Properties

Label 126.6.a.b.1.1
Level $126$
Weight $6$
Character 126.1
Self dual yes
Analytic conductor $20.208$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(1,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2083612964\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 126.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -24.0000 q^{5} +49.0000 q^{7} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -24.0000 q^{5} +49.0000 q^{7} -64.0000 q^{8} +96.0000 q^{10} -66.0000 q^{11} +98.0000 q^{13} -196.000 q^{14} +256.000 q^{16} +216.000 q^{17} -340.000 q^{19} -384.000 q^{20} +264.000 q^{22} +1038.00 q^{23} -2549.00 q^{25} -392.000 q^{26} +784.000 q^{28} +2490.00 q^{29} -7048.00 q^{31} -1024.00 q^{32} -864.000 q^{34} -1176.00 q^{35} -12238.0 q^{37} +1360.00 q^{38} +1536.00 q^{40} -6468.00 q^{41} -15412.0 q^{43} -1056.00 q^{44} -4152.00 q^{46} -20604.0 q^{47} +2401.00 q^{49} +10196.0 q^{50} +1568.00 q^{52} -32490.0 q^{53} +1584.00 q^{55} -3136.00 q^{56} -9960.00 q^{58} -34224.0 q^{59} +35654.0 q^{61} +28192.0 q^{62} +4096.00 q^{64} -2352.00 q^{65} +12680.0 q^{67} +3456.00 q^{68} +4704.00 q^{70} +42642.0 q^{71} +33734.0 q^{73} +48952.0 q^{74} -5440.00 q^{76} -3234.00 q^{77} -85108.0 q^{79} -6144.00 q^{80} +25872.0 q^{82} +106764. q^{83} -5184.00 q^{85} +61648.0 q^{86} +4224.00 q^{88} -34884.0 q^{89} +4802.00 q^{91} +16608.0 q^{92} +82416.0 q^{94} +8160.00 q^{95} +18662.0 q^{97} -9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −24.0000 −0.429325 −0.214663 0.976688i \(-0.568865\pi\)
−0.214663 + 0.976688i \(0.568865\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 96.0000 0.303579
\(11\) −66.0000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) 0 0
\(13\) 98.0000 0.160830 0.0804151 0.996761i \(-0.474375\pi\)
0.0804151 + 0.996761i \(0.474375\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 216.000 0.181272 0.0906362 0.995884i \(-0.471110\pi\)
0.0906362 + 0.995884i \(0.471110\pi\)
\(18\) 0 0
\(19\) −340.000 −0.216070 −0.108035 0.994147i \(-0.534456\pi\)
−0.108035 + 0.994147i \(0.534456\pi\)
\(20\) −384.000 −0.214663
\(21\) 0 0
\(22\) 264.000 0.116291
\(23\) 1038.00 0.409145 0.204573 0.978851i \(-0.434420\pi\)
0.204573 + 0.978851i \(0.434420\pi\)
\(24\) 0 0
\(25\) −2549.00 −0.815680
\(26\) −392.000 −0.113724
\(27\) 0 0
\(28\) 784.000 0.188982
\(29\) 2490.00 0.549800 0.274900 0.961473i \(-0.411355\pi\)
0.274900 + 0.961473i \(0.411355\pi\)
\(30\) 0 0
\(31\) −7048.00 −1.31723 −0.658615 0.752480i \(-0.728857\pi\)
−0.658615 + 0.752480i \(0.728857\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −864.000 −0.128179
\(35\) −1176.00 −0.162270
\(36\) 0 0
\(37\) −12238.0 −1.46962 −0.734812 0.678271i \(-0.762730\pi\)
−0.734812 + 0.678271i \(0.762730\pi\)
\(38\) 1360.00 0.152785
\(39\) 0 0
\(40\) 1536.00 0.151789
\(41\) −6468.00 −0.600911 −0.300456 0.953796i \(-0.597139\pi\)
−0.300456 + 0.953796i \(0.597139\pi\)
\(42\) 0 0
\(43\) −15412.0 −1.27112 −0.635562 0.772050i \(-0.719232\pi\)
−0.635562 + 0.772050i \(0.719232\pi\)
\(44\) −1056.00 −0.0822304
\(45\) 0 0
\(46\) −4152.00 −0.289310
\(47\) −20604.0 −1.36053 −0.680263 0.732968i \(-0.738134\pi\)
−0.680263 + 0.732968i \(0.738134\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 10196.0 0.576773
\(51\) 0 0
\(52\) 1568.00 0.0804151
\(53\) −32490.0 −1.58877 −0.794383 0.607417i \(-0.792206\pi\)
−0.794383 + 0.607417i \(0.792206\pi\)
\(54\) 0 0
\(55\) 1584.00 0.0706071
\(56\) −3136.00 −0.133631
\(57\) 0 0
\(58\) −9960.00 −0.388767
\(59\) −34224.0 −1.27997 −0.639986 0.768386i \(-0.721060\pi\)
−0.639986 + 0.768386i \(0.721060\pi\)
\(60\) 0 0
\(61\) 35654.0 1.22683 0.613414 0.789762i \(-0.289796\pi\)
0.613414 + 0.789762i \(0.289796\pi\)
\(62\) 28192.0 0.931422
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2352.00 −0.0690484
\(66\) 0 0
\(67\) 12680.0 0.345090 0.172545 0.985002i \(-0.444801\pi\)
0.172545 + 0.985002i \(0.444801\pi\)
\(68\) 3456.00 0.0906362
\(69\) 0 0
\(70\) 4704.00 0.114742
\(71\) 42642.0 1.00390 0.501951 0.864896i \(-0.332616\pi\)
0.501951 + 0.864896i \(0.332616\pi\)
\(72\) 0 0
\(73\) 33734.0 0.740902 0.370451 0.928852i \(-0.379203\pi\)
0.370451 + 0.928852i \(0.379203\pi\)
\(74\) 48952.0 1.03918
\(75\) 0 0
\(76\) −5440.00 −0.108035
\(77\) −3234.00 −0.0621603
\(78\) 0 0
\(79\) −85108.0 −1.53427 −0.767137 0.641484i \(-0.778319\pi\)
−0.767137 + 0.641484i \(0.778319\pi\)
\(80\) −6144.00 −0.107331
\(81\) 0 0
\(82\) 25872.0 0.424908
\(83\) 106764. 1.70110 0.850550 0.525895i \(-0.176270\pi\)
0.850550 + 0.525895i \(0.176270\pi\)
\(84\) 0 0
\(85\) −5184.00 −0.0778247
\(86\) 61648.0 0.898820
\(87\) 0 0
\(88\) 4224.00 0.0581456
\(89\) −34884.0 −0.466822 −0.233411 0.972378i \(-0.574989\pi\)
−0.233411 + 0.972378i \(0.574989\pi\)
\(90\) 0 0
\(91\) 4802.00 0.0607881
\(92\) 16608.0 0.204573
\(93\) 0 0
\(94\) 82416.0 0.962037
\(95\) 8160.00 0.0927644
\(96\) 0 0
\(97\) 18662.0 0.201386 0.100693 0.994918i \(-0.467894\pi\)
0.100693 + 0.994918i \(0.467894\pi\)
\(98\) −9604.00 −0.101015
\(99\) 0 0
\(100\) −40784.0 −0.407840
\(101\) −153084. −1.49323 −0.746614 0.665257i \(-0.768322\pi\)
−0.746614 + 0.665257i \(0.768322\pi\)
\(102\) 0 0
\(103\) 35864.0 0.333093 0.166547 0.986034i \(-0.446738\pi\)
0.166547 + 0.986034i \(0.446738\pi\)
\(104\) −6272.00 −0.0568621
\(105\) 0 0
\(106\) 129960. 1.12343
\(107\) 95454.0 0.805999 0.403000 0.915200i \(-0.367968\pi\)
0.403000 + 0.915200i \(0.367968\pi\)
\(108\) 0 0
\(109\) 212222. 1.71090 0.855449 0.517887i \(-0.173281\pi\)
0.855449 + 0.517887i \(0.173281\pi\)
\(110\) −6336.00 −0.0499268
\(111\) 0 0
\(112\) 12544.0 0.0944911
\(113\) −62106.0 −0.457549 −0.228774 0.973479i \(-0.573472\pi\)
−0.228774 + 0.973479i \(0.573472\pi\)
\(114\) 0 0
\(115\) −24912.0 −0.175656
\(116\) 39840.0 0.274900
\(117\) 0 0
\(118\) 136896. 0.905077
\(119\) 10584.0 0.0685145
\(120\) 0 0
\(121\) −156695. −0.972953
\(122\) −142616. −0.867498
\(123\) 0 0
\(124\) −112768. −0.658615
\(125\) 136176. 0.779517
\(126\) 0 0
\(127\) −53044.0 −0.291828 −0.145914 0.989297i \(-0.546612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 9408.00 0.0488246
\(131\) −69324.0 −0.352944 −0.176472 0.984306i \(-0.556468\pi\)
−0.176472 + 0.984306i \(0.556468\pi\)
\(132\) 0 0
\(133\) −16660.0 −0.0816669
\(134\) −50720.0 −0.244015
\(135\) 0 0
\(136\) −13824.0 −0.0640894
\(137\) −129846. −0.591054 −0.295527 0.955334i \(-0.595495\pi\)
−0.295527 + 0.955334i \(0.595495\pi\)
\(138\) 0 0
\(139\) −104356. −0.458121 −0.229061 0.973412i \(-0.573565\pi\)
−0.229061 + 0.973412i \(0.573565\pi\)
\(140\) −18816.0 −0.0811348
\(141\) 0 0
\(142\) −170568. −0.709867
\(143\) −6468.00 −0.0264503
\(144\) 0 0
\(145\) −59760.0 −0.236043
\(146\) −134936. −0.523897
\(147\) 0 0
\(148\) −195808. −0.734812
\(149\) −217194. −0.801461 −0.400730 0.916196i \(-0.631244\pi\)
−0.400730 + 0.916196i \(0.631244\pi\)
\(150\) 0 0
\(151\) 221000. 0.788769 0.394385 0.918945i \(-0.370958\pi\)
0.394385 + 0.918945i \(0.370958\pi\)
\(152\) 21760.0 0.0763924
\(153\) 0 0
\(154\) 12936.0 0.0439540
\(155\) 169152. 0.565520
\(156\) 0 0
\(157\) −378370. −1.22509 −0.612544 0.790436i \(-0.709854\pi\)
−0.612544 + 0.790436i \(0.709854\pi\)
\(158\) 340432. 1.08489
\(159\) 0 0
\(160\) 24576.0 0.0758947
\(161\) 50862.0 0.154642
\(162\) 0 0
\(163\) 104816. 0.309000 0.154500 0.987993i \(-0.450623\pi\)
0.154500 + 0.987993i \(0.450623\pi\)
\(164\) −103488. −0.300456
\(165\) 0 0
\(166\) −427056. −1.20286
\(167\) 426972. 1.18470 0.592350 0.805681i \(-0.298200\pi\)
0.592350 + 0.805681i \(0.298200\pi\)
\(168\) 0 0
\(169\) −361689. −0.974134
\(170\) 20736.0 0.0550304
\(171\) 0 0
\(172\) −246592. −0.635562
\(173\) −331068. −0.841012 −0.420506 0.907290i \(-0.638147\pi\)
−0.420506 + 0.907290i \(0.638147\pi\)
\(174\) 0 0
\(175\) −124901. −0.308298
\(176\) −16896.0 −0.0411152
\(177\) 0 0
\(178\) 139536. 0.330093
\(179\) 400194. 0.933551 0.466775 0.884376i \(-0.345416\pi\)
0.466775 + 0.884376i \(0.345416\pi\)
\(180\) 0 0
\(181\) 588098. 1.33430 0.667150 0.744924i \(-0.267514\pi\)
0.667150 + 0.744924i \(0.267514\pi\)
\(182\) −19208.0 −0.0429837
\(183\) 0 0
\(184\) −66432.0 −0.144655
\(185\) 293712. 0.630946
\(186\) 0 0
\(187\) −14256.0 −0.0298122
\(188\) −329664. −0.680263
\(189\) 0 0
\(190\) −32640.0 −0.0655943
\(191\) −939342. −1.86312 −0.931559 0.363590i \(-0.881551\pi\)
−0.931559 + 0.363590i \(0.881551\pi\)
\(192\) 0 0
\(193\) 338390. 0.653919 0.326960 0.945038i \(-0.393976\pi\)
0.326960 + 0.945038i \(0.393976\pi\)
\(194\) −74648.0 −0.142401
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 237942. 0.436823 0.218412 0.975857i \(-0.429912\pi\)
0.218412 + 0.975857i \(0.429912\pi\)
\(198\) 0 0
\(199\) 204464. 0.366003 0.183001 0.983113i \(-0.441419\pi\)
0.183001 + 0.983113i \(0.441419\pi\)
\(200\) 163136. 0.288386
\(201\) 0 0
\(202\) 612336. 1.05587
\(203\) 122010. 0.207805
\(204\) 0 0
\(205\) 155232. 0.257986
\(206\) −143456. −0.235532
\(207\) 0 0
\(208\) 25088.0 0.0402076
\(209\) 22440.0 0.0355351
\(210\) 0 0
\(211\) −348724. −0.539232 −0.269616 0.962968i \(-0.586897\pi\)
−0.269616 + 0.962968i \(0.586897\pi\)
\(212\) −519840. −0.794383
\(213\) 0 0
\(214\) −381816. −0.569928
\(215\) 369888. 0.545725
\(216\) 0 0
\(217\) −345352. −0.497866
\(218\) −848888. −1.20979
\(219\) 0 0
\(220\) 25344.0 0.0353036
\(221\) 21168.0 0.0291541
\(222\) 0 0
\(223\) 1.47006e6 1.97957 0.989787 0.142554i \(-0.0455316\pi\)
0.989787 + 0.142554i \(0.0455316\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 248424. 0.323536
\(227\) 589560. 0.759387 0.379694 0.925112i \(-0.376029\pi\)
0.379694 + 0.925112i \(0.376029\pi\)
\(228\) 0 0
\(229\) −1.04534e6 −1.31725 −0.658627 0.752469i \(-0.728863\pi\)
−0.658627 + 0.752469i \(0.728863\pi\)
\(230\) 99648.0 0.124208
\(231\) 0 0
\(232\) −159360. −0.194383
\(233\) −651222. −0.785849 −0.392925 0.919571i \(-0.628537\pi\)
−0.392925 + 0.919571i \(0.628537\pi\)
\(234\) 0 0
\(235\) 494496. 0.584108
\(236\) −547584. −0.639986
\(237\) 0 0
\(238\) −42336.0 −0.0484471
\(239\) 513462. 0.581452 0.290726 0.956806i \(-0.406103\pi\)
0.290726 + 0.956806i \(0.406103\pi\)
\(240\) 0 0
\(241\) −694714. −0.770484 −0.385242 0.922816i \(-0.625882\pi\)
−0.385242 + 0.922816i \(0.625882\pi\)
\(242\) 626780. 0.687981
\(243\) 0 0
\(244\) 570464. 0.613414
\(245\) −57624.0 −0.0613322
\(246\) 0 0
\(247\) −33320.0 −0.0347506
\(248\) 451072. 0.465711
\(249\) 0 0
\(250\) −544704. −0.551202
\(251\) 1.39608e6 1.39870 0.699352 0.714777i \(-0.253472\pi\)
0.699352 + 0.714777i \(0.253472\pi\)
\(252\) 0 0
\(253\) −68508.0 −0.0672884
\(254\) 212176. 0.206354
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.00520e6 0.949339 0.474670 0.880164i \(-0.342568\pi\)
0.474670 + 0.880164i \(0.342568\pi\)
\(258\) 0 0
\(259\) −599662. −0.555466
\(260\) −37632.0 −0.0345242
\(261\) 0 0
\(262\) 277296. 0.249569
\(263\) −1.25301e6 −1.11703 −0.558515 0.829494i \(-0.688629\pi\)
−0.558515 + 0.829494i \(0.688629\pi\)
\(264\) 0 0
\(265\) 779760. 0.682097
\(266\) 66640.0 0.0577472
\(267\) 0 0
\(268\) 202880. 0.172545
\(269\) 1.76069e6 1.48355 0.741774 0.670650i \(-0.233985\pi\)
0.741774 + 0.670650i \(0.233985\pi\)
\(270\) 0 0
\(271\) 770528. 0.637331 0.318666 0.947867i \(-0.396765\pi\)
0.318666 + 0.947867i \(0.396765\pi\)
\(272\) 55296.0 0.0453181
\(273\) 0 0
\(274\) 519384. 0.417938
\(275\) 168234. 0.134147
\(276\) 0 0
\(277\) 707738. 0.554208 0.277104 0.960840i \(-0.410625\pi\)
0.277104 + 0.960840i \(0.410625\pi\)
\(278\) 417424. 0.323941
\(279\) 0 0
\(280\) 75264.0 0.0573710
\(281\) −2.30432e6 −1.74091 −0.870456 0.492247i \(-0.836176\pi\)
−0.870456 + 0.492247i \(0.836176\pi\)
\(282\) 0 0
\(283\) 1.60903e6 1.19426 0.597128 0.802146i \(-0.296308\pi\)
0.597128 + 0.802146i \(0.296308\pi\)
\(284\) 682272. 0.501951
\(285\) 0 0
\(286\) 25872.0 0.0187032
\(287\) −316932. −0.227123
\(288\) 0 0
\(289\) −1.37320e6 −0.967140
\(290\) 239040. 0.166907
\(291\) 0 0
\(292\) 539744. 0.370451
\(293\) −517020. −0.351834 −0.175917 0.984405i \(-0.556289\pi\)
−0.175917 + 0.984405i \(0.556289\pi\)
\(294\) 0 0
\(295\) 821376. 0.549524
\(296\) 783232. 0.519590
\(297\) 0 0
\(298\) 868776. 0.566718
\(299\) 101724. 0.0658030
\(300\) 0 0
\(301\) −755188. −0.480440
\(302\) −884000. −0.557744
\(303\) 0 0
\(304\) −87040.0 −0.0540176
\(305\) −855696. −0.526708
\(306\) 0 0
\(307\) 1.35002e6 0.817512 0.408756 0.912644i \(-0.365963\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(308\) −51744.0 −0.0310802
\(309\) 0 0
\(310\) −676608. −0.399883
\(311\) −1.34538e6 −0.788758 −0.394379 0.918948i \(-0.629040\pi\)
−0.394379 + 0.918948i \(0.629040\pi\)
\(312\) 0 0
\(313\) 256154. 0.147788 0.0738942 0.997266i \(-0.476457\pi\)
0.0738942 + 0.997266i \(0.476457\pi\)
\(314\) 1.51348e6 0.866269
\(315\) 0 0
\(316\) −1.36173e6 −0.767137
\(317\) −1.84629e6 −1.03193 −0.515967 0.856609i \(-0.672567\pi\)
−0.515967 + 0.856609i \(0.672567\pi\)
\(318\) 0 0
\(319\) −164340. −0.0904204
\(320\) −98304.0 −0.0536656
\(321\) 0 0
\(322\) −203448. −0.109349
\(323\) −73440.0 −0.0391675
\(324\) 0 0
\(325\) −249802. −0.131186
\(326\) −419264. −0.218496
\(327\) 0 0
\(328\) 413952. 0.212454
\(329\) −1.00960e6 −0.514231
\(330\) 0 0
\(331\) −3.33238e6 −1.67180 −0.835900 0.548881i \(-0.815054\pi\)
−0.835900 + 0.548881i \(0.815054\pi\)
\(332\) 1.70822e6 0.850550
\(333\) 0 0
\(334\) −1.70789e6 −0.837709
\(335\) −304320. −0.148156
\(336\) 0 0
\(337\) −1.63481e6 −0.784136 −0.392068 0.919936i \(-0.628240\pi\)
−0.392068 + 0.919936i \(0.628240\pi\)
\(338\) 1.44676e6 0.688816
\(339\) 0 0
\(340\) −82944.0 −0.0389124
\(341\) 465168. 0.216633
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 986368. 0.449410
\(345\) 0 0
\(346\) 1.32427e6 0.594685
\(347\) 841530. 0.375185 0.187593 0.982247i \(-0.439932\pi\)
0.187593 + 0.982247i \(0.439932\pi\)
\(348\) 0 0
\(349\) −977242. −0.429476 −0.214738 0.976672i \(-0.568890\pi\)
−0.214738 + 0.976672i \(0.568890\pi\)
\(350\) 499604. 0.218000
\(351\) 0 0
\(352\) 67584.0 0.0290728
\(353\) −3.45857e6 −1.47727 −0.738634 0.674106i \(-0.764529\pi\)
−0.738634 + 0.674106i \(0.764529\pi\)
\(354\) 0 0
\(355\) −1.02341e6 −0.431001
\(356\) −558144. −0.233411
\(357\) 0 0
\(358\) −1.60078e6 −0.660120
\(359\) 3.47301e6 1.42223 0.711115 0.703076i \(-0.248190\pi\)
0.711115 + 0.703076i \(0.248190\pi\)
\(360\) 0 0
\(361\) −2.36050e6 −0.953314
\(362\) −2.35239e6 −0.943492
\(363\) 0 0
\(364\) 76832.0 0.0303941
\(365\) −809616. −0.318088
\(366\) 0 0
\(367\) 3.11994e6 1.20915 0.604575 0.796548i \(-0.293343\pi\)
0.604575 + 0.796548i \(0.293343\pi\)
\(368\) 265728. 0.102286
\(369\) 0 0
\(370\) −1.17485e6 −0.446146
\(371\) −1.59201e6 −0.600497
\(372\) 0 0
\(373\) −2.01673e6 −0.750543 −0.375272 0.926915i \(-0.622451\pi\)
−0.375272 + 0.926915i \(0.622451\pi\)
\(374\) 57024.0 0.0210804
\(375\) 0 0
\(376\) 1.31866e6 0.481019
\(377\) 244020. 0.0884244
\(378\) 0 0
\(379\) −5.38083e6 −1.92420 −0.962102 0.272690i \(-0.912087\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(380\) 130560. 0.0463822
\(381\) 0 0
\(382\) 3.75737e6 1.31742
\(383\) −807432. −0.281261 −0.140630 0.990062i \(-0.544913\pi\)
−0.140630 + 0.990062i \(0.544913\pi\)
\(384\) 0 0
\(385\) 77616.0 0.0266870
\(386\) −1.35356e6 −0.462391
\(387\) 0 0
\(388\) 298592. 0.100693
\(389\) −891390. −0.298671 −0.149336 0.988787i \(-0.547714\pi\)
−0.149336 + 0.988787i \(0.547714\pi\)
\(390\) 0 0
\(391\) 224208. 0.0741667
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) −951768. −0.308881
\(395\) 2.04259e6 0.658702
\(396\) 0 0
\(397\) 1.12345e6 0.357749 0.178875 0.983872i \(-0.442754\pi\)
0.178875 + 0.983872i \(0.442754\pi\)
\(398\) −817856. −0.258803
\(399\) 0 0
\(400\) −652544. −0.203920
\(401\) −1.72037e6 −0.534271 −0.267136 0.963659i \(-0.586077\pi\)
−0.267136 + 0.963659i \(0.586077\pi\)
\(402\) 0 0
\(403\) −690704. −0.211850
\(404\) −2.44934e6 −0.746614
\(405\) 0 0
\(406\) −488040. −0.146940
\(407\) 807708. 0.241695
\(408\) 0 0
\(409\) 77246.0 0.0228332 0.0114166 0.999935i \(-0.496366\pi\)
0.0114166 + 0.999935i \(0.496366\pi\)
\(410\) −620928. −0.182424
\(411\) 0 0
\(412\) 573824. 0.166547
\(413\) −1.67698e6 −0.483784
\(414\) 0 0
\(415\) −2.56234e6 −0.730324
\(416\) −100352. −0.0284310
\(417\) 0 0
\(418\) −89760.0 −0.0251271
\(419\) 5.20615e6 1.44871 0.724356 0.689427i \(-0.242137\pi\)
0.724356 + 0.689427i \(0.242137\pi\)
\(420\) 0 0
\(421\) 1.71847e6 0.472539 0.236270 0.971688i \(-0.424075\pi\)
0.236270 + 0.971688i \(0.424075\pi\)
\(422\) 1.39490e6 0.381295
\(423\) 0 0
\(424\) 2.07936e6 0.561714
\(425\) −550584. −0.147860
\(426\) 0 0
\(427\) 1.74705e6 0.463697
\(428\) 1.52726e6 0.403000
\(429\) 0 0
\(430\) −1.47955e6 −0.385886
\(431\) 580626. 0.150558 0.0752789 0.997163i \(-0.476015\pi\)
0.0752789 + 0.997163i \(0.476015\pi\)
\(432\) 0 0
\(433\) 4.15087e6 1.06395 0.531973 0.846761i \(-0.321451\pi\)
0.531973 + 0.846761i \(0.321451\pi\)
\(434\) 1.38141e6 0.352045
\(435\) 0 0
\(436\) 3.39555e6 0.855449
\(437\) −352920. −0.0884042
\(438\) 0 0
\(439\) 3.88407e6 0.961891 0.480946 0.876750i \(-0.340293\pi\)
0.480946 + 0.876750i \(0.340293\pi\)
\(440\) −101376. −0.0249634
\(441\) 0 0
\(442\) −84672.0 −0.0206150
\(443\) 2.31499e6 0.560453 0.280226 0.959934i \(-0.409590\pi\)
0.280226 + 0.959934i \(0.409590\pi\)
\(444\) 0 0
\(445\) 837216. 0.200418
\(446\) −5.88022e6 −1.39977
\(447\) 0 0
\(448\) 200704. 0.0472456
\(449\) 1.92281e6 0.450113 0.225056 0.974346i \(-0.427743\pi\)
0.225056 + 0.974346i \(0.427743\pi\)
\(450\) 0 0
\(451\) 426888. 0.0988263
\(452\) −993696. −0.228774
\(453\) 0 0
\(454\) −2.35824e6 −0.536968
\(455\) −115248. −0.0260979
\(456\) 0 0
\(457\) 6.86215e6 1.53699 0.768493 0.639858i \(-0.221007\pi\)
0.768493 + 0.639858i \(0.221007\pi\)
\(458\) 4.18137e6 0.931440
\(459\) 0 0
\(460\) −398592. −0.0878282
\(461\) −2.97167e6 −0.651250 −0.325625 0.945499i \(-0.605575\pi\)
−0.325625 + 0.945499i \(0.605575\pi\)
\(462\) 0 0
\(463\) 4.87423e6 1.05670 0.528352 0.849025i \(-0.322810\pi\)
0.528352 + 0.849025i \(0.322810\pi\)
\(464\) 637440. 0.137450
\(465\) 0 0
\(466\) 2.60489e6 0.555679
\(467\) 8.17301e6 1.73416 0.867081 0.498167i \(-0.165993\pi\)
0.867081 + 0.498167i \(0.165993\pi\)
\(468\) 0 0
\(469\) 621320. 0.130432
\(470\) −1.97798e6 −0.413027
\(471\) 0 0
\(472\) 2.19034e6 0.452539
\(473\) 1.01719e6 0.209050
\(474\) 0 0
\(475\) 866660. 0.176244
\(476\) 169344. 0.0342572
\(477\) 0 0
\(478\) −2.05385e6 −0.411148
\(479\) −2.34397e6 −0.466782 −0.233391 0.972383i \(-0.574982\pi\)
−0.233391 + 0.972383i \(0.574982\pi\)
\(480\) 0 0
\(481\) −1.19932e6 −0.236360
\(482\) 2.77886e6 0.544814
\(483\) 0 0
\(484\) −2.50712e6 −0.486476
\(485\) −447888. −0.0864600
\(486\) 0 0
\(487\) 316928. 0.0605534 0.0302767 0.999542i \(-0.490361\pi\)
0.0302767 + 0.999542i \(0.490361\pi\)
\(488\) −2.28186e6 −0.433749
\(489\) 0 0
\(490\) 230496. 0.0433684
\(491\) 5.20041e6 0.973495 0.486748 0.873543i \(-0.338183\pi\)
0.486748 + 0.873543i \(0.338183\pi\)
\(492\) 0 0
\(493\) 537840. 0.0996634
\(494\) 133280. 0.0245724
\(495\) 0 0
\(496\) −1.80429e6 −0.329308
\(497\) 2.08946e6 0.379440
\(498\) 0 0
\(499\) −4.86773e6 −0.875135 −0.437568 0.899185i \(-0.644160\pi\)
−0.437568 + 0.899185i \(0.644160\pi\)
\(500\) 2.17882e6 0.389758
\(501\) 0 0
\(502\) −5.58432e6 −0.989034
\(503\) −426888. −0.0752305 −0.0376153 0.999292i \(-0.511976\pi\)
−0.0376153 + 0.999292i \(0.511976\pi\)
\(504\) 0 0
\(505\) 3.67402e6 0.641081
\(506\) 274032. 0.0475801
\(507\) 0 0
\(508\) −848704. −0.145914
\(509\) 9.41621e6 1.61095 0.805474 0.592631i \(-0.201911\pi\)
0.805474 + 0.592631i \(0.201911\pi\)
\(510\) 0 0
\(511\) 1.65297e6 0.280035
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −4.02082e6 −0.671284
\(515\) −860736. −0.143005
\(516\) 0 0
\(517\) 1.35986e6 0.223753
\(518\) 2.39865e6 0.392773
\(519\) 0 0
\(520\) 150528. 0.0244123
\(521\) −1.84039e6 −0.297041 −0.148520 0.988909i \(-0.547451\pi\)
−0.148520 + 0.988909i \(0.547451\pi\)
\(522\) 0 0
\(523\) −979108. −0.156522 −0.0782612 0.996933i \(-0.524937\pi\)
−0.0782612 + 0.996933i \(0.524937\pi\)
\(524\) −1.10918e6 −0.176472
\(525\) 0 0
\(526\) 5.01204e6 0.789860
\(527\) −1.52237e6 −0.238777
\(528\) 0 0
\(529\) −5.35890e6 −0.832600
\(530\) −3.11904e6 −0.482316
\(531\) 0 0
\(532\) −266560. −0.0408334
\(533\) −633864. −0.0966447
\(534\) 0 0
\(535\) −2.29090e6 −0.346036
\(536\) −811520. −0.122008
\(537\) 0 0
\(538\) −7.04275e6 −1.04903
\(539\) −158466. −0.0234944
\(540\) 0 0
\(541\) 5.96117e6 0.875666 0.437833 0.899056i \(-0.355746\pi\)
0.437833 + 0.899056i \(0.355746\pi\)
\(542\) −3.08211e6 −0.450661
\(543\) 0 0
\(544\) −221184. −0.0320447
\(545\) −5.09333e6 −0.734531
\(546\) 0 0
\(547\) 8.73025e6 1.24755 0.623775 0.781604i \(-0.285598\pi\)
0.623775 + 0.781604i \(0.285598\pi\)
\(548\) −2.07754e6 −0.295527
\(549\) 0 0
\(550\) −672936. −0.0948565
\(551\) −846600. −0.118795
\(552\) 0 0
\(553\) −4.17029e6 −0.579901
\(554\) −2.83095e6 −0.391885
\(555\) 0 0
\(556\) −1.66970e6 −0.229061
\(557\) 3.01066e6 0.411172 0.205586 0.978639i \(-0.434090\pi\)
0.205586 + 0.978639i \(0.434090\pi\)
\(558\) 0 0
\(559\) −1.51038e6 −0.204435
\(560\) −301056. −0.0405674
\(561\) 0 0
\(562\) 9.21727e6 1.23101
\(563\) −1.17573e7 −1.56327 −0.781637 0.623733i \(-0.785615\pi\)
−0.781637 + 0.623733i \(0.785615\pi\)
\(564\) 0 0
\(565\) 1.49054e6 0.196437
\(566\) −6.43611e6 −0.844467
\(567\) 0 0
\(568\) −2.72909e6 −0.354933
\(569\) −1.31578e7 −1.70374 −0.851870 0.523754i \(-0.824531\pi\)
−0.851870 + 0.523754i \(0.824531\pi\)
\(570\) 0 0
\(571\) −1.03344e7 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(572\) −103488. −0.0132251
\(573\) 0 0
\(574\) 1.26773e6 0.160600
\(575\) −2.64586e6 −0.333732
\(576\) 0 0
\(577\) −7.88133e6 −0.985508 −0.492754 0.870169i \(-0.664010\pi\)
−0.492754 + 0.870169i \(0.664010\pi\)
\(578\) 5.49280e6 0.683872
\(579\) 0 0
\(580\) −956160. −0.118021
\(581\) 5.23144e6 0.642955
\(582\) 0 0
\(583\) 2.14434e6 0.261290
\(584\) −2.15898e6 −0.261948
\(585\) 0 0
\(586\) 2.06808e6 0.248784
\(587\) 554568. 0.0664293 0.0332146 0.999448i \(-0.489426\pi\)
0.0332146 + 0.999448i \(0.489426\pi\)
\(588\) 0 0
\(589\) 2.39632e6 0.284614
\(590\) −3.28550e6 −0.388572
\(591\) 0 0
\(592\) −3.13293e6 −0.367406
\(593\) 9.20369e6 1.07479 0.537397 0.843329i \(-0.319408\pi\)
0.537397 + 0.843329i \(0.319408\pi\)
\(594\) 0 0
\(595\) −254016. −0.0294150
\(596\) −3.47510e6 −0.400730
\(597\) 0 0
\(598\) −406896. −0.0465297
\(599\) −8.54295e6 −0.972839 −0.486419 0.873725i \(-0.661697\pi\)
−0.486419 + 0.873725i \(0.661697\pi\)
\(600\) 0 0
\(601\) −9.61555e6 −1.08590 −0.542948 0.839767i \(-0.682692\pi\)
−0.542948 + 0.839767i \(0.682692\pi\)
\(602\) 3.02075e6 0.339722
\(603\) 0 0
\(604\) 3.53600e6 0.394385
\(605\) 3.76068e6 0.417713
\(606\) 0 0
\(607\) 2.21264e6 0.243747 0.121873 0.992546i \(-0.461110\pi\)
0.121873 + 0.992546i \(0.461110\pi\)
\(608\) 348160. 0.0381962
\(609\) 0 0
\(610\) 3.42278e6 0.372439
\(611\) −2.01919e6 −0.218814
\(612\) 0 0
\(613\) −7.96215e6 −0.855814 −0.427907 0.903823i \(-0.640749\pi\)
−0.427907 + 0.903823i \(0.640749\pi\)
\(614\) −5.40008e6 −0.578068
\(615\) 0 0
\(616\) 206976. 0.0219770
\(617\) 1.37397e7 1.45299 0.726497 0.687170i \(-0.241147\pi\)
0.726497 + 0.687170i \(0.241147\pi\)
\(618\) 0 0
\(619\) −8.70113e6 −0.912744 −0.456372 0.889789i \(-0.650851\pi\)
−0.456372 + 0.889789i \(0.650851\pi\)
\(620\) 2.70643e6 0.282760
\(621\) 0 0
\(622\) 5.38152e6 0.557736
\(623\) −1.70932e6 −0.176442
\(624\) 0 0
\(625\) 4.69740e6 0.481014
\(626\) −1.02462e6 −0.104502
\(627\) 0 0
\(628\) −6.05392e6 −0.612544
\(629\) −2.64341e6 −0.266402
\(630\) 0 0
\(631\) 445412. 0.0445337 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(632\) 5.44691e6 0.542447
\(633\) 0 0
\(634\) 7.38516e6 0.729687
\(635\) 1.27306e6 0.125289
\(636\) 0 0
\(637\) 235298. 0.0229757
\(638\) 657360. 0.0639369
\(639\) 0 0
\(640\) 393216. 0.0379473
\(641\) 8.00119e6 0.769147 0.384573 0.923094i \(-0.374349\pi\)
0.384573 + 0.923094i \(0.374349\pi\)
\(642\) 0 0
\(643\) −1.58402e7 −1.51090 −0.755448 0.655209i \(-0.772581\pi\)
−0.755448 + 0.655209i \(0.772581\pi\)
\(644\) 813792. 0.0773212
\(645\) 0 0
\(646\) 293760. 0.0276956
\(647\) −1.30187e6 −0.122266 −0.0611331 0.998130i \(-0.519471\pi\)
−0.0611331 + 0.998130i \(0.519471\pi\)
\(648\) 0 0
\(649\) 2.25878e6 0.210505
\(650\) 999208. 0.0927625
\(651\) 0 0
\(652\) 1.67706e6 0.154500
\(653\) −7.34149e6 −0.673753 −0.336877 0.941549i \(-0.609371\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(654\) 0 0
\(655\) 1.66378e6 0.151528
\(656\) −1.65581e6 −0.150228
\(657\) 0 0
\(658\) 4.03838e6 0.363616
\(659\) 6.18934e6 0.555176 0.277588 0.960700i \(-0.410465\pi\)
0.277588 + 0.960700i \(0.410465\pi\)
\(660\) 0 0
\(661\) −1.96690e7 −1.75097 −0.875484 0.483248i \(-0.839457\pi\)
−0.875484 + 0.483248i \(0.839457\pi\)
\(662\) 1.33295e7 1.18214
\(663\) 0 0
\(664\) −6.83290e6 −0.601429
\(665\) 399840. 0.0350616
\(666\) 0 0
\(667\) 2.58462e6 0.224948
\(668\) 6.83155e6 0.592350
\(669\) 0 0
\(670\) 1.21728e6 0.104762
\(671\) −2.35316e6 −0.201765
\(672\) 0 0
\(673\) 7.18259e6 0.611285 0.305642 0.952146i \(-0.401129\pi\)
0.305642 + 0.952146i \(0.401129\pi\)
\(674\) 6.53922e6 0.554468
\(675\) 0 0
\(676\) −5.78702e6 −0.487067
\(677\) 1.89192e7 1.58647 0.793234 0.608917i \(-0.208396\pi\)
0.793234 + 0.608917i \(0.208396\pi\)
\(678\) 0 0
\(679\) 914438. 0.0761167
\(680\) 331776. 0.0275152
\(681\) 0 0
\(682\) −1.86067e6 −0.153182
\(683\) −2.12204e7 −1.74061 −0.870306 0.492512i \(-0.836079\pi\)
−0.870306 + 0.492512i \(0.836079\pi\)
\(684\) 0 0
\(685\) 3.11630e6 0.253754
\(686\) −470596. −0.0381802
\(687\) 0 0
\(688\) −3.94547e6 −0.317781
\(689\) −3.18402e6 −0.255522
\(690\) 0 0
\(691\) 1.63276e7 1.30085 0.650424 0.759571i \(-0.274591\pi\)
0.650424 + 0.759571i \(0.274591\pi\)
\(692\) −5.29709e6 −0.420506
\(693\) 0 0
\(694\) −3.36612e6 −0.265296
\(695\) 2.50454e6 0.196683
\(696\) 0 0
\(697\) −1.39709e6 −0.108929
\(698\) 3.90897e6 0.303685
\(699\) 0 0
\(700\) −1.99842e6 −0.154149
\(701\) 5.40470e6 0.415409 0.207705 0.978192i \(-0.433401\pi\)
0.207705 + 0.978192i \(0.433401\pi\)
\(702\) 0 0
\(703\) 4.16092e6 0.317542
\(704\) −270336. −0.0205576
\(705\) 0 0
\(706\) 1.38343e7 1.04459
\(707\) −7.50112e6 −0.564387
\(708\) 0 0
\(709\) 2.21195e7 1.65257 0.826284 0.563253i \(-0.190450\pi\)
0.826284 + 0.563253i \(0.190450\pi\)
\(710\) 4.09363e6 0.304763
\(711\) 0 0
\(712\) 2.23258e6 0.165046
\(713\) −7.31582e6 −0.538939
\(714\) 0 0
\(715\) 155232. 0.0113558
\(716\) 6.40310e6 0.466775
\(717\) 0 0
\(718\) −1.38920e7 −1.00567
\(719\) −2.55819e7 −1.84548 −0.922742 0.385418i \(-0.874057\pi\)
−0.922742 + 0.385418i \(0.874057\pi\)
\(720\) 0 0
\(721\) 1.75734e6 0.125897
\(722\) 9.44200e6 0.674095
\(723\) 0 0
\(724\) 9.40957e6 0.667150
\(725\) −6.34701e6 −0.448460
\(726\) 0 0
\(727\) −9.29438e6 −0.652205 −0.326103 0.945334i \(-0.605735\pi\)
−0.326103 + 0.945334i \(0.605735\pi\)
\(728\) −307328. −0.0214918
\(729\) 0 0
\(730\) 3.23846e6 0.224922
\(731\) −3.32899e6 −0.230420
\(732\) 0 0
\(733\) 3.40699e6 0.234213 0.117107 0.993119i \(-0.462638\pi\)
0.117107 + 0.993119i \(0.462638\pi\)
\(734\) −1.24797e7 −0.854999
\(735\) 0 0
\(736\) −1.06291e6 −0.0723274
\(737\) −836880. −0.0567537
\(738\) 0 0
\(739\) 2.18135e7 1.46932 0.734658 0.678438i \(-0.237343\pi\)
0.734658 + 0.678438i \(0.237343\pi\)
\(740\) 4.69939e6 0.315473
\(741\) 0 0
\(742\) 6.36804e6 0.424616
\(743\) −3.79246e6 −0.252028 −0.126014 0.992028i \(-0.540218\pi\)
−0.126014 + 0.992028i \(0.540218\pi\)
\(744\) 0 0
\(745\) 5.21266e6 0.344087
\(746\) 8.06692e6 0.530714
\(747\) 0 0
\(748\) −228096. −0.0149061
\(749\) 4.67725e6 0.304639
\(750\) 0 0
\(751\) −2.01483e7 −1.30358 −0.651790 0.758400i \(-0.725982\pi\)
−0.651790 + 0.758400i \(0.725982\pi\)
\(752\) −5.27462e6 −0.340132
\(753\) 0 0
\(754\) −976080. −0.0625255
\(755\) −5.30400e6 −0.338638
\(756\) 0 0
\(757\) 1.18427e7 0.751126 0.375563 0.926797i \(-0.377449\pi\)
0.375563 + 0.926797i \(0.377449\pi\)
\(758\) 2.15233e7 1.36062
\(759\) 0 0
\(760\) −522240. −0.0327972
\(761\) −2.97791e6 −0.186402 −0.0932008 0.995647i \(-0.529710\pi\)
−0.0932008 + 0.995647i \(0.529710\pi\)
\(762\) 0 0
\(763\) 1.03989e7 0.646659
\(764\) −1.50295e7 −0.931559
\(765\) 0 0
\(766\) 3.22973e6 0.198881
\(767\) −3.35395e6 −0.205858
\(768\) 0 0
\(769\) −2.02441e7 −1.23447 −0.617237 0.786777i \(-0.711748\pi\)
−0.617237 + 0.786777i \(0.711748\pi\)
\(770\) −310464. −0.0188705
\(771\) 0 0
\(772\) 5.41424e6 0.326960
\(773\) 7.37953e6 0.444202 0.222101 0.975024i \(-0.428709\pi\)
0.222101 + 0.975024i \(0.428709\pi\)
\(774\) 0 0
\(775\) 1.79654e7 1.07444
\(776\) −1.19437e6 −0.0712006
\(777\) 0 0
\(778\) 3.56556e6 0.211193
\(779\) 2.19912e6 0.129839
\(780\) 0 0
\(781\) −2.81437e6 −0.165103
\(782\) −896832. −0.0524438
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) 9.08088e6 0.525961
\(786\) 0 0
\(787\) 1.36289e7 0.784377 0.392188 0.919885i \(-0.371718\pi\)
0.392188 + 0.919885i \(0.371718\pi\)
\(788\) 3.80707e6 0.218412
\(789\) 0 0
\(790\) −8.17037e6 −0.465773
\(791\) −3.04319e6 −0.172937
\(792\) 0 0
\(793\) 3.49409e6 0.197311
\(794\) −4.49382e6 −0.252967
\(795\) 0 0
\(796\) 3.27142e6 0.183001
\(797\) 1.49548e7 0.833938 0.416969 0.908921i \(-0.363092\pi\)
0.416969 + 0.908921i \(0.363092\pi\)
\(798\) 0 0
\(799\) −4.45046e6 −0.246626
\(800\) 2.61018e6 0.144193
\(801\) 0 0
\(802\) 6.88150e6 0.377787
\(803\) −2.22644e6 −0.121849
\(804\) 0 0
\(805\) −1.22069e6 −0.0663919
\(806\) 2.76282e6 0.149801
\(807\) 0 0
\(808\) 9.79738e6 0.527936
\(809\) −2.87242e7 −1.54304 −0.771519 0.636206i \(-0.780503\pi\)
−0.771519 + 0.636206i \(0.780503\pi\)
\(810\) 0 0
\(811\) −1.52265e7 −0.812922 −0.406461 0.913668i \(-0.633237\pi\)
−0.406461 + 0.913668i \(0.633237\pi\)
\(812\) 1.95216e6 0.103902
\(813\) 0 0
\(814\) −3.23083e6 −0.170904
\(815\) −2.51558e6 −0.132661
\(816\) 0 0
\(817\) 5.24008e6 0.274652
\(818\) −308984. −0.0161455
\(819\) 0 0
\(820\) 2.48371e6 0.128993
\(821\) 3.31001e7 1.71384 0.856921 0.515447i \(-0.172374\pi\)
0.856921 + 0.515447i \(0.172374\pi\)
\(822\) 0 0
\(823\) −1.35915e7 −0.699470 −0.349735 0.936849i \(-0.613728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(824\) −2.29530e6 −0.117766
\(825\) 0 0
\(826\) 6.70790e6 0.342087
\(827\) −3.13936e6 −0.159616 −0.0798082 0.996810i \(-0.525431\pi\)
−0.0798082 + 0.996810i \(0.525431\pi\)
\(828\) 0 0
\(829\) 1.27081e7 0.642234 0.321117 0.947040i \(-0.395942\pi\)
0.321117 + 0.947040i \(0.395942\pi\)
\(830\) 1.02493e7 0.516417
\(831\) 0 0
\(832\) 401408. 0.0201038
\(833\) 518616. 0.0258960
\(834\) 0 0
\(835\) −1.02473e7 −0.508621
\(836\) 359040. 0.0177675
\(837\) 0 0
\(838\) −2.08246e7 −1.02439
\(839\) 2.98312e7 1.46307 0.731536 0.681803i \(-0.238804\pi\)
0.731536 + 0.681803i \(0.238804\pi\)
\(840\) 0 0
\(841\) −1.43110e7 −0.697720
\(842\) −6.87390e6 −0.334136
\(843\) 0 0
\(844\) −5.57958e6 −0.269616
\(845\) 8.68054e6 0.418220
\(846\) 0 0
\(847\) −7.67806e6 −0.367742
\(848\) −8.31744e6 −0.397192
\(849\) 0 0
\(850\) 2.20234e6 0.104553
\(851\) −1.27030e7 −0.601290
\(852\) 0 0
\(853\) −1.92215e7 −0.904515 −0.452257 0.891888i \(-0.649381\pi\)
−0.452257 + 0.891888i \(0.649381\pi\)
\(854\) −6.98818e6 −0.327884
\(855\) 0 0
\(856\) −6.10906e6 −0.284964
\(857\) 2.65655e7 1.23556 0.617782 0.786349i \(-0.288031\pi\)
0.617782 + 0.786349i \(0.288031\pi\)
\(858\) 0 0
\(859\) −9.16844e6 −0.423948 −0.211974 0.977275i \(-0.567989\pi\)
−0.211974 + 0.977275i \(0.567989\pi\)
\(860\) 5.91821e6 0.272863
\(861\) 0 0
\(862\) −2.32250e6 −0.106460
\(863\) 2.92196e7 1.33551 0.667755 0.744381i \(-0.267255\pi\)
0.667755 + 0.744381i \(0.267255\pi\)
\(864\) 0 0
\(865\) 7.94563e6 0.361067
\(866\) −1.66035e7 −0.752324
\(867\) 0 0
\(868\) −5.52563e6 −0.248933
\(869\) 5.61713e6 0.252328
\(870\) 0 0
\(871\) 1.24264e6 0.0555009
\(872\) −1.35822e7 −0.604894
\(873\) 0 0
\(874\) 1.41168e6 0.0625112
\(875\) 6.67262e6 0.294630
\(876\) 0 0
\(877\) 9.71286e6 0.426430 0.213215 0.977005i \(-0.431606\pi\)
0.213215 + 0.977005i \(0.431606\pi\)
\(878\) −1.55363e7 −0.680160
\(879\) 0 0
\(880\) 405504. 0.0176518
\(881\) −1.65372e7 −0.717833 −0.358917 0.933370i \(-0.616854\pi\)
−0.358917 + 0.933370i \(0.616854\pi\)
\(882\) 0 0
\(883\) −2.39487e7 −1.03367 −0.516833 0.856086i \(-0.672889\pi\)
−0.516833 + 0.856086i \(0.672889\pi\)
\(884\) 338688. 0.0145770
\(885\) 0 0
\(886\) −9.25994e6 −0.396300
\(887\) 4.62846e6 0.197527 0.0987637 0.995111i \(-0.468511\pi\)
0.0987637 + 0.995111i \(0.468511\pi\)
\(888\) 0 0
\(889\) −2.59916e6 −0.110301
\(890\) −3.34886e6 −0.141717
\(891\) 0 0
\(892\) 2.35209e7 0.989787
\(893\) 7.00536e6 0.293969
\(894\) 0 0
\(895\) −9.60466e6 −0.400797
\(896\) −802816. −0.0334077
\(897\) 0 0
\(898\) −7.69126e6 −0.318278
\(899\) −1.75495e7 −0.724212
\(900\) 0 0
\(901\) −7.01784e6 −0.287999
\(902\) −1.70755e6 −0.0698808
\(903\) 0 0
\(904\) 3.97478e6 0.161768
\(905\) −1.41144e7 −0.572848
\(906\) 0 0
\(907\) 2.06126e7 0.831983 0.415991 0.909369i \(-0.363435\pi\)
0.415991 + 0.909369i \(0.363435\pi\)
\(908\) 9.43296e6 0.379694
\(909\) 0 0
\(910\) 460992. 0.0184540
\(911\) 3.46749e6 0.138427 0.0692133 0.997602i \(-0.477951\pi\)
0.0692133 + 0.997602i \(0.477951\pi\)
\(912\) 0 0
\(913\) −7.04642e6 −0.279764
\(914\) −2.74486e7 −1.08681
\(915\) 0 0
\(916\) −1.67255e7 −0.658627
\(917\) −3.39688e6 −0.133400
\(918\) 0 0
\(919\) −3.61227e7 −1.41088 −0.705442 0.708767i \(-0.749252\pi\)
−0.705442 + 0.708767i \(0.749252\pi\)
\(920\) 1.59437e6 0.0621039
\(921\) 0 0
\(922\) 1.18867e7 0.460504
\(923\) 4.17892e6 0.161458
\(924\) 0 0
\(925\) 3.11947e7 1.19874
\(926\) −1.94969e7 −0.747203
\(927\) 0 0
\(928\) −2.54976e6 −0.0971917
\(929\) −1.29366e7 −0.491792 −0.245896 0.969296i \(-0.579082\pi\)
−0.245896 + 0.969296i \(0.579082\pi\)
\(930\) 0 0
\(931\) −816340. −0.0308672
\(932\) −1.04196e7 −0.392925
\(933\) 0 0
\(934\) −3.26920e7 −1.22624
\(935\) 342144. 0.0127991
\(936\) 0 0
\(937\) 5.01394e7 1.86565 0.932824 0.360332i \(-0.117336\pi\)
0.932824 + 0.360332i \(0.117336\pi\)
\(938\) −2.48528e6 −0.0922292
\(939\) 0 0
\(940\) 7.91194e6 0.292054
\(941\) 1.05568e7 0.388651 0.194325 0.980937i \(-0.437748\pi\)
0.194325 + 0.980937i \(0.437748\pi\)
\(942\) 0 0
\(943\) −6.71378e6 −0.245860
\(944\) −8.76134e6 −0.319993
\(945\) 0 0
\(946\) −4.06877e6 −0.147821
\(947\) 3.14684e6 0.114025 0.0570124 0.998373i \(-0.481843\pi\)
0.0570124 + 0.998373i \(0.481843\pi\)
\(948\) 0 0
\(949\) 3.30593e6 0.119159
\(950\) −3.46664e6 −0.124623
\(951\) 0 0
\(952\) −677376. −0.0242235
\(953\) −5.22829e7 −1.86478 −0.932389 0.361455i \(-0.882280\pi\)
−0.932389 + 0.361455i \(0.882280\pi\)
\(954\) 0 0
\(955\) 2.25442e7 0.799883
\(956\) 8.21539e6 0.290726
\(957\) 0 0
\(958\) 9.37589e6 0.330064
\(959\) −6.36245e6 −0.223397
\(960\) 0 0
\(961\) 2.10452e7 0.735095
\(962\) 4.79730e6 0.167132
\(963\) 0 0
\(964\) −1.11154e7 −0.385242
\(965\) −8.12136e6 −0.280744
\(966\) 0 0
\(967\) −2.48235e7 −0.853682 −0.426841 0.904327i \(-0.640374\pi\)
−0.426841 + 0.904327i \(0.640374\pi\)
\(968\) 1.00285e7 0.343991
\(969\) 0 0
\(970\) 1.79155e6 0.0611364
\(971\) −1.33077e7 −0.452956 −0.226478 0.974016i \(-0.572721\pi\)
−0.226478 + 0.974016i \(0.572721\pi\)
\(972\) 0 0
\(973\) −5.11344e6 −0.173154
\(974\) −1.26771e6 −0.0428177
\(975\) 0 0
\(976\) 9.12742e6 0.306707
\(977\) −8.17705e6 −0.274069 −0.137035 0.990566i \(-0.543757\pi\)
−0.137035 + 0.990566i \(0.543757\pi\)
\(978\) 0 0
\(979\) 2.30234e6 0.0767739
\(980\) −921984. −0.0306661
\(981\) 0 0
\(982\) −2.08016e7 −0.688365
\(983\) 1.32465e7 0.437238 0.218619 0.975810i \(-0.429845\pi\)
0.218619 + 0.975810i \(0.429845\pi\)
\(984\) 0 0
\(985\) −5.71061e6 −0.187539
\(986\) −2.15136e6 −0.0704727
\(987\) 0 0
\(988\) −533120. −0.0173753
\(989\) −1.59977e7 −0.520075
\(990\) 0 0
\(991\) −1.48550e7 −0.480494 −0.240247 0.970712i \(-0.577228\pi\)
−0.240247 + 0.970712i \(0.577228\pi\)
\(992\) 7.21715e6 0.232856
\(993\) 0 0
\(994\) −8.35783e6 −0.268304
\(995\) −4.90714e6 −0.157134
\(996\) 0 0
\(997\) −3.33769e6 −0.106343 −0.0531714 0.998585i \(-0.516933\pi\)
−0.0531714 + 0.998585i \(0.516933\pi\)
\(998\) 1.94709e7 0.618814
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.6.a.b.1.1 1
3.2 odd 2 42.6.a.f.1.1 1
4.3 odd 2 1008.6.a.k.1.1 1
7.6 odd 2 882.6.a.i.1.1 1
12.11 even 2 336.6.a.g.1.1 1
15.2 even 4 1050.6.g.m.799.2 2
15.8 even 4 1050.6.g.m.799.1 2
15.14 odd 2 1050.6.a.a.1.1 1
21.2 odd 6 294.6.e.b.67.1 2
21.5 even 6 294.6.e.f.67.1 2
21.11 odd 6 294.6.e.b.79.1 2
21.17 even 6 294.6.e.f.79.1 2
21.20 even 2 294.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.f.1.1 1 3.2 odd 2
126.6.a.b.1.1 1 1.1 even 1 trivial
294.6.a.i.1.1 1 21.20 even 2
294.6.e.b.67.1 2 21.2 odd 6
294.6.e.b.79.1 2 21.11 odd 6
294.6.e.f.67.1 2 21.5 even 6
294.6.e.f.79.1 2 21.17 even 6
336.6.a.g.1.1 1 12.11 even 2
882.6.a.i.1.1 1 7.6 odd 2
1008.6.a.k.1.1 1 4.3 odd 2
1050.6.a.a.1.1 1 15.14 odd 2
1050.6.g.m.799.1 2 15.8 even 4
1050.6.g.m.799.2 2 15.2 even 4