Properties

Label 126.6.a.i
Level $126$
Weight $6$
Character orbit 126.a
Self dual yes
Analytic conductor $20.208$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(1,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2083612964\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} - 26 q^{5} - 49 q^{7} + 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + 16 q^{4} - 26 q^{5} - 49 q^{7} + 64 q^{8} - 104 q^{10} - 664 q^{11} + 318 q^{13} - 196 q^{14} + 256 q^{16} - 1582 q^{17} + 236 q^{19} - 416 q^{20} - 2656 q^{22} - 2212 q^{23} - 2449 q^{25} + 1272 q^{26} - 784 q^{28} + 4954 q^{29} - 7128 q^{31} + 1024 q^{32} - 6328 q^{34} + 1274 q^{35} + 4358 q^{37} + 944 q^{38} - 1664 q^{40} - 10542 q^{41} - 8452 q^{43} - 10624 q^{44} - 8848 q^{46} - 5352 q^{47} + 2401 q^{49} - 9796 q^{50} + 5088 q^{52} + 33354 q^{53} + 17264 q^{55} - 3136 q^{56} + 19816 q^{58} + 15436 q^{59} - 36762 q^{61} - 28512 q^{62} + 4096 q^{64} - 8268 q^{65} + 40972 q^{67} - 25312 q^{68} + 5096 q^{70} + 9092 q^{71} - 73454 q^{73} + 17432 q^{74} + 3776 q^{76} + 32536 q^{77} + 89400 q^{79} - 6656 q^{80} - 42168 q^{82} + 6428 q^{83} + 41132 q^{85} - 33808 q^{86} - 42496 q^{88} + 122658 q^{89} - 15582 q^{91} - 35392 q^{92} - 21408 q^{94} - 6136 q^{95} + 21370 q^{97} + 9604 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 0 16.0000 −26.0000 0 −49.0000 64.0000 0 −104.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.6.a.i 1
3.b odd 2 1 42.6.a.d 1
4.b odd 2 1 1008.6.a.j 1
7.b odd 2 1 882.6.a.s 1
12.b even 2 1 336.6.a.h 1
15.d odd 2 1 1050.6.a.k 1
15.e even 4 2 1050.6.g.i 2
21.c even 2 1 294.6.a.b 1
21.g even 6 2 294.6.e.p 2
21.h odd 6 2 294.6.e.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.d 1 3.b odd 2 1
126.6.a.i 1 1.a even 1 1 trivial
294.6.a.b 1 21.c even 2 1
294.6.e.i 2 21.h odd 6 2
294.6.e.p 2 21.g even 6 2
336.6.a.h 1 12.b even 2 1
882.6.a.s 1 7.b odd 2 1
1008.6.a.j 1 4.b odd 2 1
1050.6.a.k 1 15.d odd 2 1
1050.6.g.i 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(126))\):

\( T_{5} + 26 \) Copy content Toggle raw display
\( T_{11} + 664 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 26 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 664 \) Copy content Toggle raw display
$13$ \( T - 318 \) Copy content Toggle raw display
$17$ \( T + 1582 \) Copy content Toggle raw display
$19$ \( T - 236 \) Copy content Toggle raw display
$23$ \( T + 2212 \) Copy content Toggle raw display
$29$ \( T - 4954 \) Copy content Toggle raw display
$31$ \( T + 7128 \) Copy content Toggle raw display
$37$ \( T - 4358 \) Copy content Toggle raw display
$41$ \( T + 10542 \) Copy content Toggle raw display
$43$ \( T + 8452 \) Copy content Toggle raw display
$47$ \( T + 5352 \) Copy content Toggle raw display
$53$ \( T - 33354 \) Copy content Toggle raw display
$59$ \( T - 15436 \) Copy content Toggle raw display
$61$ \( T + 36762 \) Copy content Toggle raw display
$67$ \( T - 40972 \) Copy content Toggle raw display
$71$ \( T - 9092 \) Copy content Toggle raw display
$73$ \( T + 73454 \) Copy content Toggle raw display
$79$ \( T - 89400 \) Copy content Toggle raw display
$83$ \( T - 6428 \) Copy content Toggle raw display
$89$ \( T - 122658 \) Copy content Toggle raw display
$97$ \( T - 21370 \) Copy content Toggle raw display
show more
show less