Newspace parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.g (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.43424066072\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 42) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(73\) |
\(\chi(n)\) | \(1\) | \(-1 + \zeta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−1.00000 | + | 1.73205i | 0 | −2.00000 | − | 3.46410i | −3.00000 | + | 5.19615i | 0 | −3.50000 | − | 18.1865i | 8.00000 | 0 | −6.00000 | − | 10.3923i | ||||||||||||||
109.1 | −1.00000 | − | 1.73205i | 0 | −2.00000 | + | 3.46410i | −3.00000 | − | 5.19615i | 0 | −3.50000 | + | 18.1865i | 8.00000 | 0 | −6.00000 | + | 10.3923i | |||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 126.4.g.b | 2 | |
3.b | odd | 2 | 1 | 42.4.e.a | ✓ | 2 | |
7.b | odd | 2 | 1 | 882.4.g.g | 2 | ||
7.c | even | 3 | 1 | inner | 126.4.g.b | 2 | |
7.c | even | 3 | 1 | 882.4.a.o | 1 | ||
7.d | odd | 6 | 1 | 882.4.a.l | 1 | ||
7.d | odd | 6 | 1 | 882.4.g.g | 2 | ||
12.b | even | 2 | 1 | 336.4.q.f | 2 | ||
21.c | even | 2 | 1 | 294.4.e.i | 2 | ||
21.g | even | 6 | 1 | 294.4.a.c | 1 | ||
21.g | even | 6 | 1 | 294.4.e.i | 2 | ||
21.h | odd | 6 | 1 | 42.4.e.a | ✓ | 2 | |
21.h | odd | 6 | 1 | 294.4.a.d | 1 | ||
84.j | odd | 6 | 1 | 2352.4.a.bf | 1 | ||
84.n | even | 6 | 1 | 336.4.q.f | 2 | ||
84.n | even | 6 | 1 | 2352.4.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.4.e.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
42.4.e.a | ✓ | 2 | 21.h | odd | 6 | 1 | |
126.4.g.b | 2 | 1.a | even | 1 | 1 | trivial | |
126.4.g.b | 2 | 7.c | even | 3 | 1 | inner | |
294.4.a.c | 1 | 21.g | even | 6 | 1 | ||
294.4.a.d | 1 | 21.h | odd | 6 | 1 | ||
294.4.e.i | 2 | 21.c | even | 2 | 1 | ||
294.4.e.i | 2 | 21.g | even | 6 | 1 | ||
336.4.q.f | 2 | 12.b | even | 2 | 1 | ||
336.4.q.f | 2 | 84.n | even | 6 | 1 | ||
882.4.a.l | 1 | 7.d | odd | 6 | 1 | ||
882.4.a.o | 1 | 7.c | even | 3 | 1 | ||
882.4.g.g | 2 | 7.b | odd | 2 | 1 | ||
882.4.g.g | 2 | 7.d | odd | 6 | 1 | ||
2352.4.a.f | 1 | 84.n | even | 6 | 1 | ||
2352.4.a.bf | 1 | 84.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 6T_{5} + 36 \)
acting on \(S_{4}^{\mathrm{new}}(126, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 2T + 4 \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 6T + 36 \)
$7$
\( T^{2} + 7T + 343 \)
$11$
\( T^{2} + 30T + 900 \)
$13$
\( (T - 53)^{2} \)
$17$
\( T^{2} + 84T + 7056 \)
$19$
\( T^{2} - 97T + 9409 \)
$23$
\( T^{2} - 84T + 7056 \)
$29$
\( (T - 180)^{2} \)
$31$
\( T^{2} + 179T + 32041 \)
$37$
\( T^{2} - 145T + 21025 \)
$41$
\( (T + 126)^{2} \)
$43$
\( (T + 325)^{2} \)
$47$
\( T^{2} + 366T + 133956 \)
$53$
\( T^{2} + 768T + 589824 \)
$59$
\( T^{2} + 264T + 69696 \)
$61$
\( T^{2} + 818T + 669124 \)
$67$
\( T^{2} - 523T + 273529 \)
$71$
\( (T - 342)^{2} \)
$73$
\( T^{2} - 43T + 1849 \)
$79$
\( T^{2} - 1171 T + 1371241 \)
$83$
\( (T - 810)^{2} \)
$89$
\( T^{2} + 600T + 360000 \)
$97$
\( (T - 386)^{2} \)
show more
show less