Properties

Label 126.6.a.a.1.1
Level $126$
Weight $6$
Character 126.1
Self dual yes
Analytic conductor $20.208$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(1,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 126.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -76.0000 q^{5} -49.0000 q^{7} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -76.0000 q^{5} -49.0000 q^{7} -64.0000 q^{8} +304.000 q^{10} -650.000 q^{11} +762.000 q^{13} +196.000 q^{14} +256.000 q^{16} +556.000 q^{17} -2452.00 q^{19} -1216.00 q^{20} +2600.00 q^{22} +2950.00 q^{23} +2651.00 q^{25} -3048.00 q^{26} -784.000 q^{28} +674.000 q^{29} -3024.00 q^{31} -1024.00 q^{32} -2224.00 q^{34} +3724.00 q^{35} +7730.00 q^{37} +9808.00 q^{38} +4864.00 q^{40} +17016.0 q^{41} +21836.0 q^{43} -10400.0 q^{44} -11800.0 q^{46} +23940.0 q^{47} +2401.00 q^{49} -10604.0 q^{50} +12192.0 q^{52} -15594.0 q^{53} +49400.0 q^{55} +3136.00 q^{56} -2696.00 q^{58} -5608.00 q^{59} +150.000 q^{61} +12096.0 q^{62} +4096.00 q^{64} -57912.0 q^{65} -43784.0 q^{67} +8896.00 q^{68} -14896.0 q^{70} +39178.0 q^{71} -23570.0 q^{73} -30920.0 q^{74} -39232.0 q^{76} +31850.0 q^{77} -17892.0 q^{79} -19456.0 q^{80} -68064.0 q^{82} -38972.0 q^{83} -42256.0 q^{85} -87344.0 q^{86} +41600.0 q^{88} -6024.00 q^{89} -37338.0 q^{91} +47200.0 q^{92} -95760.0 q^{94} +186352. q^{95} +108430. q^{97} -9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −76.0000 −1.35953 −0.679765 0.733430i \(-0.737918\pi\)
−0.679765 + 0.733430i \(0.737918\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 304.000 0.961332
\(11\) −650.000 −1.61969 −0.809845 0.586645i \(-0.800449\pi\)
−0.809845 + 0.586645i \(0.800449\pi\)
\(12\) 0 0
\(13\) 762.000 1.25054 0.625269 0.780410i \(-0.284989\pi\)
0.625269 + 0.780410i \(0.284989\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 556.000 0.466608 0.233304 0.972404i \(-0.425046\pi\)
0.233304 + 0.972404i \(0.425046\pi\)
\(18\) 0 0
\(19\) −2452.00 −1.55825 −0.779124 0.626870i \(-0.784336\pi\)
−0.779124 + 0.626870i \(0.784336\pi\)
\(20\) −1216.00 −0.679765
\(21\) 0 0
\(22\) 2600.00 1.14529
\(23\) 2950.00 1.16279 0.581397 0.813620i \(-0.302507\pi\)
0.581397 + 0.813620i \(0.302507\pi\)
\(24\) 0 0
\(25\) 2651.00 0.848320
\(26\) −3048.00 −0.884263
\(27\) 0 0
\(28\) −784.000 −0.188982
\(29\) 674.000 0.148821 0.0744106 0.997228i \(-0.476292\pi\)
0.0744106 + 0.997228i \(0.476292\pi\)
\(30\) 0 0
\(31\) −3024.00 −0.565168 −0.282584 0.959243i \(-0.591192\pi\)
−0.282584 + 0.959243i \(0.591192\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −2224.00 −0.329942
\(35\) 3724.00 0.513854
\(36\) 0 0
\(37\) 7730.00 0.928272 0.464136 0.885764i \(-0.346365\pi\)
0.464136 + 0.885764i \(0.346365\pi\)
\(38\) 9808.00 1.10185
\(39\) 0 0
\(40\) 4864.00 0.480666
\(41\) 17016.0 1.58088 0.790438 0.612542i \(-0.209853\pi\)
0.790438 + 0.612542i \(0.209853\pi\)
\(42\) 0 0
\(43\) 21836.0 1.80095 0.900476 0.434907i \(-0.143219\pi\)
0.900476 + 0.434907i \(0.143219\pi\)
\(44\) −10400.0 −0.809845
\(45\) 0 0
\(46\) −11800.0 −0.822219
\(47\) 23940.0 1.58081 0.790405 0.612585i \(-0.209870\pi\)
0.790405 + 0.612585i \(0.209870\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) −10604.0 −0.599853
\(51\) 0 0
\(52\) 12192.0 0.625269
\(53\) −15594.0 −0.762549 −0.381275 0.924462i \(-0.624515\pi\)
−0.381275 + 0.924462i \(0.624515\pi\)
\(54\) 0 0
\(55\) 49400.0 2.20201
\(56\) 3136.00 0.133631
\(57\) 0 0
\(58\) −2696.00 −0.105233
\(59\) −5608.00 −0.209738 −0.104869 0.994486i \(-0.533442\pi\)
−0.104869 + 0.994486i \(0.533442\pi\)
\(60\) 0 0
\(61\) 150.000 0.00516139 0.00258069 0.999997i \(-0.499179\pi\)
0.00258069 + 0.999997i \(0.499179\pi\)
\(62\) 12096.0 0.399634
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −57912.0 −1.70014
\(66\) 0 0
\(67\) −43784.0 −1.19159 −0.595797 0.803135i \(-0.703164\pi\)
−0.595797 + 0.803135i \(0.703164\pi\)
\(68\) 8896.00 0.233304
\(69\) 0 0
\(70\) −14896.0 −0.363349
\(71\) 39178.0 0.922351 0.461176 0.887309i \(-0.347428\pi\)
0.461176 + 0.887309i \(0.347428\pi\)
\(72\) 0 0
\(73\) −23570.0 −0.517669 −0.258835 0.965922i \(-0.583338\pi\)
−0.258835 + 0.965922i \(0.583338\pi\)
\(74\) −30920.0 −0.656387
\(75\) 0 0
\(76\) −39232.0 −0.779124
\(77\) 31850.0 0.612185
\(78\) 0 0
\(79\) −17892.0 −0.322546 −0.161273 0.986910i \(-0.551560\pi\)
−0.161273 + 0.986910i \(0.551560\pi\)
\(80\) −19456.0 −0.339882
\(81\) 0 0
\(82\) −68064.0 −1.11785
\(83\) −38972.0 −0.620951 −0.310476 0.950581i \(-0.600488\pi\)
−0.310476 + 0.950581i \(0.600488\pi\)
\(84\) 0 0
\(85\) −42256.0 −0.634368
\(86\) −87344.0 −1.27346
\(87\) 0 0
\(88\) 41600.0 0.572647
\(89\) −6024.00 −0.0806139 −0.0403070 0.999187i \(-0.512834\pi\)
−0.0403070 + 0.999187i \(0.512834\pi\)
\(90\) 0 0
\(91\) −37338.0 −0.472659
\(92\) 47200.0 0.581397
\(93\) 0 0
\(94\) −95760.0 −1.11780
\(95\) 186352. 2.11848
\(96\) 0 0
\(97\) 108430. 1.17009 0.585046 0.811000i \(-0.301076\pi\)
0.585046 + 0.811000i \(0.301076\pi\)
\(98\) −9604.00 −0.101015
\(99\) 0 0
\(100\) 42416.0 0.424160
\(101\) 70424.0 0.686938 0.343469 0.939164i \(-0.388398\pi\)
0.343469 + 0.939164i \(0.388398\pi\)
\(102\) 0 0
\(103\) −31552.0 −0.293045 −0.146522 0.989207i \(-0.546808\pi\)
−0.146522 + 0.989207i \(0.546808\pi\)
\(104\) −48768.0 −0.442132
\(105\) 0 0
\(106\) 62376.0 0.539204
\(107\) −108282. −0.914317 −0.457159 0.889385i \(-0.651133\pi\)
−0.457159 + 0.889385i \(0.651133\pi\)
\(108\) 0 0
\(109\) −72146.0 −0.581629 −0.290814 0.956779i \(-0.593926\pi\)
−0.290814 + 0.956779i \(0.593926\pi\)
\(110\) −197600. −1.55706
\(111\) 0 0
\(112\) −12544.0 −0.0944911
\(113\) −220906. −1.62746 −0.813732 0.581240i \(-0.802568\pi\)
−0.813732 + 0.581240i \(0.802568\pi\)
\(114\) 0 0
\(115\) −224200. −1.58085
\(116\) 10784.0 0.0744106
\(117\) 0 0
\(118\) 22432.0 0.148307
\(119\) −27244.0 −0.176361
\(120\) 0 0
\(121\) 261449. 1.62339
\(122\) −600.000 −0.00364965
\(123\) 0 0
\(124\) −48384.0 −0.282584
\(125\) 36024.0 0.206213
\(126\) 0 0
\(127\) −239652. −1.31847 −0.659237 0.751935i \(-0.729121\pi\)
−0.659237 + 0.751935i \(0.729121\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 231648. 1.20218
\(131\) 274172. 1.39587 0.697935 0.716161i \(-0.254103\pi\)
0.697935 + 0.716161i \(0.254103\pi\)
\(132\) 0 0
\(133\) 120148. 0.588962
\(134\) 175136. 0.842584
\(135\) 0 0
\(136\) −35584.0 −0.164971
\(137\) 391154. 1.78052 0.890259 0.455455i \(-0.150523\pi\)
0.890259 + 0.455455i \(0.150523\pi\)
\(138\) 0 0
\(139\) 339364. 1.48980 0.744901 0.667175i \(-0.232497\pi\)
0.744901 + 0.667175i \(0.232497\pi\)
\(140\) 59584.0 0.256927
\(141\) 0 0
\(142\) −156712. −0.652201
\(143\) −495300. −2.02548
\(144\) 0 0
\(145\) −51224.0 −0.202327
\(146\) 94280.0 0.366047
\(147\) 0 0
\(148\) 123680. 0.464136
\(149\) 29334.0 0.108244 0.0541222 0.998534i \(-0.482764\pi\)
0.0541222 + 0.998534i \(0.482764\pi\)
\(150\) 0 0
\(151\) 71608.0 0.255575 0.127788 0.991802i \(-0.459212\pi\)
0.127788 + 0.991802i \(0.459212\pi\)
\(152\) 156928. 0.550924
\(153\) 0 0
\(154\) −127400. −0.432880
\(155\) 229824. 0.768362
\(156\) 0 0
\(157\) 296318. 0.959420 0.479710 0.877427i \(-0.340742\pi\)
0.479710 + 0.877427i \(0.340742\pi\)
\(158\) 71568.0 0.228074
\(159\) 0 0
\(160\) 77824.0 0.240333
\(161\) −144550. −0.439494
\(162\) 0 0
\(163\) −480400. −1.41623 −0.708115 0.706097i \(-0.750454\pi\)
−0.708115 + 0.706097i \(0.750454\pi\)
\(164\) 272256. 0.790438
\(165\) 0 0
\(166\) 155888. 0.439079
\(167\) −160180. −0.444444 −0.222222 0.974996i \(-0.571331\pi\)
−0.222222 + 0.974996i \(0.571331\pi\)
\(168\) 0 0
\(169\) 209351. 0.563843
\(170\) 169024. 0.448566
\(171\) 0 0
\(172\) 349376. 0.900476
\(173\) 8984.00 0.0228220 0.0114110 0.999935i \(-0.496368\pi\)
0.0114110 + 0.999935i \(0.496368\pi\)
\(174\) 0 0
\(175\) −129899. −0.320635
\(176\) −166400. −0.404922
\(177\) 0 0
\(178\) 24096.0 0.0570026
\(179\) −182886. −0.426627 −0.213313 0.976984i \(-0.568425\pi\)
−0.213313 + 0.976984i \(0.568425\pi\)
\(180\) 0 0
\(181\) 138330. 0.313848 0.156924 0.987611i \(-0.449842\pi\)
0.156924 + 0.987611i \(0.449842\pi\)
\(182\) 149352. 0.334220
\(183\) 0 0
\(184\) −188800. −0.411109
\(185\) −587480. −1.26201
\(186\) 0 0
\(187\) −361400. −0.755760
\(188\) 383040. 0.790405
\(189\) 0 0
\(190\) −745408. −1.49799
\(191\) −327222. −0.649021 −0.324511 0.945882i \(-0.605200\pi\)
−0.324511 + 0.945882i \(0.605200\pi\)
\(192\) 0 0
\(193\) 786902. 1.52064 0.760322 0.649547i \(-0.225041\pi\)
0.760322 + 0.649547i \(0.225041\pi\)
\(194\) −433720. −0.827380
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −423098. −0.776740 −0.388370 0.921504i \(-0.626962\pi\)
−0.388370 + 0.921504i \(0.626962\pi\)
\(198\) 0 0
\(199\) 1.02392e6 1.83288 0.916439 0.400175i \(-0.131051\pi\)
0.916439 + 0.400175i \(0.131051\pi\)
\(200\) −169664. −0.299926
\(201\) 0 0
\(202\) −281696. −0.485738
\(203\) −33026.0 −0.0562491
\(204\) 0 0
\(205\) −1.29322e6 −2.14925
\(206\) 126208. 0.207214
\(207\) 0 0
\(208\) 195072. 0.312634
\(209\) 1.59380e6 2.52388
\(210\) 0 0
\(211\) 461516. 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(212\) −249504. −0.381275
\(213\) 0 0
\(214\) 433128. 0.646520
\(215\) −1.65954e6 −2.44845
\(216\) 0 0
\(217\) 148176. 0.213613
\(218\) 288584. 0.411274
\(219\) 0 0
\(220\) 790400. 1.10101
\(221\) 423672. 0.583511
\(222\) 0 0
\(223\) 995048. 1.33993 0.669965 0.742393i \(-0.266309\pi\)
0.669965 + 0.742393i \(0.266309\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 883624. 1.15079
\(227\) 95568.0 0.123097 0.0615486 0.998104i \(-0.480396\pi\)
0.0615486 + 0.998104i \(0.480396\pi\)
\(228\) 0 0
\(229\) −1.04409e6 −1.31567 −0.657836 0.753161i \(-0.728528\pi\)
−0.657836 + 0.753161i \(0.728528\pi\)
\(230\) 896800. 1.11783
\(231\) 0 0
\(232\) −43136.0 −0.0526163
\(233\) 1.16941e6 1.41116 0.705581 0.708629i \(-0.250686\pi\)
0.705581 + 0.708629i \(0.250686\pi\)
\(234\) 0 0
\(235\) −1.81944e6 −2.14916
\(236\) −89728.0 −0.104869
\(237\) 0 0
\(238\) 108976. 0.124706
\(239\) 27342.0 0.0309625 0.0154812 0.999880i \(-0.495072\pi\)
0.0154812 + 0.999880i \(0.495072\pi\)
\(240\) 0 0
\(241\) −907714. −1.00671 −0.503357 0.864078i \(-0.667902\pi\)
−0.503357 + 0.864078i \(0.667902\pi\)
\(242\) −1.04580e6 −1.14791
\(243\) 0 0
\(244\) 2400.00 0.00258069
\(245\) −182476. −0.194218
\(246\) 0 0
\(247\) −1.86842e6 −1.94865
\(248\) 193536. 0.199817
\(249\) 0 0
\(250\) −144096. −0.145815
\(251\) −44088.0 −0.0441709 −0.0220854 0.999756i \(-0.507031\pi\)
−0.0220854 + 0.999756i \(0.507031\pi\)
\(252\) 0 0
\(253\) −1.91750e6 −1.88336
\(254\) 958608. 0.932302
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 829200. 0.783117 0.391558 0.920153i \(-0.371936\pi\)
0.391558 + 0.920153i \(0.371936\pi\)
\(258\) 0 0
\(259\) −378770. −0.350854
\(260\) −926592. −0.850071
\(261\) 0 0
\(262\) −1.09669e6 −0.987029
\(263\) −1.31947e6 −1.17627 −0.588137 0.808761i \(-0.700139\pi\)
−0.588137 + 0.808761i \(0.700139\pi\)
\(264\) 0 0
\(265\) 1.18514e6 1.03671
\(266\) −480592. −0.416459
\(267\) 0 0
\(268\) −700544. −0.595797
\(269\) 783788. 0.660416 0.330208 0.943908i \(-0.392881\pi\)
0.330208 + 0.943908i \(0.392881\pi\)
\(270\) 0 0
\(271\) 955080. 0.789981 0.394990 0.918685i \(-0.370748\pi\)
0.394990 + 0.918685i \(0.370748\pi\)
\(272\) 142336. 0.116652
\(273\) 0 0
\(274\) −1.56462e6 −1.25902
\(275\) −1.72315e6 −1.37401
\(276\) 0 0
\(277\) 1.91273e6 1.49780 0.748901 0.662682i \(-0.230582\pi\)
0.748901 + 0.662682i \(0.230582\pi\)
\(278\) −1.35746e6 −1.05345
\(279\) 0 0
\(280\) −238336. −0.181675
\(281\) 1.02620e6 0.775295 0.387648 0.921808i \(-0.373288\pi\)
0.387648 + 0.921808i \(0.373288\pi\)
\(282\) 0 0
\(283\) 1.74668e6 1.29642 0.648211 0.761461i \(-0.275518\pi\)
0.648211 + 0.761461i \(0.275518\pi\)
\(284\) 626848. 0.461176
\(285\) 0 0
\(286\) 1.98120e6 1.43223
\(287\) −833784. −0.597515
\(288\) 0 0
\(289\) −1.11072e6 −0.782277
\(290\) 204896. 0.143067
\(291\) 0 0
\(292\) −377120. −0.258835
\(293\) −2.23212e6 −1.51897 −0.759484 0.650526i \(-0.774548\pi\)
−0.759484 + 0.650526i \(0.774548\pi\)
\(294\) 0 0
\(295\) 426208. 0.285146
\(296\) −494720. −0.328194
\(297\) 0 0
\(298\) −117336. −0.0765404
\(299\) 2.24790e6 1.45412
\(300\) 0 0
\(301\) −1.06996e6 −0.680696
\(302\) −286432. −0.180719
\(303\) 0 0
\(304\) −627712. −0.389562
\(305\) −11400.0 −0.00701706
\(306\) 0 0
\(307\) 1.85324e6 1.12224 0.561119 0.827735i \(-0.310371\pi\)
0.561119 + 0.827735i \(0.310371\pi\)
\(308\) 509600. 0.306092
\(309\) 0 0
\(310\) −919296. −0.543314
\(311\) 450956. 0.264383 0.132191 0.991224i \(-0.457799\pi\)
0.132191 + 0.991224i \(0.457799\pi\)
\(312\) 0 0
\(313\) 1.60263e6 0.924642 0.462321 0.886713i \(-0.347017\pi\)
0.462321 + 0.886713i \(0.347017\pi\)
\(314\) −1.18527e6 −0.678413
\(315\) 0 0
\(316\) −286272. −0.161273
\(317\) 20862.0 0.0116602 0.00583012 0.999983i \(-0.498144\pi\)
0.00583012 + 0.999983i \(0.498144\pi\)
\(318\) 0 0
\(319\) −438100. −0.241044
\(320\) −311296. −0.169941
\(321\) 0 0
\(322\) 578200. 0.310770
\(323\) −1.36331e6 −0.727091
\(324\) 0 0
\(325\) 2.02006e6 1.06086
\(326\) 1.92160e6 1.00143
\(327\) 0 0
\(328\) −1.08902e6 −0.558924
\(329\) −1.17306e6 −0.597490
\(330\) 0 0
\(331\) 2.07621e6 1.04160 0.520801 0.853678i \(-0.325633\pi\)
0.520801 + 0.853678i \(0.325633\pi\)
\(332\) −623552. −0.310476
\(333\) 0 0
\(334\) 640720. 0.314269
\(335\) 3.32758e6 1.62001
\(336\) 0 0
\(337\) 1.20508e6 0.578019 0.289009 0.957326i \(-0.406674\pi\)
0.289009 + 0.957326i \(0.406674\pi\)
\(338\) −837404. −0.398697
\(339\) 0 0
\(340\) −676096. −0.317184
\(341\) 1.96560e6 0.915396
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) −1.39750e6 −0.636732
\(345\) 0 0
\(346\) −35936.0 −0.0161376
\(347\) 876642. 0.390840 0.195420 0.980720i \(-0.437393\pi\)
0.195420 + 0.980720i \(0.437393\pi\)
\(348\) 0 0
\(349\) −1.29593e6 −0.569532 −0.284766 0.958597i \(-0.591916\pi\)
−0.284766 + 0.958597i \(0.591916\pi\)
\(350\) 519596. 0.226723
\(351\) 0 0
\(352\) 665600. 0.286323
\(353\) 3.99040e6 1.70443 0.852215 0.523192i \(-0.175259\pi\)
0.852215 + 0.523192i \(0.175259\pi\)
\(354\) 0 0
\(355\) −2.97753e6 −1.25396
\(356\) −96384.0 −0.0403070
\(357\) 0 0
\(358\) 731544. 0.301671
\(359\) −4.06452e6 −1.66446 −0.832229 0.554432i \(-0.812936\pi\)
−0.832229 + 0.554432i \(0.812936\pi\)
\(360\) 0 0
\(361\) 3.53620e6 1.42814
\(362\) −553320. −0.221924
\(363\) 0 0
\(364\) −597408. −0.236329
\(365\) 1.79132e6 0.703787
\(366\) 0 0
\(367\) −1.67243e6 −0.648162 −0.324081 0.946029i \(-0.605055\pi\)
−0.324081 + 0.946029i \(0.605055\pi\)
\(368\) 755200. 0.290698
\(369\) 0 0
\(370\) 2.34992e6 0.892378
\(371\) 764106. 0.288216
\(372\) 0 0
\(373\) 3.16769e6 1.17888 0.589441 0.807812i \(-0.299348\pi\)
0.589441 + 0.807812i \(0.299348\pi\)
\(374\) 1.44560e6 0.534403
\(375\) 0 0
\(376\) −1.53216e6 −0.558901
\(377\) 513588. 0.186106
\(378\) 0 0
\(379\) −4.20388e6 −1.50332 −0.751662 0.659548i \(-0.770748\pi\)
−0.751662 + 0.659548i \(0.770748\pi\)
\(380\) 2.98163e6 1.05924
\(381\) 0 0
\(382\) 1.30889e6 0.458927
\(383\) 342616. 0.119347 0.0596734 0.998218i \(-0.480994\pi\)
0.0596734 + 0.998218i \(0.480994\pi\)
\(384\) 0 0
\(385\) −2.42060e6 −0.832283
\(386\) −3.14761e6 −1.07526
\(387\) 0 0
\(388\) 1.73488e6 0.585046
\(389\) 3.83959e6 1.28650 0.643252 0.765654i \(-0.277585\pi\)
0.643252 + 0.765654i \(0.277585\pi\)
\(390\) 0 0
\(391\) 1.64020e6 0.542569
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) 1.69239e6 0.549238
\(395\) 1.35979e6 0.438510
\(396\) 0 0
\(397\) 3.43894e6 1.09509 0.547543 0.836777i \(-0.315563\pi\)
0.547543 + 0.836777i \(0.315563\pi\)
\(398\) −4.09568e6 −1.29604
\(399\) 0 0
\(400\) 678656. 0.212080
\(401\) 3.89421e6 1.20937 0.604684 0.796466i \(-0.293299\pi\)
0.604684 + 0.796466i \(0.293299\pi\)
\(402\) 0 0
\(403\) −2.30429e6 −0.706764
\(404\) 1.12678e6 0.343469
\(405\) 0 0
\(406\) 132104. 0.0397741
\(407\) −5.02450e6 −1.50351
\(408\) 0 0
\(409\) −1.64679e6 −0.486778 −0.243389 0.969929i \(-0.578259\pi\)
−0.243389 + 0.969929i \(0.578259\pi\)
\(410\) 5.17286e6 1.51975
\(411\) 0 0
\(412\) −504832. −0.146522
\(413\) 274792. 0.0792737
\(414\) 0 0
\(415\) 2.96187e6 0.844201
\(416\) −780288. −0.221066
\(417\) 0 0
\(418\) −6.37520e6 −1.78465
\(419\) 1.67659e6 0.466544 0.233272 0.972412i \(-0.425057\pi\)
0.233272 + 0.972412i \(0.425057\pi\)
\(420\) 0 0
\(421\) −566742. −0.155840 −0.0779202 0.996960i \(-0.524828\pi\)
−0.0779202 + 0.996960i \(0.524828\pi\)
\(422\) −1.84606e6 −0.504621
\(423\) 0 0
\(424\) 998016. 0.269602
\(425\) 1.47396e6 0.395833
\(426\) 0 0
\(427\) −7350.00 −0.00195082
\(428\) −1.73251e6 −0.457159
\(429\) 0 0
\(430\) 6.63814e6 1.73131
\(431\) −6.68468e6 −1.73335 −0.866677 0.498870i \(-0.833749\pi\)
−0.866677 + 0.498870i \(0.833749\pi\)
\(432\) 0 0
\(433\) 6.91337e6 1.77203 0.886013 0.463661i \(-0.153464\pi\)
0.886013 + 0.463661i \(0.153464\pi\)
\(434\) −592704. −0.151047
\(435\) 0 0
\(436\) −1.15434e6 −0.290814
\(437\) −7.23340e6 −1.81192
\(438\) 0 0
\(439\) −4.56281e6 −1.12998 −0.564990 0.825098i \(-0.691120\pi\)
−0.564990 + 0.825098i \(0.691120\pi\)
\(440\) −3.16160e6 −0.778530
\(441\) 0 0
\(442\) −1.69469e6 −0.412605
\(443\) −4.59760e6 −1.11307 −0.556534 0.830825i \(-0.687869\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(444\) 0 0
\(445\) 457824. 0.109597
\(446\) −3.98019e6 −0.947473
\(447\) 0 0
\(448\) −200704. −0.0472456
\(449\) −1.70658e6 −0.399494 −0.199747 0.979848i \(-0.564012\pi\)
−0.199747 + 0.979848i \(0.564012\pi\)
\(450\) 0 0
\(451\) −1.10604e7 −2.56053
\(452\) −3.53450e6 −0.813732
\(453\) 0 0
\(454\) −382272. −0.0870428
\(455\) 2.83769e6 0.642593
\(456\) 0 0
\(457\) −6.93916e6 −1.55423 −0.777117 0.629356i \(-0.783319\pi\)
−0.777117 + 0.629356i \(0.783319\pi\)
\(458\) 4.17634e6 0.930320
\(459\) 0 0
\(460\) −3.58720e6 −0.790426
\(461\) 2.61805e6 0.573753 0.286877 0.957968i \(-0.407383\pi\)
0.286877 + 0.957968i \(0.407383\pi\)
\(462\) 0 0
\(463\) 7.13602e6 1.54705 0.773524 0.633767i \(-0.218492\pi\)
0.773524 + 0.633767i \(0.218492\pi\)
\(464\) 172544. 0.0372053
\(465\) 0 0
\(466\) −4.67764e6 −0.997843
\(467\) 2.17398e6 0.461278 0.230639 0.973039i \(-0.425918\pi\)
0.230639 + 0.973039i \(0.425918\pi\)
\(468\) 0 0
\(469\) 2.14542e6 0.450380
\(470\) 7.27776e6 1.51968
\(471\) 0 0
\(472\) 358912. 0.0741537
\(473\) −1.41934e7 −2.91698
\(474\) 0 0
\(475\) −6.50025e6 −1.32189
\(476\) −435904. −0.0881807
\(477\) 0 0
\(478\) −109368. −0.0218938
\(479\) 4.63294e6 0.922609 0.461305 0.887242i \(-0.347381\pi\)
0.461305 + 0.887242i \(0.347381\pi\)
\(480\) 0 0
\(481\) 5.89026e6 1.16084
\(482\) 3.63086e6 0.711855
\(483\) 0 0
\(484\) 4.18318e6 0.811696
\(485\) −8.24068e6 −1.59077
\(486\) 0 0
\(487\) −4.56645e6 −0.872481 −0.436241 0.899830i \(-0.643690\pi\)
−0.436241 + 0.899830i \(0.643690\pi\)
\(488\) −9600.00 −0.00182483
\(489\) 0 0
\(490\) 729904. 0.137333
\(491\) 5.31429e6 0.994813 0.497407 0.867518i \(-0.334286\pi\)
0.497407 + 0.867518i \(0.334286\pi\)
\(492\) 0 0
\(493\) 374744. 0.0694412
\(494\) 7.47370e6 1.37790
\(495\) 0 0
\(496\) −774144. −0.141292
\(497\) −1.91972e6 −0.348616
\(498\) 0 0
\(499\) −2.46314e6 −0.442831 −0.221415 0.975180i \(-0.571068\pi\)
−0.221415 + 0.975180i \(0.571068\pi\)
\(500\) 576384. 0.103107
\(501\) 0 0
\(502\) 176352. 0.0312335
\(503\) −2.79924e6 −0.493310 −0.246655 0.969103i \(-0.579331\pi\)
−0.246655 + 0.969103i \(0.579331\pi\)
\(504\) 0 0
\(505\) −5.35222e6 −0.933912
\(506\) 7.67000e6 1.33174
\(507\) 0 0
\(508\) −3.83443e6 −0.659237
\(509\) −1.99914e6 −0.342018 −0.171009 0.985269i \(-0.554703\pi\)
−0.171009 + 0.985269i \(0.554703\pi\)
\(510\) 0 0
\(511\) 1.15493e6 0.195661
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −3.31680e6 −0.553747
\(515\) 2.39795e6 0.398403
\(516\) 0 0
\(517\) −1.55610e7 −2.56042
\(518\) 1.51508e6 0.248091
\(519\) 0 0
\(520\) 3.70637e6 0.601091
\(521\) −3.52160e6 −0.568390 −0.284195 0.958767i \(-0.591726\pi\)
−0.284195 + 0.958767i \(0.591726\pi\)
\(522\) 0 0
\(523\) 2.60685e6 0.416737 0.208369 0.978050i \(-0.433185\pi\)
0.208369 + 0.978050i \(0.433185\pi\)
\(524\) 4.38675e6 0.697935
\(525\) 0 0
\(526\) 5.27786e6 0.831752
\(527\) −1.68134e6 −0.263712
\(528\) 0 0
\(529\) 2.26616e6 0.352088
\(530\) −4.74058e6 −0.733063
\(531\) 0 0
\(532\) 1.92237e6 0.294481
\(533\) 1.29662e7 1.97694
\(534\) 0 0
\(535\) 8.22943e6 1.24304
\(536\) 2.80218e6 0.421292
\(537\) 0 0
\(538\) −3.13515e6 −0.466985
\(539\) −1.56065e6 −0.231384
\(540\) 0 0
\(541\) −1.37441e6 −0.201894 −0.100947 0.994892i \(-0.532187\pi\)
−0.100947 + 0.994892i \(0.532187\pi\)
\(542\) −3.82032e6 −0.558601
\(543\) 0 0
\(544\) −569344. −0.0824855
\(545\) 5.48310e6 0.790742
\(546\) 0 0
\(547\) −8.78398e6 −1.25523 −0.627614 0.778524i \(-0.715968\pi\)
−0.627614 + 0.778524i \(0.715968\pi\)
\(548\) 6.25846e6 0.890259
\(549\) 0 0
\(550\) 6.89260e6 0.971575
\(551\) −1.65265e6 −0.231900
\(552\) 0 0
\(553\) 876708. 0.121911
\(554\) −7.65092e6 −1.05911
\(555\) 0 0
\(556\) 5.42982e6 0.744901
\(557\) −6.29262e6 −0.859396 −0.429698 0.902973i \(-0.641380\pi\)
−0.429698 + 0.902973i \(0.641380\pi\)
\(558\) 0 0
\(559\) 1.66390e7 2.25216
\(560\) 953344. 0.128463
\(561\) 0 0
\(562\) −4.10481e6 −0.548216
\(563\) −4.86582e6 −0.646971 −0.323485 0.946233i \(-0.604855\pi\)
−0.323485 + 0.946233i \(0.604855\pi\)
\(564\) 0 0
\(565\) 1.67889e7 2.21259
\(566\) −6.98670e6 −0.916709
\(567\) 0 0
\(568\) −2.50739e6 −0.326100
\(569\) 4.46383e6 0.577998 0.288999 0.957329i \(-0.406678\pi\)
0.288999 + 0.957329i \(0.406678\pi\)
\(570\) 0 0
\(571\) 8.17054e6 1.04872 0.524361 0.851496i \(-0.324304\pi\)
0.524361 + 0.851496i \(0.324304\pi\)
\(572\) −7.92480e6 −1.01274
\(573\) 0 0
\(574\) 3.33514e6 0.422507
\(575\) 7.82045e6 0.986421
\(576\) 0 0
\(577\) −5.50343e6 −0.688167 −0.344084 0.938939i \(-0.611810\pi\)
−0.344084 + 0.938939i \(0.611810\pi\)
\(578\) 4.44288e6 0.553153
\(579\) 0 0
\(580\) −819584. −0.101163
\(581\) 1.90963e6 0.234697
\(582\) 0 0
\(583\) 1.01361e7 1.23509
\(584\) 1.50848e6 0.183024
\(585\) 0 0
\(586\) 8.92848e6 1.07407
\(587\) −8.14251e6 −0.975356 −0.487678 0.873024i \(-0.662156\pi\)
−0.487678 + 0.873024i \(0.662156\pi\)
\(588\) 0 0
\(589\) 7.41485e6 0.880672
\(590\) −1.70483e6 −0.201628
\(591\) 0 0
\(592\) 1.97888e6 0.232068
\(593\) 2.73136e6 0.318964 0.159482 0.987201i \(-0.449018\pi\)
0.159482 + 0.987201i \(0.449018\pi\)
\(594\) 0 0
\(595\) 2.07054e6 0.239768
\(596\) 469344. 0.0541222
\(597\) 0 0
\(598\) −8.99160e6 −1.02822
\(599\) −1.23733e6 −0.140902 −0.0704510 0.997515i \(-0.522444\pi\)
−0.0704510 + 0.997515i \(0.522444\pi\)
\(600\) 0 0
\(601\) −1.59756e7 −1.80414 −0.902071 0.431587i \(-0.857954\pi\)
−0.902071 + 0.431587i \(0.857954\pi\)
\(602\) 4.27986e6 0.481324
\(603\) 0 0
\(604\) 1.14573e6 0.127788
\(605\) −1.98701e7 −2.20705
\(606\) 0 0
\(607\) −1.88275e6 −0.207406 −0.103703 0.994608i \(-0.533069\pi\)
−0.103703 + 0.994608i \(0.533069\pi\)
\(608\) 2.51085e6 0.275462
\(609\) 0 0
\(610\) 45600.0 0.00496181
\(611\) 1.82423e7 1.97686
\(612\) 0 0
\(613\) −9.82804e6 −1.05637 −0.528185 0.849130i \(-0.677127\pi\)
−0.528185 + 0.849130i \(0.677127\pi\)
\(614\) −7.41294e6 −0.793542
\(615\) 0 0
\(616\) −2.03840e6 −0.216440
\(617\) 8.21262e6 0.868498 0.434249 0.900793i \(-0.357014\pi\)
0.434249 + 0.900793i \(0.357014\pi\)
\(618\) 0 0
\(619\) 6.98465e6 0.732686 0.366343 0.930480i \(-0.380610\pi\)
0.366343 + 0.930480i \(0.380610\pi\)
\(620\) 3.67718e6 0.384181
\(621\) 0 0
\(622\) −1.80382e6 −0.186947
\(623\) 295176. 0.0304692
\(624\) 0 0
\(625\) −1.10222e7 −1.12867
\(626\) −6.41054e6 −0.653820
\(627\) 0 0
\(628\) 4.74109e6 0.479710
\(629\) 4.29788e6 0.433139
\(630\) 0 0
\(631\) 1.26789e7 1.26767 0.633837 0.773467i \(-0.281479\pi\)
0.633837 + 0.773467i \(0.281479\pi\)
\(632\) 1.14509e6 0.114037
\(633\) 0 0
\(634\) −83448.0 −0.00824504
\(635\) 1.82136e7 1.79250
\(636\) 0 0
\(637\) 1.82956e6 0.178648
\(638\) 1.75240e6 0.170444
\(639\) 0 0
\(640\) 1.24518e6 0.120167
\(641\) 1.40324e7 1.34892 0.674460 0.738311i \(-0.264376\pi\)
0.674460 + 0.738311i \(0.264376\pi\)
\(642\) 0 0
\(643\) 1.30368e6 0.124349 0.0621745 0.998065i \(-0.480196\pi\)
0.0621745 + 0.998065i \(0.480196\pi\)
\(644\) −2.31280e6 −0.219747
\(645\) 0 0
\(646\) 5.45325e6 0.514131
\(647\) −1.57110e6 −0.147551 −0.0737757 0.997275i \(-0.523505\pi\)
−0.0737757 + 0.997275i \(0.523505\pi\)
\(648\) 0 0
\(649\) 3.64520e6 0.339711
\(650\) −8.08025e6 −0.750138
\(651\) 0 0
\(652\) −7.68640e6 −0.708115
\(653\) 8.34115e6 0.765496 0.382748 0.923853i \(-0.374978\pi\)
0.382748 + 0.923853i \(0.374978\pi\)
\(654\) 0 0
\(655\) −2.08371e7 −1.89773
\(656\) 4.35610e6 0.395219
\(657\) 0 0
\(658\) 4.69224e6 0.422489
\(659\) −6.18334e6 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(660\) 0 0
\(661\) 928966. 0.0826982 0.0413491 0.999145i \(-0.486834\pi\)
0.0413491 + 0.999145i \(0.486834\pi\)
\(662\) −8.30485e6 −0.736524
\(663\) 0 0
\(664\) 2.49421e6 0.219539
\(665\) −9.13125e6 −0.800711
\(666\) 0 0
\(667\) 1.98830e6 0.173048
\(668\) −2.56288e6 −0.222222
\(669\) 0 0
\(670\) −1.33103e7 −1.14552
\(671\) −97500.0 −0.00835985
\(672\) 0 0
\(673\) 1.79131e7 1.52452 0.762259 0.647272i \(-0.224090\pi\)
0.762259 + 0.647272i \(0.224090\pi\)
\(674\) −4.82033e6 −0.408721
\(675\) 0 0
\(676\) 3.34962e6 0.281922
\(677\) 4.96397e6 0.416253 0.208126 0.978102i \(-0.433263\pi\)
0.208126 + 0.978102i \(0.433263\pi\)
\(678\) 0 0
\(679\) −5.31307e6 −0.442253
\(680\) 2.70438e6 0.224283
\(681\) 0 0
\(682\) −7.86240e6 −0.647283
\(683\) −89526.0 −0.00734340 −0.00367170 0.999993i \(-0.501169\pi\)
−0.00367170 + 0.999993i \(0.501169\pi\)
\(684\) 0 0
\(685\) −2.97277e7 −2.42067
\(686\) 470596. 0.0381802
\(687\) 0 0
\(688\) 5.59002e6 0.450238
\(689\) −1.18826e7 −0.953596
\(690\) 0 0
\(691\) −142396. −0.0113450 −0.00567248 0.999984i \(-0.501806\pi\)
−0.00567248 + 0.999984i \(0.501806\pi\)
\(692\) 143744. 0.0114110
\(693\) 0 0
\(694\) −3.50657e6 −0.276365
\(695\) −2.57917e7 −2.02543
\(696\) 0 0
\(697\) 9.46090e6 0.737650
\(698\) 5.18372e6 0.402720
\(699\) 0 0
\(700\) −2.07838e6 −0.160317
\(701\) −1.03935e7 −0.798852 −0.399426 0.916765i \(-0.630791\pi\)
−0.399426 + 0.916765i \(0.630791\pi\)
\(702\) 0 0
\(703\) −1.89540e7 −1.44648
\(704\) −2.66240e6 −0.202461
\(705\) 0 0
\(706\) −1.59616e7 −1.20521
\(707\) −3.45078e6 −0.259638
\(708\) 0 0
\(709\) 4.65503e6 0.347782 0.173891 0.984765i \(-0.444366\pi\)
0.173891 + 0.984765i \(0.444366\pi\)
\(710\) 1.19101e7 0.886686
\(711\) 0 0
\(712\) 385536. 0.0285013
\(713\) −8.92080e6 −0.657173
\(714\) 0 0
\(715\) 3.76428e7 2.75370
\(716\) −2.92618e6 −0.213313
\(717\) 0 0
\(718\) 1.62581e7 1.17695
\(719\) 6.72134e6 0.484880 0.242440 0.970166i \(-0.422052\pi\)
0.242440 + 0.970166i \(0.422052\pi\)
\(720\) 0 0
\(721\) 1.54605e6 0.110760
\(722\) −1.41448e7 −1.00984
\(723\) 0 0
\(724\) 2.21328e6 0.156924
\(725\) 1.78677e6 0.126248
\(726\) 0 0
\(727\) −1.24076e7 −0.870670 −0.435335 0.900269i \(-0.643370\pi\)
−0.435335 + 0.900269i \(0.643370\pi\)
\(728\) 2.38963e6 0.167110
\(729\) 0 0
\(730\) −7.16528e6 −0.497652
\(731\) 1.21408e7 0.840339
\(732\) 0 0
\(733\) 1.35958e7 0.934641 0.467321 0.884088i \(-0.345219\pi\)
0.467321 + 0.884088i \(0.345219\pi\)
\(734\) 6.68973e6 0.458319
\(735\) 0 0
\(736\) −3.02080e6 −0.205555
\(737\) 2.84596e7 1.93001
\(738\) 0 0
\(739\) 2.56819e6 0.172988 0.0864941 0.996252i \(-0.472434\pi\)
0.0864941 + 0.996252i \(0.472434\pi\)
\(740\) −9.39968e6 −0.631006
\(741\) 0 0
\(742\) −3.05642e6 −0.203800
\(743\) 2.02133e7 1.34327 0.671637 0.740880i \(-0.265591\pi\)
0.671637 + 0.740880i \(0.265591\pi\)
\(744\) 0 0
\(745\) −2.22938e6 −0.147161
\(746\) −1.26707e7 −0.833595
\(747\) 0 0
\(748\) −5.78240e6 −0.377880
\(749\) 5.30582e6 0.345579
\(750\) 0 0
\(751\) 7.04813e6 0.456010 0.228005 0.973660i \(-0.426780\pi\)
0.228005 + 0.973660i \(0.426780\pi\)
\(752\) 6.12864e6 0.395202
\(753\) 0 0
\(754\) −2.05435e6 −0.131597
\(755\) −5.44221e6 −0.347462
\(756\) 0 0
\(757\) −2.04120e7 −1.29463 −0.647315 0.762223i \(-0.724108\pi\)
−0.647315 + 0.762223i \(0.724108\pi\)
\(758\) 1.68155e7 1.06301
\(759\) 0 0
\(760\) −1.19265e7 −0.748997
\(761\) 5.07974e6 0.317965 0.158983 0.987281i \(-0.449179\pi\)
0.158983 + 0.987281i \(0.449179\pi\)
\(762\) 0 0
\(763\) 3.53515e6 0.219835
\(764\) −5.23555e6 −0.324511
\(765\) 0 0
\(766\) −1.37046e6 −0.0843909
\(767\) −4.27330e6 −0.262286
\(768\) 0 0
\(769\) 2.33898e7 1.42630 0.713149 0.701012i \(-0.247268\pi\)
0.713149 + 0.701012i \(0.247268\pi\)
\(770\) 9.68240e6 0.588513
\(771\) 0 0
\(772\) 1.25904e7 0.760322
\(773\) 1.11253e6 0.0669672 0.0334836 0.999439i \(-0.489340\pi\)
0.0334836 + 0.999439i \(0.489340\pi\)
\(774\) 0 0
\(775\) −8.01662e6 −0.479443
\(776\) −6.93952e6 −0.413690
\(777\) 0 0
\(778\) −1.53584e7 −0.909696
\(779\) −4.17232e7 −2.46340
\(780\) 0 0
\(781\) −2.54657e7 −1.49392
\(782\) −6.56080e6 −0.383654
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) −2.25202e7 −1.30436
\(786\) 0 0
\(787\) 2.00812e6 0.115572 0.0577859 0.998329i \(-0.481596\pi\)
0.0577859 + 0.998329i \(0.481596\pi\)
\(788\) −6.76957e6 −0.388370
\(789\) 0 0
\(790\) −5.43917e6 −0.310074
\(791\) 1.08244e7 0.615124
\(792\) 0 0
\(793\) 114300. 0.00645451
\(794\) −1.37558e7 −0.774343
\(795\) 0 0
\(796\) 1.63827e7 0.916439
\(797\) −3.00897e7 −1.67792 −0.838961 0.544191i \(-0.816837\pi\)
−0.838961 + 0.544191i \(0.816837\pi\)
\(798\) 0 0
\(799\) 1.33106e7 0.737619
\(800\) −2.71462e6 −0.149963
\(801\) 0 0
\(802\) −1.55768e7 −0.855152
\(803\) 1.53205e7 0.838463
\(804\) 0 0
\(805\) 1.09858e7 0.597506
\(806\) 9.21715e6 0.499757
\(807\) 0 0
\(808\) −4.50714e6 −0.242869
\(809\) 1.88207e6 0.101103 0.0505515 0.998721i \(-0.483902\pi\)
0.0505515 + 0.998721i \(0.483902\pi\)
\(810\) 0 0
\(811\) 4.88220e6 0.260654 0.130327 0.991471i \(-0.458397\pi\)
0.130327 + 0.991471i \(0.458397\pi\)
\(812\) −528416. −0.0281246
\(813\) 0 0
\(814\) 2.00980e7 1.06314
\(815\) 3.65104e7 1.92541
\(816\) 0 0
\(817\) −5.35419e7 −2.80633
\(818\) 6.58718e6 0.344204
\(819\) 0 0
\(820\) −2.06915e7 −1.07462
\(821\) −8.37096e6 −0.433429 −0.216714 0.976235i \(-0.569534\pi\)
−0.216714 + 0.976235i \(0.569534\pi\)
\(822\) 0 0
\(823\) −2.02090e7 −1.04003 −0.520015 0.854157i \(-0.674074\pi\)
−0.520015 + 0.854157i \(0.674074\pi\)
\(824\) 2.01933e6 0.103607
\(825\) 0 0
\(826\) −1.09917e6 −0.0560549
\(827\) 1.31059e7 0.666352 0.333176 0.942865i \(-0.391880\pi\)
0.333176 + 0.942865i \(0.391880\pi\)
\(828\) 0 0
\(829\) 3.18667e7 1.61046 0.805232 0.592960i \(-0.202041\pi\)
0.805232 + 0.592960i \(0.202041\pi\)
\(830\) −1.18475e7 −0.596941
\(831\) 0 0
\(832\) 3.12115e6 0.156317
\(833\) 1.33496e6 0.0666583
\(834\) 0 0
\(835\) 1.21737e7 0.604235
\(836\) 2.55008e7 1.26194
\(837\) 0 0
\(838\) −6.70637e6 −0.329896
\(839\) −9.94742e6 −0.487872 −0.243936 0.969791i \(-0.578439\pi\)
−0.243936 + 0.969791i \(0.578439\pi\)
\(840\) 0 0
\(841\) −2.00569e7 −0.977852
\(842\) 2.26697e6 0.110196
\(843\) 0 0
\(844\) 7.38426e6 0.356821
\(845\) −1.59107e7 −0.766561
\(846\) 0 0
\(847\) −1.28110e7 −0.613585
\(848\) −3.99206e6 −0.190637
\(849\) 0 0
\(850\) −5.89582e6 −0.279896
\(851\) 2.28035e7 1.07939
\(852\) 0 0
\(853\) −6.52611e6 −0.307102 −0.153551 0.988141i \(-0.549071\pi\)
−0.153551 + 0.988141i \(0.549071\pi\)
\(854\) 29400.0 0.00137944
\(855\) 0 0
\(856\) 6.93005e6 0.323260
\(857\) 8.76238e6 0.407540 0.203770 0.979019i \(-0.434681\pi\)
0.203770 + 0.979019i \(0.434681\pi\)
\(858\) 0 0
\(859\) 6.47942e6 0.299608 0.149804 0.988716i \(-0.452136\pi\)
0.149804 + 0.988716i \(0.452136\pi\)
\(860\) −2.65526e7 −1.22422
\(861\) 0 0
\(862\) 2.67387e7 1.22567
\(863\) 1.83417e7 0.838323 0.419162 0.907912i \(-0.362324\pi\)
0.419162 + 0.907912i \(0.362324\pi\)
\(864\) 0 0
\(865\) −682784. −0.0310272
\(866\) −2.76535e7 −1.25301
\(867\) 0 0
\(868\) 2.37082e6 0.106807
\(869\) 1.16298e7 0.522424
\(870\) 0 0
\(871\) −3.33634e7 −1.49013
\(872\) 4.61734e6 0.205637
\(873\) 0 0
\(874\) 2.89336e7 1.28122
\(875\) −1.76518e6 −0.0779413
\(876\) 0 0
\(877\) 2.69065e7 1.18129 0.590647 0.806930i \(-0.298873\pi\)
0.590647 + 0.806930i \(0.298873\pi\)
\(878\) 1.82512e7 0.799017
\(879\) 0 0
\(880\) 1.26464e7 0.550504
\(881\) 1.52174e7 0.660542 0.330271 0.943886i \(-0.392860\pi\)
0.330271 + 0.943886i \(0.392860\pi\)
\(882\) 0 0
\(883\) −2.61520e7 −1.12877 −0.564383 0.825513i \(-0.690886\pi\)
−0.564383 + 0.825513i \(0.690886\pi\)
\(884\) 6.77875e6 0.291756
\(885\) 0 0
\(886\) 1.83904e7 0.787058
\(887\) 1.08021e7 0.460997 0.230499 0.973073i \(-0.425964\pi\)
0.230499 + 0.973073i \(0.425964\pi\)
\(888\) 0 0
\(889\) 1.17429e7 0.498337
\(890\) −1.83130e6 −0.0774968
\(891\) 0 0
\(892\) 1.59208e7 0.669965
\(893\) −5.87009e7 −2.46329
\(894\) 0 0
\(895\) 1.38993e7 0.580011
\(896\) 802816. 0.0334077
\(897\) 0 0
\(898\) 6.82631e6 0.282485
\(899\) −2.03818e6 −0.0841090
\(900\) 0 0
\(901\) −8.67026e6 −0.355812
\(902\) 4.42416e7 1.81057
\(903\) 0 0
\(904\) 1.41380e7 0.575395
\(905\) −1.05131e7 −0.426686
\(906\) 0 0
\(907\) −9.84167e6 −0.397238 −0.198619 0.980077i \(-0.563646\pi\)
−0.198619 + 0.980077i \(0.563646\pi\)
\(908\) 1.52909e6 0.0615486
\(909\) 0 0
\(910\) −1.13508e7 −0.454382
\(911\) −2.72509e7 −1.08789 −0.543945 0.839121i \(-0.683070\pi\)
−0.543945 + 0.839121i \(0.683070\pi\)
\(912\) 0 0
\(913\) 2.53318e7 1.00575
\(914\) 2.77566e7 1.09901
\(915\) 0 0
\(916\) −1.67054e7 −0.657836
\(917\) −1.34344e7 −0.527589
\(918\) 0 0
\(919\) 2.86432e7 1.11875 0.559374 0.828916i \(-0.311042\pi\)
0.559374 + 0.828916i \(0.311042\pi\)
\(920\) 1.43488e7 0.558915
\(921\) 0 0
\(922\) −1.04722e7 −0.405705
\(923\) 2.98536e7 1.15343
\(924\) 0 0
\(925\) 2.04922e7 0.787472
\(926\) −2.85441e7 −1.09393
\(927\) 0 0
\(928\) −690176. −0.0263081
\(929\) −6.78492e6 −0.257932 −0.128966 0.991649i \(-0.541166\pi\)
−0.128966 + 0.991649i \(0.541166\pi\)
\(930\) 0 0
\(931\) −5.88725e6 −0.222607
\(932\) 1.87106e7 0.705581
\(933\) 0 0
\(934\) −8.69590e6 −0.326173
\(935\) 2.74664e7 1.02748
\(936\) 0 0
\(937\) 3.00308e7 1.11742 0.558712 0.829362i \(-0.311296\pi\)
0.558712 + 0.829362i \(0.311296\pi\)
\(938\) −8.58166e6 −0.318467
\(939\) 0 0
\(940\) −2.91110e7 −1.07458
\(941\) −2.30725e7 −0.849415 −0.424707 0.905331i \(-0.639623\pi\)
−0.424707 + 0.905331i \(0.639623\pi\)
\(942\) 0 0
\(943\) 5.01972e7 1.83823
\(944\) −1.43565e6 −0.0524346
\(945\) 0 0
\(946\) 5.67736e7 2.06262
\(947\) −2.71433e7 −0.983531 −0.491765 0.870728i \(-0.663648\pi\)
−0.491765 + 0.870728i \(0.663648\pi\)
\(948\) 0 0
\(949\) −1.79603e7 −0.647365
\(950\) 2.60010e7 0.934719
\(951\) 0 0
\(952\) 1.74362e6 0.0623532
\(953\) 1.61552e7 0.576209 0.288104 0.957599i \(-0.406975\pi\)
0.288104 + 0.957599i \(0.406975\pi\)
\(954\) 0 0
\(955\) 2.48689e7 0.882364
\(956\) 437472. 0.0154812
\(957\) 0 0
\(958\) −1.85318e7 −0.652383
\(959\) −1.91665e7 −0.672973
\(960\) 0 0
\(961\) −1.94846e7 −0.680585
\(962\) −2.35610e7 −0.820837
\(963\) 0 0
\(964\) −1.45234e7 −0.503357
\(965\) −5.98046e7 −2.06736
\(966\) 0 0
\(967\) −3.80323e7 −1.30793 −0.653967 0.756523i \(-0.726897\pi\)
−0.653967 + 0.756523i \(0.726897\pi\)
\(968\) −1.67327e7 −0.573956
\(969\) 0 0
\(970\) 3.29627e7 1.12485
\(971\) 2.23104e7 0.759379 0.379689 0.925114i \(-0.376031\pi\)
0.379689 + 0.925114i \(0.376031\pi\)
\(972\) 0 0
\(973\) −1.66288e7 −0.563093
\(974\) 1.82658e7 0.616937
\(975\) 0 0
\(976\) 38400.0 0.00129035
\(977\) −3.06930e7 −1.02873 −0.514367 0.857570i \(-0.671973\pi\)
−0.514367 + 0.857570i \(0.671973\pi\)
\(978\) 0 0
\(979\) 3.91560e6 0.130569
\(980\) −2.91962e6 −0.0971092
\(981\) 0 0
\(982\) −2.12572e7 −0.703439
\(983\) 1.52706e7 0.504048 0.252024 0.967721i \(-0.418904\pi\)
0.252024 + 0.967721i \(0.418904\pi\)
\(984\) 0 0
\(985\) 3.21554e7 1.05600
\(986\) −1.49898e6 −0.0491024
\(987\) 0 0
\(988\) −2.98948e7 −0.974323
\(989\) 6.44162e7 2.09413
\(990\) 0 0
\(991\) 3.16279e7 1.02303 0.511513 0.859276i \(-0.329085\pi\)
0.511513 + 0.859276i \(0.329085\pi\)
\(992\) 3.09658e6 0.0999085
\(993\) 0 0
\(994\) 7.67889e6 0.246509
\(995\) −7.78179e7 −2.49185
\(996\) 0 0
\(997\) −3.55842e7 −1.13376 −0.566878 0.823802i \(-0.691849\pi\)
−0.566878 + 0.823802i \(0.691849\pi\)
\(998\) 9.85256e6 0.313129
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.6.a.a.1.1 1
3.2 odd 2 42.6.a.e.1.1 1
4.3 odd 2 1008.6.a.d.1.1 1
7.6 odd 2 882.6.a.j.1.1 1
12.11 even 2 336.6.a.q.1.1 1
15.2 even 4 1050.6.g.h.799.2 2
15.8 even 4 1050.6.g.h.799.1 2
15.14 odd 2 1050.6.a.f.1.1 1
21.2 odd 6 294.6.e.d.67.1 2
21.5 even 6 294.6.e.c.67.1 2
21.11 odd 6 294.6.e.d.79.1 2
21.17 even 6 294.6.e.c.79.1 2
21.20 even 2 294.6.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.e.1.1 1 3.2 odd 2
126.6.a.a.1.1 1 1.1 even 1 trivial
294.6.a.k.1.1 1 21.20 even 2
294.6.e.c.67.1 2 21.5 even 6
294.6.e.c.79.1 2 21.17 even 6
294.6.e.d.67.1 2 21.2 odd 6
294.6.e.d.79.1 2 21.11 odd 6
336.6.a.q.1.1 1 12.11 even 2
882.6.a.j.1.1 1 7.6 odd 2
1008.6.a.d.1.1 1 4.3 odd 2
1050.6.a.f.1.1 1 15.14 odd 2
1050.6.g.h.799.1 2 15.8 even 4
1050.6.g.h.799.2 2 15.2 even 4