\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −6960.00 −1.03255
\(35\) −777.000 + 36.3731i −0.107214 + 0.00501891i
\(36\) 0 0
\(37\) −1565.50 2711.53i −0.187996 0.325619i 0.756586 0.653894i \(-0.226866\pi\)
−0.944582 + 0.328276i \(0.893533\pi\)
\(38\) 2314.00 4007.97i 0.259959 0.450262i
\(39\) 0 0
\(40\) 192.000 + 332.554i 0.0189737 + 0.0328634i
\(41\) 4866.00 0.452077 0.226039 0.974118i \(-0.427422\pi\)
0.226039 + 0.974118i \(0.427422\pi\)
\(42\) 0 0
\(43\) −11407.0 −0.940806 −0.470403 0.882452i \(-0.655892\pi\)
−0.470403 + 0.882452i \(0.655892\pi\)
\(44\) −5328.00 9228.37i −0.414890 0.718610i
\(45\) 0 0
\(46\) 6936.00 12013.5i 0.483297 0.837096i
\(47\) 1155.00 + 2000.52i 0.0762671 + 0.132099i 0.901637 0.432494i \(-0.142366\pi\)
−0.825369 + 0.564593i \(0.809033\pi\)
\(48\) 0 0
\(49\) −9726.50 13706.6i −0.578717 0.815528i
\(50\) 12356.0 0.698961
\(51\) 0 0
\(52\) 4472.00 7745.73i 0.229347 0.397241i
\(53\) −14148.0 + 24505.1i −0.691840 + 1.19830i 0.279395 + 0.960176i \(0.409866\pi\)
−0.971235 + 0.238125i \(0.923467\pi\)
\(54\) 0 0
\(55\) 3996.00 0.178122
\(56\) −3808.00 + 7371.61i −0.162266 + 0.314118i
\(57\) 0 0
\(58\) −6744.00 11681.0i −0.263237 0.455941i
\(59\) 10272.0 17791.6i 0.384171 0.665404i −0.607483 0.794333i \(-0.707821\pi\)
0.991654 + 0.128929i \(0.0411539\pi\)
\(60\) 0 0
\(61\) 2315.00 + 4009.70i 0.0796575 + 0.137971i 0.903102 0.429426i \(-0.141284\pi\)
−0.823445 + 0.567397i \(0.807951\pi\)
\(62\) −25172.0 −0.831646
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 1677.00 + 2904.65i 0.0492322 + 0.0852728i
\(66\) 0 0
\(67\) 9372.50 16233.6i 0.255075 0.441803i −0.709841 0.704362i \(-0.751233\pi\)
0.964916 + 0.262559i \(0.0845664\pi\)
\(68\) −13920.0 24110.1i −0.365062 0.632306i
\(69\) 0 0
\(70\) −1680.00 2618.86i −0.0409793 0.0638804i
\(71\) 38226.0 0.899939 0.449969 0.893044i \(-0.351435\pi\)
0.449969 + 0.893044i \(0.351435\pi\)
\(72\) 0 0
\(73\) −35294.5 + 61131.9i −0.775175 + 1.34264i 0.159521 + 0.987195i \(0.449005\pi\)
−0.934696 + 0.355448i \(0.884328\pi\)
\(74\) 6262.00 10846.1i 0.132933 0.230247i
\(75\) 0 0
\(76\) 18512.0 0.367637
\(77\) 46620.0 + 72673.4i 0.896077 + 1.39685i
\(78\) 0 0
\(79\) 31146.5 + 53947.3i 0.561489 + 0.972528i 0.997367 + 0.0725221i \(0.0231048\pi\)
−0.435877 + 0.900006i \(0.643562\pi\)
\(80\) −768.000 + 1330.22i −0.0134164 + 0.0232379i
\(81\) 0 0
\(82\) 9732.00 + 16856.3i 0.159833 + 0.276840i
\(83\) −79818.0 −1.27176 −0.635881 0.771787i \(-0.719363\pi\)
−0.635881 + 0.771787i \(0.719363\pi\)
\(84\) 0 0
\(85\) 10440.0 0.156730
\(86\) −22814.0 39515.0i −0.332625 0.576124i
\(87\) 0 0
\(88\) 21312.0 36913.5i 0.293371 0.508134i
\(89\) −9060.00 15692.4i −0.121242 0.209997i 0.799016 0.601310i \(-0.205354\pi\)
−0.920258 + 0.391313i \(0.872021\pi\)
\(90\) 0 0
\(91\) −33260.5 + 64386.4i −0.421042 + 0.815062i
\(92\) 55488.0 0.683486
\(93\) 0 0
\(94\) −4620.00 + 8002.07i −0.0539290 + 0.0934078i
\(95\) −3471.00 + 6011.95i −0.0394590 + 0.0683449i
\(96\) 0 0
\(97\) 124754. 1.34625 0.673124 0.739530i \(-0.264952\pi\)
0.673124 + 0.739530i \(0.264952\pi\)
\(98\) 28028.0 61106.8i 0.294800 0.642723i
\(99\) 0 0
\(100\) 24712.0 + 42802.4i 0.247120 + 0.428024i
\(101\) −46695.0 + 80878.1i −0.455478 + 0.788910i −0.998716 0.0506685i \(-0.983865\pi\)
0.543238 + 0.839579i \(0.317198\pi\)
\(102\) 0 0
\(103\) 83865.5 + 145259.i 0.778915 + 1.34912i 0.932567 + 0.360996i \(0.117563\pi\)
−0.153652 + 0.988125i \(0.549103\pi\)
\(104\) 35776.0 0.324346
\(105\) 0 0
\(106\) −113184. −0.978409
\(107\) 34590.0 + 59911.6i 0.292073 + 0.505885i 0.974300 0.225256i \(-0.0723217\pi\)
−0.682227 + 0.731141i \(0.738988\pi\)
\(108\) 0 0
\(109\) 109779. 190144.i 0.885024 1.53291i 0.0393377 0.999226i \(-0.487475\pi\)
0.845686 0.533680i \(-0.179191\pi\)
\(110\) 7992.00 + 13842.6i 0.0629758 + 0.109077i
\(111\) 0 0
\(112\) −33152.0 + 1551.92i −0.249727 + 0.0116902i
\(113\) 39354.0 0.289930 0.144965 0.989437i \(-0.453693\pi\)
0.144965 + 0.989437i \(0.453693\pi\)
\(114\) 0 0
\(115\) −10404.0 + 18020.3i −0.0733594 + 0.127062i
\(116\) 26976.0 46723.8i 0.186137 0.322399i
\(117\) 0 0
\(118\) 82176.0 0.543300
\(119\) 121800. + 189867.i 0.788460 + 1.22909i
\(120\) 0 0
\(121\) −141252. 244657.i −0.877067 1.51912i
\(122\) −9260.00 + 16038.8i −0.0563263 + 0.0975601i
\(123\) 0 0
\(124\) −50344.0 87198.4i −0.294031 0.509277i
\(125\) −37284.0 −0.213426
\(126\) 0 0
\(127\) 317093. 1.74453 0.872263 0.489037i \(-0.162652\pi\)
0.872263 + 0.489037i \(0.162652\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −6708.00 + 11618.6i −0.0348125 + 0.0602969i
\(131\) −77415.0 134087.i −0.394137 0.682665i 0.598854 0.800858i \(-0.295623\pi\)
−0.992991 + 0.118194i \(0.962290\pi\)
\(132\) 0 0
\(133\) −149832. + 7013.94i −0.734470 + 0.0343821i
\(134\) 74980.0 0.360731
\(135\) 0 0
\(136\) 55680.0 96440.6i 0.258138 0.447108i
\(137\) 33666.0 58311.2i 0.153246 0.265430i −0.779173 0.626809i \(-0.784361\pi\)
0.932419 + 0.361379i \(0.117694\pi\)
\(138\) 0 0
\(139\) −365215. −1.60329 −0.801644 0.597802i \(-0.796041\pi\)
−0.801644 + 0.597802i \(0.796041\pi\)
\(140\) 5712.00 11057.4i 0.0246302 0.0476797i
\(141\) 0 0
\(142\) 76452.0 + 132419.i 0.318176 + 0.551098i
\(143\) 186147. 322416.i 0.761230 1.31849i
\(144\) 0 0
\(145\) 10116.0 + 17521.4i 0.0399566 + 0.0692069i
\(146\) −282356. −1.09626
\(147\) 0 0
\(148\) 50096.0 0.187996
\(149\) −84030.0 145544.i −0.310076 0.537068i 0.668302 0.743890i \(-0.267021\pi\)
−0.978379 + 0.206822i \(0.933688\pi\)
\(150\) 0 0
\(151\) −76768.0 + 132966.i −0.273992 + 0.474568i −0.969880 0.243582i \(-0.921678\pi\)
0.695888 + 0.718150i \(0.255011\pi\)
\(152\) 37024.0 + 64127.4i 0.129979 + 0.225131i
\(153\) 0 0
\(154\) −158508. + 306843.i −0.538579 + 1.04259i
\(155\) 37758.0 0.126235
\(156\) 0 0
\(157\) −101209. + 175299.i −0.327695 + 0.567585i −0.982054 0.188599i \(-0.939605\pi\)
0.654359 + 0.756184i \(0.272939\pi\)
\(158\) −124586. + 215789.i −0.397033 + 0.687681i
\(159\) 0 0
\(160\) −6144.00 −0.0189737
\(161\) −449106. + 21023.6i −1.36548 + 0.0639209i
\(162\) 0 0
\(163\) 89882.0 + 155680.i 0.264974 + 0.458949i 0.967557 0.252653i \(-0.0813032\pi\)
−0.702583 + 0.711602i \(0.747970\pi\)
\(164\) −38928.0 + 67425.3i −0.113019 + 0.195755i
\(165\) 0 0
\(166\) −159636. 276498.i −0.449636 0.778792i
\(167\) −217302. −0.602938 −0.301469 0.953476i \(-0.597477\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(168\) 0 0
\(169\) −58812.0 −0.158398
\(170\) 20880.0 + 36165.2i 0.0554126 + 0.0959774i
\(171\) 0 0
\(172\) 91256.0 158060.i 0.235202 0.407381i
\(173\) −36990.0 64068.6i −0.0939656 0.162753i 0.815211 0.579164i \(-0.196621\pi\)
−0.909176 + 0.416411i \(0.863288\pi\)
\(174\) 0 0
\(175\) −216230. 337069.i −0.533729 0.832001i
\(176\) 170496. 0.414890
\(177\) 0 0
\(178\) 36240.0 62769.5i 0.0857311 0.148491i
\(179\) 394683. 683611.i 0.920695 1.59469i 0.122353 0.992487i \(-0.460956\pi\)
0.798342 0.602204i \(-0.205711\pi\)
\(180\) 0 0
\(181\) −477739. −1.08391 −0.541956 0.840407i \(-0.682316\pi\)
−0.541956 + 0.840407i \(0.682316\pi\)
\(182\) −289562. + 13555.0i −0.647982 + 0.0303335i
\(183\) 0 0
\(184\) 110976. + 192216.i 0.241649 + 0.418548i
\(185\) −9393.00 + 16269.2i −0.0201779 + 0.0349491i
\(186\) 0 0
\(187\) −579420. 1.00358e6i −1.21168 2.09870i
\(188\) −36960.0 −0.0762671
\(189\) 0 0
\(190\) −27768.0 −0.0558034
\(191\) 179487. + 310881.i 0.356000 + 0.616609i 0.987289 0.158938i \(-0.0508071\pi\)
−0.631289 + 0.775548i \(0.717474\pi\)
\(192\) 0 0
\(193\) 90966.5 157559.i 0.175788 0.304473i −0.764646 0.644451i \(-0.777086\pi\)
0.940434 + 0.339978i \(0.110419\pi\)
\(194\) 249508. + 432161.i 0.475971 + 0.824405i
\(195\) 0 0
\(196\) 267736. 25121.7i 0.497813 0.0467098i
\(197\) −717924. −1.31799 −0.658996 0.752146i \(-0.729019\pi\)
−0.658996 + 0.752146i \(0.729019\pi\)
\(198\) 0 0
\(199\) −101548. + 175886.i −0.181777 + 0.314847i −0.942486 0.334246i \(-0.891518\pi\)
0.760709 + 0.649093i \(0.224852\pi\)
\(200\) −98848.0 + 171210.i −0.174740 + 0.302659i
\(201\) 0 0
\(202\) −373560. −0.644142
\(203\) −200634. + 388392.i −0.341715 + 0.661500i
\(204\) 0 0
\(205\) −14598.0 25284.5i −0.0242610 0.0420213i
\(206\) −335462. + 581037.i −0.550776 + 0.953973i
\(207\) 0 0
\(208\) 71552.0 + 123932.i 0.114674 + 0.198620i
\(209\) 770562. 1.22023
\(210\) 0 0
\(211\) 1.17098e6 1.81069 0.905343 0.424680i \(-0.139613\pi\)
0.905343 + 0.424680i \(0.139613\pi\)
\(212\) −226368. 392081.i −0.345920 0.599151i
\(213\) 0 0
\(214\) −138360. + 239647.i −0.206527 + 0.357715i
\(215\) 34221.0 + 59272.5i 0.0504890 + 0.0874495i
\(216\) 0 0
\(217\) 440510. + 686687.i 0.635048 + 0.989942i
\(218\) 878236. 1.25161
\(219\) 0 0
\(220\) −31968.0 + 55370.2i −0.0445306 + 0.0771293i
\(221\) 486330. 842348.i 0.669808 1.16014i
\(222\) 0 0
\(223\) 1.24635e6 1.67833 0.839167 0.543873i \(-0.183043\pi\)
0.839167 + 0.543873i \(0.183043\pi\)
\(224\) −71680.0 111738.i −0.0954504 0.148793i
\(225\) 0 0
\(226\) 78708.0 + 136326.i 0.102506 + 0.177545i
\(227\) −459471. + 795827.i −0.591825 + 1.02507i 0.402161 + 0.915569i \(0.368259\pi\)
−0.993987 + 0.109503i \(0.965074\pi\)
\(228\) 0 0
\(229\) −601874. 1.04248e6i −0.758433 1.31364i −0.943649 0.330947i \(-0.892632\pi\)
0.185216 0.982698i \(-0.440701\pi\)
\(230\) −83232.0 −0.103746
\(231\) 0 0
\(232\) 215808. 0.263237
\(233\) −459531. 795931.i −0.554530 0.960474i −0.997940 0.0641551i \(-0.979565\pi\)
0.443410 0.896319i \(-0.353769\pi\)
\(234\) 0 0
\(235\) 6930.00 12003.1i 0.00818585 0.0141783i
\(236\) 164352. + 284666.i 0.192086 + 0.332702i
\(237\) 0 0
\(238\) −414120. + 801662.i −0.473897 + 0.917380i
\(239\) 625338. 0.708142 0.354071 0.935219i \(-0.384797\pi\)
0.354071 + 0.935219i \(0.384797\pi\)
\(240\) 0 0
\(241\) −626911. + 1.08584e6i −0.695286 + 1.20427i 0.274799 + 0.961502i \(0.411389\pi\)
−0.970084 + 0.242768i \(0.921945\pi\)
\(242\) 565010. 978626.i 0.620180 1.07418i
\(243\) 0 0
\(244\) −74080.0 −0.0796575
\(245\) −42042.0 + 91660.1i −0.0447474 + 0.0975585i
\(246\) 0 0
\(247\) 323382. + 560113.i 0.337266 + 0.584162i
\(248\) 201376. 348793.i 0.207911 0.360113i
\(249\) 0 0
\(250\) −74568.0 129156.i −0.0754575 0.130696i
\(251\) 1.51333e6 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(252\) 0 0
\(253\) 2.30969e6 2.26857
\(254\) 634186. + 1.09844e6i 0.616783 + 1.06830i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −777465. 1.34661e6i −0.734257 1.27177i −0.955049 0.296449i \(-0.904197\pi\)
0.220792 0.975321i \(-0.429136\pi\)
\(258\) 0 0
\(259\) −405464. + 18980.7i −0.375581 + 0.0175818i
\(260\) −53664.0 −0.0492322
\(261\) 0 0
\(262\) 309660. 536347.i 0.278697 0.482717i
\(263\) −557658. + 965892.i −0.497140 + 0.861071i −0.999995 0.00329949i \(-0.998950\pi\)
0.502855 + 0.864371i \(0.332283\pi\)
\(264\) 0 0
\(265\) 169776. 0.148512
\(266\) −323960. 505004.i −0.280729 0.437613i
\(267\) 0 0
\(268\) 149960. + 259738.i 0.127538 + 0.220902i
\(269\) 17835.0 30891.1i 0.0150277 0.0260287i −0.858414 0.512958i \(-0.828550\pi\)
0.873441 + 0.486929i \(0.161883\pi\)
\(270\) 0 0
\(271\) 146384. + 253545.i 0.121079 + 0.209716i 0.920194 0.391464i \(-0.128031\pi\)
−0.799114 + 0.601179i \(0.794698\pi\)
\(272\) 445440. 0.365062
\(273\) 0 0
\(274\) 269328. 0.216723
\(275\) 1.02864e6 + 1.78165e6i 0.820220 + 1.42066i
\(276\) 0 0
\(277\) −431607. + 747564.i −0.337978 + 0.585395i −0.984052 0.177879i \(-0.943076\pi\)
0.646074 + 0.763275i \(0.276410\pi\)
\(278\) −730430. 1.26514e6i −0.566848 0.981810i
\(279\) 0 0
\(280\) 49728.0 2327.88i 0.0379058 0.00177445i
\(281\) −1.47110e6 −1.11142 −0.555709 0.831377i \(-0.687553\pi\)
−0.555709 + 0.831377i \(0.687553\pi\)
\(282\) 0 0
\(283\) −344420. + 596554.i −0.255637 + 0.442775i −0.965068 0.261999i \(-0.915618\pi\)
0.709432 + 0.704774i \(0.248952\pi\)
\(284\) −305808. + 529675.i −0.224985 + 0.389685i
\(285\) 0 0
\(286\) 1.48918e6 1.07654
\(287\) 289527. 560473.i 0.207484 0.401652i
\(288\) 0 0
\(289\) −803872. 1.39235e6i −0.566164 0.980624i
\(290\) −40464.0 + 70085.7i −0.0282536 + 0.0489367i
\(291\) 0 0
\(292\) −564712. 978110.i −0.387588 0.671321i
\(293\) −722832. −0.491890 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(294\) 0 0
\(295\) −123264. −0.0824672
\(296\) 100192. + 173538.i 0.0664666 + 0.115124i
\(297\) 0 0
\(298\) 336120. 582177.i 0.219257 0.379764i
\(299\) 969306. + 1.67889e6i 0.627022 + 1.08603i
\(300\) 0 0
\(301\) −678716. + 1.31387e6i −0.431790 + 0.835868i
\(302\) −614144. −0.387483
\(303\) 0 0
\(304\) −148096. + 256510.i −0.0919093 + 0.159192i
\(305\) 13890.0 24058.2i 0.00854973 0.0148086i
\(306\) 0 0
\(307\) −20125.0 −0.0121868 −0.00609340 0.999981i \(-0.501940\pi\)
−0.00609340 + 0.999981i \(0.501940\pi\)
\(308\) −1.37995e6 + 64598.6i −0.828871 + 0.0388013i
\(309\) 0 0
\(310\) 75516.0 + 130798.i 0.0446308 + 0.0773028i
\(311\) −871779. + 1.50997e6i −0.511099 + 0.885250i 0.488818 + 0.872386i \(0.337428\pi\)
−0.999917 + 0.0128643i \(0.995905\pi\)
\(312\) 0 0
\(313\) −904272. 1.56624e6i −0.521721 0.903647i −0.999681 0.0252651i \(-0.991957\pi\)
0.477960 0.878382i \(-0.341376\pi\)
\(314\) −809672. −0.463431
\(315\) 0 0
\(316\) −996688. −0.561489
\(317\) 511776. + 886422.i 0.286043 + 0.495442i 0.972862 0.231388i \(-0.0743266\pi\)
−0.686818 + 0.726829i \(0.740993\pi\)
\(318\) 0 0
\(319\) 1.12288e6 1.94488e6i 0.617810 1.07008i
\(320\) −12288.0 21283.4i −0.00670820 0.0116190i
\(321\) 0 0
\(322\) −971040. 1.51370e6i −0.521912 0.813581i
\(323\) 2.01318e6 1.07368
\(324\) 0 0
\(325\) −863376. + 1.49541e6i −0.453410 + 0.785330i
\(326\) −359528. + 622721.i −0.187365 + 0.324526i
\(327\) 0 0
\(328\) −311424. −0.159833
\(329\) 299145. 14003.6i 0.152367 0.00713265i
\(330\) 0 0
\(331\) 503766. + 872549.i 0.252731 + 0.437744i 0.964277 0.264896i \(-0.0853378\pi\)
−0.711545 + 0.702640i \(0.752004\pi\)
\(332\) 638544. 1.10599e6i 0.317940 0.550689i
\(333\) 0 0
\(334\) −434604. 752756.i −0.213171 0.369223i
\(335\) −112470. −0.0547551
\(336\) 0 0
\(337\) −1.56571e6 −0.750993 −0.375496 0.926824i \(-0.622528\pi\)
−0.375496 + 0.926824i \(0.622528\pi\)
\(338\) −117624. 203731.i −0.0560021 0.0969985i
\(339\) 0 0
\(340\) −83520.0 + 144661.i −0.0391826 + 0.0678662i
\(341\) −2.09557e6 3.62963e6i −0.975924 1.69035i
\(342\) 0 0
\(343\) −2.15747e6 + 304770.i −0.990169 + 0.139874i
\(344\) 730048. 0.332625
\(345\) 0 0
\(346\) 147960. 256274.i 0.0664437 0.115084i
\(347\) 378642. 655827.i 0.168813 0.292392i −0.769190 0.639020i \(-0.779340\pi\)
0.938003 + 0.346628i \(0.112673\pi\)
\(348\) 0 0
\(349\) −455638. −0.200243 −0.100121 0.994975i \(-0.531923\pi\)
−0.100121 + 0.994975i \(0.531923\pi\)
\(350\) 735182. 1.42318e6i 0.320793 0.620998i
\(351\) 0 0
\(352\) 340992. + 590615.i 0.146686 + 0.254067i
\(353\) −1.81569e6 + 3.14487e6i −0.775543 + 1.34328i 0.158946 + 0.987287i \(0.449190\pi\)
−0.934489 + 0.355992i \(0.884143\pi\)
\(354\) 0 0
\(355\) −114678. 198628.i −0.0482958 0.0836508i
\(356\) 289920. 0.121242
\(357\) 0 0
\(358\) 3.15746e6 1.30206
\(359\) −2.01242e6 3.48561e6i −0.824104 1.42739i −0.902602 0.430476i \(-0.858346\pi\)
0.0784980 0.996914i \(-0.474988\pi\)
\(360\) 0 0
\(361\) 568725. 985061.i 0.229686 0.397828i
\(362\) −955478. 1.65494e6i −0.383221 0.663758i
\(363\) 0 0
\(364\) −626080. 975962.i −0.247672 0.386082i
\(365\) 423534. 0.166401
\(366\) 0 0
\(367\) −1.28894e6 + 2.23251e6i −0.499536 + 0.865222i −1.00000 0.000535822i \(-0.999829\pi\)
0.500464 + 0.865757i \(0.333163\pi\)
\(368\) −443904. + 768864.i −0.170871 + 0.295958i
\(369\) 0 0
\(370\) −75144.0 −0.0285358
\(371\) 1.98072e6 + 3.08764e6i 0.747116 + 1.16464i
\(372\) 0 0
\(373\) 1.26566e6 + 2.19220e6i 0.471028 + 0.815844i 0.999451 0.0331372i \(-0.0105498\pi\)
−0.528423 + 0.848981i \(0.677216\pi\)
\(374\) 2.31768e6 4.01434e6i 0.856790 1.48400i
\(375\) 0 0
\(376\) −73920.0 128033.i −0.0269645 0.0467039i
\(377\) 1.88495e6 0.683040
\(378\) 0 0
\(379\) −3.06677e6 −1.09669 −0.548344 0.836253i \(-0.684742\pi\)
−0.548344 + 0.836253i \(0.684742\pi\)
\(380\) −55536.0 96191.2i −0.0197295 0.0341725i
\(381\) 0 0
\(382\) −717948. + 1.24352e6i −0.251730 + 0.436009i
\(383\) −1.96260e6 3.39932e6i −0.683652 1.18412i −0.973859 0.227155i \(-0.927057\pi\)
0.290207 0.956964i \(-0.406276\pi\)
\(384\) 0 0
\(385\) 237762. 460265.i 0.0817505 0.158254i
\(386\) 727732. 0.248601
\(387\) 0 0
\(388\) −998032. + 1.72864e6i −0.336562 + 0.582943i
\(389\) −2.01334e6 + 3.48722e6i −0.674597 + 1.16844i 0.301990 + 0.953311i \(0.402349\pi\)
−0.976587 + 0.215125i \(0.930984\pi\)
\(390\) 0 0
\(391\) 6.03432e6 1.99612
\(392\) 622496. + 877221.i 0.204607 + 0.288333i
\(393\) 0 0
\(394\) −1.43585e6 2.48696e6i −0.465981 0.807102i
\(395\) 186879. 323684.i 0.0602654 0.104383i
\(396\) 0 0
\(397\) −2.28720e6 3.96155e6i −0.728329 1.26150i −0.957589 0.288138i \(-0.906964\pi\)
0.229260 0.973365i \(-0.426370\pi\)
\(398\) −812384. −0.257071
\(399\) 0 0
\(400\) −790784. −0.247120
\(401\) −1.13472e6 1.96539e6i −0.352393 0.610363i 0.634275 0.773108i \(-0.281299\pi\)
−0.986668 + 0.162744i \(0.947965\pi\)
\(402\) 0 0
\(403\) 1.75889e6 3.04649e6i 0.539482 0.934410i
\(404\) −747120. 1.29405e6i −0.227739 0.394455i
\(405\) 0 0
\(406\) −1.74670e6 + 81766.7i −0.525899 + 0.0246185i
\(407\) 2.08525e6 0.623981
\(408\) 0 0
\(409\) 2.02298e6 3.50391e6i 0.597976 1.03572i −0.395144 0.918619i \(-0.629305\pi\)
0.993120 0.117105i \(-0.0373615\pi\)
\(410\) 58392.0 101138.i 0.0171551 0.0297135i
\(411\) 0 0
\(412\) −2.68370e6 −0.778915
\(413\) −1.43808e6 2.24174e6i −0.414866 0.646712i
\(414\) 0 0
\(415\) 239454. + 414746.i 0.0682499 + 0.118212i
\(416\) −286208. + 495727.i −0.0810865 + 0.140446i
\(417\) 0 0
\(418\) 1.54112e6 + 2.66931e6i 0.431417 + 0.747236i
\(419\) 3.91281e6 1.08881 0.544407 0.838821i \(-0.316755\pi\)
0.544407 + 0.838821i \(0.316755\pi\)
\(420\) 0 0
\(421\) −2.78086e6 −0.764671 −0.382335 0.924024i \(-0.624880\pi\)
−0.382335 + 0.924024i \(0.624880\pi\)
\(422\) 2.34196e6 + 4.05639e6i 0.640174 + 1.10881i
\(423\) 0 0
\(424\) 905472. 1.56832e6i 0.244602 0.423663i
\(425\) 2.68743e6 + 4.65477e6i 0.721714 + 1.25004i
\(426\) 0 0
\(427\) 599585. 28067.9i 0.159141 0.00744972i
\(428\) −1.10688e6 −0.292073
\(429\) 0 0
\(430\) −136884. + 237090.i −0.0357011 + 0.0618361i
\(431\) −2.19104e6 + 3.79498e6i −0.568141 + 0.984049i 0.428609 + 0.903490i \(0.359004\pi\)
−0.996750 + 0.0805589i \(0.974329\pi\)
\(432\) 0 0
\(433\) 1.24946e6 0.320261 0.160130 0.987096i \(-0.448809\pi\)
0.160130 + 0.987096i \(0.448809\pi\)
\(434\) −1.49773e6 + 2.89935e6i −0.381690 + 0.738883i
\(435\) 0 0
\(436\) 1.75647e6 + 3.04230e6i 0.442512 + 0.766453i
\(437\) −2.00624e6 + 3.47491e6i −0.502550 + 0.870441i
\(438\) 0 0
\(439\) 3.37210e6 + 5.84066e6i 0.835102 + 1.44644i 0.893947 + 0.448172i \(0.147925\pi\)
−0.0588449 + 0.998267i \(0.518742\pi\)
\(440\) −255744. −0.0629758
\(441\) 0 0
\(442\) 3.89064e6 0.947252
\(443\) 239448. + 414736.i 0.0579698 + 0.100407i 0.893554 0.448956i \(-0.148204\pi\)
−0.835584 + 0.549362i \(0.814871\pi\)
\(444\) 0 0
\(445\) −54360.0 + 94154.3i −0.0130131 + 0.0225393i
\(446\) 2.49270e6 + 4.31749e6i 0.593381 + 1.02777i
\(447\) 0 0
\(448\) 243712. 471783.i 0.0573696 0.111057i
\(449\) −724506. −0.169600 −0.0848001 0.996398i \(-0.527025\pi\)
−0.0848001 + 0.996398i \(0.527025\pi\)
\(450\) 0 0
\(451\) −1.62038e6 + 2.80658e6i −0.375124 + 0.649734i
\(452\) −314832. + 545305.i −0.0724824 + 0.125543i
\(453\) 0 0
\(454\) −3.67577e6 −0.836967
\(455\) 434343. 20332.5i 0.0983568 0.00460430i
\(456\) 0 0
\(457\) 1.16978e6 + 2.02612e6i 0.262008 + 0.453811i 0.966775 0.255627i \(-0.0822820\pi\)
−0.704768 + 0.709438i \(0.748949\pi\)
\(458\) 2.40750e6 4.16991e6i 0.536293 0.928887i
\(459\) 0 0
\(460\) −166464. 288324.i −0.0366797 0.0635311i
\(461\) −2.98247e6 −0.653617 −0.326809 0.945091i \(-0.605973\pi\)
−0.326809 + 0.945091i \(0.605973\pi\)
\(462\) 0 0
\(463\) 4.28423e6 0.928795 0.464398 0.885627i \(-0.346271\pi\)
0.464398 + 0.885627i \(0.346271\pi\)
\(464\) 431616. + 747581.i 0.0930685 + 0.161199i
\(465\) 0 0
\(466\) 1.83812e6 3.18372e6i 0.392112 0.679158i
\(467\) −2.87018e6 4.97129e6i −0.608998 1.05482i −0.991406 0.130822i \(-0.958238\pi\)
0.382407 0.923994i \(-0.375095\pi\)
\(468\) 0 0
\(469\) −1.31215e6 2.04544e6i −0.275455 0.429393i
\(470\) 55440.0 0.0115765
\(471\) 0 0
\(472\) −657408. + 1.13866e6i −0.135825 + 0.235256i
\(473\) 3.79853e6 6.57925e6i 0.780662 1.35215i
\(474\) 0 0
\(475\) −3.57397e6 −0.726804
\(476\) −3.60528e6 + 168771.i −0.729326 + 0.0341413i
\(477\) 0 0
\(478\) 1.25068e6 + 2.16623e6i 0.250366 + 0.433646i
\(479\) 1.32526e6 2.29541e6i 0.263913 0.457111i −0.703365 0.710829i \(-0.748320\pi\)
0.967278 + 0.253718i \(0.0816534\pi\)
\(480\) 0 0
\(481\) 875114. + 1.51574e6i 0.172465 + 0.298719i
\(482\) −5.01529e6 −0.983282
\(483\) 0 0
\(484\) 4.52008e6 0.877067
\(485\) −374262. 648241.i −0.0722473 0.125136i
\(486\) 0 0
\(487\) −1.40277e6 + 2.42967e6i −0.268018 + 0.464221i −0.968350 0.249597i \(-0.919702\pi\)
0.700332 + 0.713817i \(0.253035\pi\)
\(488\) −148160. 256621.i −0.0281632 0.0487800i
\(489\) 0 0
\(490\) −401604. + 37682.5i −0.0755628 + 0.00709005i
\(491\) 4.68450e6 0.876919 0.438460 0.898751i \(-0.355524\pi\)
0.438460 + 0.898751i \(0.355524\pi\)
\(492\) 0 0
\(493\) 2.93364e6 5.08121e6i 0.543613 0.941565i
\(494\) −1.29353e6 + 2.24045e6i −0.238483 + 0.413065i
\(495\) 0 0
\(496\) 1.61101e6 0.294031
\(497\) 2.27445e6 4.40292e6i 0.413033 0.799558i
\(498\) 0 0
\(499\) −737876. 1.27804e6i −0.132658 0.229770i 0.792043 0.610466i \(-0.209018\pi\)
−0.924700 + 0.380696i \(0.875684\pi\)
\(500\) 298272. 516622.i 0.0533565 0.0924162i
\(501\) 0 0
\(502\) 3.02666e6 + 5.24234e6i 0.536050 + 0.928465i
\(503\) −63606.0 −0.0112093 −0.00560465 0.999984i \(-0.501784\pi\)
−0.00560465 + 0.999984i \(0.501784\pi\)
\(504\) 0 0
\(505\) 560340. 0.0977740
\(506\) 4.61938e6 + 8.00099e6i 0.802060 + 1.38921i
\(507\) 0 0
\(508\) −2.53674e6 + 4.39377e6i −0.436131 + 0.755402i
\(509\) 3.10578e6 + 5.37937e6i 0.531345 + 0.920317i 0.999331 + 0.0365806i \(0.0116466\pi\)
−0.467986 + 0.883736i \(0.655020\pi\)
\(510\) 0 0
\(511\) 4.94123e6 + 7.70262e6i 0.837111 + 1.30493i
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 3.10986e6 5.38644e6i 0.519198 0.899277i
\(515\) 503193. 871556.i 0.0836020 0.144803i
\(516\) 0 0
\(517\) −1.53846e6 −0.253139
\(518\) −876680. 1.36661e6i −0.143554 0.223779i
\(519\) 0 0
\(520\) −107328. 185898.i −0.0174062 0.0301485i
\(521\) 706026. 1.22287e6i 0.113953 0.197373i −0.803408 0.595429i \(-0.796982\pi\)
0.917361 + 0.398057i \(0.130315\pi\)
\(522\) 0 0
\(523\) −2.61467e6 4.52875e6i −0.417987 0.723976i 0.577749 0.816214i \(-0.303931\pi\)
−0.995737 + 0.0922386i \(0.970598\pi\)
\(524\) 2.47728e6 0.394137
\(525\) 0 0
\(526\) −4.46126e6 −0.703062
\(527\) −5.47491e6 9.48282e6i −0.858718 1.48734i
\(528\) 0 0
\(529\) −2.79534e6 + 4.84167e6i −0.434306 + 0.752240i
\(530\) 339552. + 588121.i 0.0525069 + 0.0909447i
\(531\) 0 0
\(532\) 1.10146e6 2.13224e6i 0.168730 0.326630i
\(533\) −2.72009e6 −0.414730
\(534\) 0 0
\(535\) 207540. 359470.i 0.0313485 0.0542973i
\(536\) −599840. + 1.03895e6i −0.0901827 + 0.156201i
\(537\) 0 0
\(538\) 142680. 0.0212524
\(539\) 1.11445e7 1.04569e6i 1.65230 0.155035i
\(540\) 0 0
\(541\) −2.20686e6 3.82240e6i −0.324177 0.561491i 0.657169 0.753744i \(-0.271754\pi\)
−0.981345 + 0.192253i \(0.938421\pi\)
\(542\) −585536. + 1.01418e6i −0.0856161 + 0.148291i
\(543\) 0 0
\(544\) 890880. + 1.54305e6i 0.129069 + 0.223554i
\(545\) −1.31735e6 −0.189981
\(546\) 0 0
\(547\) −1.19038e7 −1.70105 −0.850523 0.525938i \(-0.823714\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(548\) 538656. + 932980.i 0.0766232 + 0.132715i
\(549\) 0 0
\(550\) −4.11455e6 + 7.12661e6i −0.579983 + 1.00456i
\(551\) 1.95070e6 + 3.37871e6i 0.273723 + 0.474103i
\(552\) 0 0
\(553\) 8.06694e6 377631.i 1.12175 0.0525116i
\(554\) −3.45285e6 −0.477973
\(555\) 0 0
\(556\) 2.92172e6 5.06057e6i 0.400822 0.694244i
\(557\) 6.45665e6 1.11832e7i 0.881798 1.52732i 0.0324587 0.999473i \(-0.489666\pi\)
0.849340 0.527847i \(-0.177000\pi\)
\(558\) 0 0
\(559\) 6.37651e6 0.863085
\(560\) 107520. + 167607.i 0.0144884 + 0.0225851i
\(561\) 0 0
\(562\) −2.94221e6 5.09605e6i −0.392946 0.680602i
\(563\) −5.68492e6 + 9.84657e6i −0.755881 + 1.30922i 0.189055 + 0.981967i \(0.439458\pi\)
−0.944935 + 0.327257i \(0.893876\pi\)
\(564\) 0 0
\(565\) −118062. 204489.i −0.0155593 0.0269494i
\(566\) −2.75536e6 −0.361525
\(567\) 0 0
\(568\) −2.44646e6 −0.318176
\(569\) −2.84898e6 4.93457e6i −0.368900 0.638953i 0.620494 0.784211i \(-0.286932\pi\)
−0.989394 + 0.145258i \(0.953599\pi\)
\(570\) 0 0
\(571\) 3.52110e6 6.09873e6i 0.451948 0.782797i −0.546559 0.837421i \(-0.684063\pi\)
0.998507 + 0.0546236i \(0.0173959\pi\)
\(572\) 2.97835e6 + 5.15866e6i 0.380615 + 0.659245i
\(573\) 0 0
\(574\) 2.52059e6 117994.i 0.319317 0.0149479i
\(575\) −1.07127e7 −1.35122
\(576\) 0 0
\(577\) 1.29098e6 2.23605e6i 0.161429 0.279603i −0.773952 0.633244i \(-0.781723\pi\)
0.935381 + 0.353641i \(0.115056\pi\)
\(578\) 3.21549e6 5.56939e6i 0.400338 0.693406i
\(579\) 0 0
\(580\) −323712. −0.0399566
\(581\) −4.74917e6 + 9.19355e6i −0.583684 + 1.12991i
\(582\) 0 0
\(583\) −9.42257e6 1.63204e7i −1.14815 1.98865i
\(584\) 2.25885e6 3.91244e6i 0.274066 0.474696i
\(585\) 0 0
\(586\) −1.44566e6 2.50396e6i −0.173910 0.301220i
\(587\) −4.69459e6 −0.562345 −0.281172 0.959657i \(-0.590723\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(588\) 0 0
\(589\) 7.28100e6 0.864774
\(590\) −246528. 426999.i −0.0291566 0.0505006i
\(591\) 0 0
\(592\) −400768. + 694151.i −0.0469990 + 0.0814047i
\(593\) 6.71175e6 + 1.16251e7i 0.783789 + 1.35756i 0.929720 + 0.368268i \(0.120049\pi\)
−0.145931 + 0.989295i \(0.546618\pi\)
\(594\) 0 0
\(595\) 621180. 1.20249e6i 0.0719325 0.139248i
\(596\) 2.68896e6 0.310076
\(597\) 0 0
\(598\) −3.87722e6 + 6.71555e6i −0.443372 + 0.767942i
\(599\) 2.52301e6 4.36997e6i 0.287310 0.497636i −0.685856 0.727737i \(-0.740572\pi\)
0.973167 + 0.230101i \(0.0739056\pi\)
\(600\) 0 0
\(601\) −1.06391e7 −1.20148 −0.600742 0.799443i \(-0.705128\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(602\) −5.90883e6 + 276605.i −0.664523 + 0.0311078i
\(603\) 0 0
\(604\) −1.22829e6 2.12746e6i −0.136996 0.237284i
\(605\) −847515. + 1.46794e6i −0.0941367 + 0.163050i
\(606\) 0 0
\(607\) −708041. 1.22636e6i −0.0779986 0.135098i 0.824388 0.566026i \(-0.191520\pi\)
−0.902386 + 0.430928i \(0.858186\pi\)
\(608\) −1.18477e6 −0.129979
\(609\) 0 0
\(610\) 111120. 0.0120912
\(611\) −645645. 1.11829e6i −0.0699666 0.121186i
\(612\) 0 0
\(613\) −4.73152e6 + 8.19523e6i −0.508568 + 0.880866i 0.491383 + 0.870944i \(0.336492\pi\)
−0.999951 + 0.00992215i \(0.996842\pi\)
\(614\) −40250.0 69715.0i −0.00430869 0.00746286i
\(615\) 0 0
\(616\) −2.98368e6 4.65110e6i −0.316811 0.493860i
\(617\) −1.29388e7 −1.36830 −0.684148 0.729343i \(-0.739826\pi\)
−0.684148 + 0.729343i \(0.739826\pi\)
\(618\) 0 0
\(619\) 1.90188e6 3.29415e6i 0.199506 0.345555i −0.748862 0.662726i \(-0.769400\pi\)
0.948368 + 0.317171i \(0.102733\pi\)
\(620\) −302064. + 523190.i −0.0315587 + 0.0546614i
\(621\) 0 0
\(622\) −6.97423e6 −0.722804
\(623\) −2.34654e6 + 109847.i −0.242219 + 0.0113388i
\(624\) 0 0
\(625\) −4.71471e6 8.16612e6i −0.482786 0.836210i
\(626\) 3.61709e6 6.26498e6i 0.368912 0.638975i
\(627\) 0 0
\(628\) −1.61934e6 2.80479e6i −0.163848 0.283792i
\(629\) 5.44794e6 0.549042
\(630\) 0 0
\(631\) −9.17498e6 −0.917343 −0.458671 0.888606i \(-0.651674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(632\) −1.99338e6 3.45263e6i −0.198516 0.343841i
\(633\) 0 0
\(634\) −2.04710e6 + 3.54569e6i −0.202263 + 0.350330i
\(635\) −951279. 1.64766e6i −0.0936211 0.162156i
\(636\) 0 0
\(637\) 5.43711e6 + 7.66198e6i 0.530909 + 0.748157i
\(638\) 8.98301e6 0.873716
\(639\) 0 0
\(640\) 49152.0 85133.8i 0.00474342 0.00821584i
\(641\) 5.12269e6 8.87275e6i 0.492439 0.852930i −0.507523 0.861638i \(-0.669439\pi\)
0.999962 + 0.00870851i \(0.00277204\pi\)
\(642\) 0 0
\(643\) −5.72346e6 −0.545922 −0.272961 0.962025i \(-0.588003\pi\)
−0.272961 + 0.962025i \(0.588003\pi\)
\(644\) 3.30154e6 6.39118e6i 0.313691 0.607249i
\(645\) 0 0
\(646\) 4.02636e6 + 6.97386e6i 0.379604 + 0.657494i
\(647\) −4.99397e6 + 8.64981e6i −0.469013 + 0.812355i −0.999373 0.0354179i \(-0.988724\pi\)
0.530359 + 0.847773i \(0.322057\pi\)
\(648\) 0 0
\(649\) 6.84115e6 + 1.18492e7i 0.637555 + 1.10428i
\(650\) −6.90700e6 −0.641219
\(651\) 0 0
\(652\) −2.87622e6 −0.264974
\(653\) −599439. 1.03826e6i −0.0550126 0.0952846i 0.837208 0.546885i \(-0.184187\pi\)
−0.892220 + 0.451601i \(0.850853\pi\)
\(654\) 0 0
\(655\) −464490. + 804520.i −0.0423032 + 0.0732713i
\(656\) −622848. 1.07880e6i −0.0565096 0.0978776i
\(657\) 0 0
\(658\) 646800. + 1.00826e6i 0.0582378 + 0.0907838i
\(659\) −1.18065e7 −1.05903 −0.529516 0.848300i \(-0.677626\pi\)
−0.529516 + 0.848300i \(0.677626\pi\)
\(660\) 0 0
\(661\) −2.36020e6 + 4.08798e6i −0.210109 + 0.363919i −0.951748 0.306879i \(-0.900715\pi\)
0.741640 + 0.670799i \(0.234049\pi\)
\(662\) −2.01507e6 + 3.49020e6i −0.178708 + 0.309532i
\(663\) 0 0
\(664\) 5.10835e6 0.449636
\(665\) 485940. + 757505.i 0.0426117 + 0.0664250i
\(666\) 0 0
\(667\) 5.84705e6 + 1.01274e7i 0.508888 + 0.881420i
\(668\) 1.73842e6 3.01102e6i 0.150734 0.261080i
\(669\) 0 0
\(670\) −224940. 389608.i −0.0193589 0.0335305i
\(671\) −3.08358e6 −0.264392
\(672\) 0 0
\(673\) −8.70826e6 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(674\) −3.13141e6 5.42377e6i −0.265516 0.459887i
\(675\) 0 0
\(676\) 470496. 814923.i 0.0395995 0.0685883i
\(677\) 2.55553e6 + 4.42630e6i 0.214293 + 0.371167i 0.953054 0.302801i \(-0.0979218\pi\)
−0.738760 + 0.673968i \(0.764588\pi\)
\(678\) 0 0
\(679\) 7.42286e6 1.43693e7i 0.617870 1.19609i
\(680\) −668160. −0.0554126
\(681\) 0 0
\(682\) 8.38228e6 1.45185e7i 0.690083 1.19526i
\(683\) −8.85989e6 + 1.53458e7i −0.726736 + 1.25874i 0.231520 + 0.972830i \(0.425630\pi\)
−0.958256 + 0.285913i \(0.907703\pi\)
\(684\) 0 0
\(685\) −403992. −0.0328962
\(686\) −5.37069e6 6.86416e6i −0.435733 0.556899i
\(687\) 0 0
\(688\) 1.46010e6 + 2.52896e6i 0.117601 + 0.203691i
\(689\) 7.90873e6 1.36983e7i 0.634686 1.09931i
\(690\) 0 0
\(691\) 1.12997e7 + 1.95716e7i 0.900265 + 1.55931i 0.827149 + 0.561982i \(0.189961\pi\)
0.0731160 + 0.997323i \(0.476706\pi\)
\(692\) 1.18368e6 0.0939656
\(693\) 0 0
\(694\) 3.02914e6 0.238737
\(695\) 1.09564e6 + 1.89771e6i 0.0860415 + 0.149028i
\(696\) 0 0
\(697\) −4.23342e6 + 7.33250e6i −0.330073 + 0.571702i
\(698\) −911276. 1.57838e6i −0.0707964 0.122623i
\(699\) 0 0
\(700\) 6.40041e6 299617.i 0.493699 0.0231111i
\(701\) 818148. 0.0628835 0.0314418 0.999506i \(-0.489990\pi\)
0.0314418 + 0.999506i \(0.489990\pi\)
\(702\) 0 0
\(703\) −1.81128e6 + 3.13724e6i −0.138229 + 0.239419i
\(704\) −1.36397e6 + 2.36246e6i −0.103722 + 0.179652i
\(705\) 0 0
\(706\) −1.45255e7 −1.09678
\(707\) 6.53730e6 + 1.01906e7i 0.491869 + 0.766749i
\(708\) 0 0
\(709\) 2.54591e6 + 4.40965e6i 0.190208 + 0.329449i 0.945319 0.326147i \(-0.105751\pi\)
−0.755111 + 0.655597i \(0.772417\pi\)
\(710\) 458712. 794512.i 0.0341503 0.0591500i
\(711\) 0 0
\(712\) 579840. + 1.00431e6i 0.0428655 + 0.0742453i
\(713\) 2.18241e7 1.60773
\(714\) 0 0
\(715\) −2.23376e6 −0.163408
\(716\) 6.31493e6 + 1.09378e7i 0.460348 + 0.797345i
\(717\) 0 0
\(718\) 8.04967e6 1.39424e7i 0.582730 1.00932i
\(719\) −240429. 416435.i −0.0173446 0.0300418i 0.857223 0.514946i \(-0.172188\pi\)
−0.874567 + 0.484904i \(0.838855\pi\)
\(720\) 0 0
\(721\) 2.17212e7 1.01682e6i 1.55613 0.0728457i
\(722\) 4.54980e6 0.324825
\(723\) 0 0
\(724\) 3.82191e6 6.61975e6i 0.270978 0.469348i
\(725\) −5.20805e6 + 9.02061e6i −0.367985 + 0.637369i
\(726\) 0 0
\(727\) −1.40783e7 −0.987905 −0.493952 0.869489i \(-0.664448\pi\)
−0.493952 + 0.869489i \(0.664448\pi\)
\(728\) 2.12867e6 4.12073e6i 0.148861 0.288168i
\(729\) 0 0
\(730\) 847068. + 1.46716e6i 0.0588317 + 0.101899i
\(731\) 9.92409e6 1.71890e7i 0.686906 1.18976i
\(732\) 0 0
\(733\) −1.01966e6 1.76610e6i −0.0700964 0.121411i 0.828847 0.559475i \(-0.188997\pi\)
−0.898943 + 0.438065i \(0.855664\pi\)
\(734\) −1.03115e7 −0.706450
\(735\) 0 0
\(736\) −3.55123e6 −0.241649
\(737\) 6.24209e6 + 1.08116e7i 0.423312 + 0.733199i
\(738\) 0 0
\(739\) 8.24785e6 1.42857e7i 0.555558 0.962255i −0.442302 0.896866i \(-0.645838\pi\)
0.997860 0.0653888i \(-0.0208288\pi\)
\(740\) −150288. 260306.i −0.0100889 0.0174745i
\(741\) 0 0
\(742\) −6.73445e6 + 1.30367e7i −0.449047 + 0.869276i
\(743\) 2.38121e7 1.58243 0.791217 0.611536i \(-0.209448\pi\)
0.791217 + 0.611536i \(0.209448\pi\)
\(744\) 0 0
\(745\) −504180. + 873265.i −0.0332809 + 0.0576442i
\(746\) −5.06266e6 + 8.76878e6i −0.333067 + 0.576889i
\(747\) 0 0
\(748\) 1.85414e7 1.21168
\(749\) 8.95881e6 419381.i 0.583507 0.0273152i
\(750\) 0 0
\(751\) −962480. 1.66707e6i −0.0622719 0.107858i 0.833209 0.552959i \(-0.186501\pi\)
−0.895481 + 0.445101i \(0.853168\pi\)
\(752\) 295680. 512133.i 0.0190668 0.0330246i
\(753\) 0 0
\(754\) 3.76990e6 + 6.52965e6i 0.241491 + 0.418275i
\(755\) 921216. 0.0588158
\(756\) 0 0
\(757\) 8.98092e6 0.569615 0.284807 0.958585i \(-0.408070\pi\)
0.284807 + 0.958585i \(0.408070\pi\)
\(758\) −6.13354e6 1.06236e7i −0.387738 0.671581i
\(759\) 0 0
\(760\) 222144. 384765.i 0.0139508 0.0241636i
\(761\) 7.29955e6 + 1.26432e7i 0.456914 + 0.791398i 0.998796 0.0490566i \(-0.0156215\pi\)
−0.541882 + 0.840454i \(0.682288\pi\)
\(762\) 0 0
\(763\) −1.53691e7 2.39581e7i −0.955736 1.48984i
\(764\) −5.74358e6 −0.356000
\(765\) 0 0
\(766\) 7.85040e6 1.35973e7i 0.483415 0.837299i
\(767\) −5.74205e6 + 9.94552e6i −0.352434 + 0.610434i
\(768\) 0 0
\(769\) 2.78381e7 1.69755 0.848776 0.528753i \(-0.177340\pi\)
0.848776 + 0.528753i \(0.177340\pi\)
\(770\) 2.06993e6 96897.9i 0.125814 0.00588962i
\(771\) 0 0
\(772\) 1.45546e6 + 2.52094e6i 0.0878938 + 0.152237i
\(773\) −1.41429e7 + 2.44962e7i −0.851312 + 1.47451i 0.0287135 + 0.999588i \(0.490859\pi\)
−0.880025 + 0.474927i \(0.842474\pi\)
\(774\) 0 0 </