Newspace parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.g (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.43424066072\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 14) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(73\) |
\(\chi(n)\) | \(1\) | \(-1 + \zeta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−1.00000 | + | 1.73205i | 0 | −2.00000 | − | 3.46410i | 3.50000 | − | 6.06218i | 0 | −10.0000 | + | 15.5885i | 8.00000 | 0 | 7.00000 | + | 12.1244i | ||||||||||||||
109.1 | −1.00000 | − | 1.73205i | 0 | −2.00000 | + | 3.46410i | 3.50000 | + | 6.06218i | 0 | −10.0000 | − | 15.5885i | 8.00000 | 0 | 7.00000 | − | 12.1244i | |||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 126.4.g.c | 2 | |
3.b | odd | 2 | 1 | 14.4.c.b | ✓ | 2 | |
7.b | odd | 2 | 1 | 882.4.g.d | 2 | ||
7.c | even | 3 | 1 | inner | 126.4.g.c | 2 | |
7.c | even | 3 | 1 | 882.4.a.k | 1 | ||
7.d | odd | 6 | 1 | 882.4.a.p | 1 | ||
7.d | odd | 6 | 1 | 882.4.g.d | 2 | ||
12.b | even | 2 | 1 | 112.4.i.b | 2 | ||
15.d | odd | 2 | 1 | 350.4.e.b | 2 | ||
15.e | even | 4 | 2 | 350.4.j.d | 4 | ||
21.c | even | 2 | 1 | 98.4.c.e | 2 | ||
21.g | even | 6 | 1 | 98.4.a.c | 1 | ||
21.g | even | 6 | 1 | 98.4.c.e | 2 | ||
21.h | odd | 6 | 1 | 14.4.c.b | ✓ | 2 | |
21.h | odd | 6 | 1 | 98.4.a.b | 1 | ||
24.f | even | 2 | 1 | 448.4.i.d | 2 | ||
24.h | odd | 2 | 1 | 448.4.i.c | 2 | ||
84.j | odd | 6 | 1 | 784.4.a.j | 1 | ||
84.n | even | 6 | 1 | 112.4.i.b | 2 | ||
84.n | even | 6 | 1 | 784.4.a.l | 1 | ||
105.o | odd | 6 | 1 | 350.4.e.b | 2 | ||
105.o | odd | 6 | 1 | 2450.4.a.bh | 1 | ||
105.p | even | 6 | 1 | 2450.4.a.bf | 1 | ||
105.x | even | 12 | 2 | 350.4.j.d | 4 | ||
168.s | odd | 6 | 1 | 448.4.i.c | 2 | ||
168.v | even | 6 | 1 | 448.4.i.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
14.4.c.b | ✓ | 2 | 3.b | odd | 2 | 1 | |
14.4.c.b | ✓ | 2 | 21.h | odd | 6 | 1 | |
98.4.a.b | 1 | 21.h | odd | 6 | 1 | ||
98.4.a.c | 1 | 21.g | even | 6 | 1 | ||
98.4.c.e | 2 | 21.c | even | 2 | 1 | ||
98.4.c.e | 2 | 21.g | even | 6 | 1 | ||
112.4.i.b | 2 | 12.b | even | 2 | 1 | ||
112.4.i.b | 2 | 84.n | even | 6 | 1 | ||
126.4.g.c | 2 | 1.a | even | 1 | 1 | trivial | |
126.4.g.c | 2 | 7.c | even | 3 | 1 | inner | |
350.4.e.b | 2 | 15.d | odd | 2 | 1 | ||
350.4.e.b | 2 | 105.o | odd | 6 | 1 | ||
350.4.j.d | 4 | 15.e | even | 4 | 2 | ||
350.4.j.d | 4 | 105.x | even | 12 | 2 | ||
448.4.i.c | 2 | 24.h | odd | 2 | 1 | ||
448.4.i.c | 2 | 168.s | odd | 6 | 1 | ||
448.4.i.d | 2 | 24.f | even | 2 | 1 | ||
448.4.i.d | 2 | 168.v | even | 6 | 1 | ||
784.4.a.j | 1 | 84.j | odd | 6 | 1 | ||
784.4.a.l | 1 | 84.n | even | 6 | 1 | ||
882.4.a.k | 1 | 7.c | even | 3 | 1 | ||
882.4.a.p | 1 | 7.d | odd | 6 | 1 | ||
882.4.g.d | 2 | 7.b | odd | 2 | 1 | ||
882.4.g.d | 2 | 7.d | odd | 6 | 1 | ||
2450.4.a.bf | 1 | 105.p | even | 6 | 1 | ||
2450.4.a.bh | 1 | 105.o | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 7T_{5} + 49 \)
acting on \(S_{4}^{\mathrm{new}}(126, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 2T + 4 \)
$3$
\( T^{2} \)
$5$
\( T^{2} - 7T + 49 \)
$7$
\( T^{2} + 20T + 343 \)
$11$
\( T^{2} - 35T + 1225 \)
$13$
\( (T - 66)^{2} \)
$17$
\( T^{2} - 59T + 3481 \)
$19$
\( T^{2} + 137T + 18769 \)
$23$
\( T^{2} + 7T + 49 \)
$29$
\( (T + 106)^{2} \)
$31$
\( T^{2} + 75T + 5625 \)
$37$
\( T^{2} + 11T + 121 \)
$41$
\( (T - 498)^{2} \)
$43$
\( (T - 260)^{2} \)
$47$
\( T^{2} + 171T + 29241 \)
$53$
\( T^{2} + 417T + 173889 \)
$59$
\( T^{2} + 17T + 289 \)
$61$
\( T^{2} + 51T + 2601 \)
$67$
\( T^{2} + 439T + 192721 \)
$71$
\( (T - 784)^{2} \)
$73$
\( T^{2} + 295T + 87025 \)
$79$
\( T^{2} - 495T + 245025 \)
$83$
\( (T + 932)^{2} \)
$89$
\( T^{2} + 873T + 762129 \)
$97$
\( (T + 290)^{2} \)
show more
show less