Defining parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.g (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(126, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 32 | 224 |
Cusp forms | 224 | 32 | 192 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(126, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(126, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)